Accelerated computational design of BCC refractory high entropy alloys using metaheuristics, CALPHAD, and artificial neural networks

Refractory high-entropy alloys are a novel class of materials for diverse fields. Their design has been enhanced by several empirical models, thermodynamic calculation methods, and artificial intelligence techniques, allowing continuous advancements in the search for specific properties. In this stu...

Full description

Saved in:
Bibliographic Details
Published in:Materials today communications Vol. 47; p. 113102
Main Authors: Román-Sedano, A. Monzamodeth, Aranda, V., Hernández-Mecinas, E., Espinosa-Rangel, S., Villalobos, J., Figueroa, I.A., González, G.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2025
Subjects:
ISSN:2352-4928, 2352-4928
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Refractory high-entropy alloys are a novel class of materials for diverse fields. Their design has been enhanced by several empirical models, thermodynamic calculation methods, and artificial intelligence techniques, allowing continuous advancements in the search for specific properties. In this study, RHEA was designed to maximize the stabilization temperature range of a high temperature BCC single-phase (high-temperature single-phase, HTSP) while maintaining the mixing entropy (∆Smix) as high as possible, comparable to that of an equimolar composition. Metaheuristic algorithms (particle swarm optimization, genetic algorithms and artificial bee colony), thermodynamic calculations, and artificial neural networks, with a global fitting > 0.99 were employed to determine the optimal chemical composition from over 20000 candidates. Theoretically, the TiNbZrTaMo, TiNbZrTaMoV, TiNbZrTaMoHf, and TiNbZrTaMoVHf alloy families were investigated. From the theoretically obtained results, the Ti17.5Nb17.5Zr13.5Ta15.5Mo17.5V18.5 alloy was chosen in order to prove that the predictive expectations can be reproduced experimentally. The alloy composition was synthesized using an arc-melting furnace under an inert atmosphere and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Additionally, mechanical properties were evaluated through the Vickers microhardness test. The XRD results showed the formation of a single BCC phase, confirming the theoretical predictions. Elemental segregation was also observed in the microstructure, with a remarkable concentration of Zr and Nb in the interdendritic region. Furthermore, the measured Vickers microhardness value was 480 ± 5.2 HV, being higher than previously studied HEAs, highlighting the effect of incorporating a sixth alloying element. These findings demonstrate the feasibility of using thermodynamic calculations and artificial intelligence for the materials design. [Display omitted]
AbstractList Refractory high-entropy alloys are a novel class of materials for diverse fields. Their design has been enhanced by several empirical models, thermodynamic calculation methods, and artificial intelligence techniques, allowing continuous advancements in the search for specific properties. In this study, RHEA was designed to maximize the stabilization temperature range of a high temperature BCC single-phase (high-temperature single-phase, HTSP) while maintaining the mixing entropy (∆Smix) as high as possible, comparable to that of an equimolar composition. Metaheuristic algorithms (particle swarm optimization, genetic algorithms and artificial bee colony), thermodynamic calculations, and artificial neural networks, with a global fitting > 0.99 were employed to determine the optimal chemical composition from over 20000 candidates. Theoretically, the TiNbZrTaMo, TiNbZrTaMoV, TiNbZrTaMoHf, and TiNbZrTaMoVHf alloy families were investigated. From the theoretically obtained results, the Ti17.5Nb17.5Zr13.5Ta15.5Mo17.5V18.5 alloy was chosen in order to prove that the predictive expectations can be reproduced experimentally. The alloy composition was synthesized using an arc-melting furnace under an inert atmosphere and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Additionally, mechanical properties were evaluated through the Vickers microhardness test. The XRD results showed the formation of a single BCC phase, confirming the theoretical predictions. Elemental segregation was also observed in the microstructure, with a remarkable concentration of Zr and Nb in the interdendritic region. Furthermore, the measured Vickers microhardness value was 480 ± 5.2 HV, being higher than previously studied HEAs, highlighting the effect of incorporating a sixth alloying element. These findings demonstrate the feasibility of using thermodynamic calculations and artificial intelligence for the materials design. [Display omitted]
ArticleNumber 113102
Author Román-Sedano, A. Monzamodeth
Espinosa-Rangel, S.
González, G.
Figueroa, I.A.
Aranda, V.
Villalobos, J.
Hernández-Mecinas, E.
Author_xml – sequence: 1
  givenname: A. Monzamodeth
  surname: Román-Sedano
  fullname: Román-Sedano, A. Monzamodeth
  organization: Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
– sequence: 2
  givenname: V.
  orcidid: 0000-0003-2376-6124
  surname: Aranda
  fullname: Aranda, V.
  organization: Centro de Ingeniería de Superficies y Acabados (CENISA), Facultad de Ingeniería, División de Ingeniería Mecánica e Industrial, Universidad Nacional Autónoma de México, C.P. 04510, Mexico
– sequence: 3
  givenname: E.
  orcidid: 0000-0001-8827-7386
  surname: Hernández-Mecinas
  fullname: Hernández-Mecinas, E.
  organization: Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
– sequence: 4
  givenname: S.
  surname: Espinosa-Rangel
  fullname: Espinosa-Rangel, S.
  organization: Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
– sequence: 5
  givenname: J.
  orcidid: 0009-0007-0472-198X
  surname: Villalobos
  fullname: Villalobos, J.
  organization: Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
– sequence: 6
  givenname: I.A.
  orcidid: 0000-0001-9699-0261
  surname: Figueroa
  fullname: Figueroa, I.A.
  email: iafigueroa@unam.mx
  organization: Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
– sequence: 7
  givenname: G.
  surname: González
  fullname: González, G.
  email: joseggr@unam.mx
  organization: Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México CP 04510, Mexico
BookMark eNp9kMtOwzAQRS0EEqX0D1j4A9rg2HlukEp5FKkSLGBtOZNJ65LYle2CsufDSSkLVqzuLOYezZwLcmqsQUKuYhbFLM6ut1EXwHZdxBlPozgWMeMnZMRFymdJyYvTP_M5mXi_ZYzFRcqSMhmRrzkAtuhUwJoOmN0-qKCtUS2t0eu1obaht4sFddg4BcG6nm70ekPRBGd3PVVta3tP916bNe0wqA3unfZBg5_SxXz1spzfTakyNVUu6EaDHtBm2PmJ8Gndu78kZ41qPU5-c0zeHu5fF8vZ6vnxaWDMQDARZlDlNWalKOuUK4bIQDQiqbISlUoRmiJXIoMKc8Z5kvJk-KzMIauhaMq8SpgYk-TIBWe9Hz6SO6c75XoZM3mQKbfyKFMeZMqjzKF2c6zhcNuHRic9aDSAtXYIQdZW_w_4BngLhDk
Cites_doi 10.1016/j.commatsci.2021.110381
10.1016/j.jallcom.2024.174408
10.1016/j.msea.2021.141098
10.1016/j.jallcom.2024.173605
10.1016/j.compbiomed.2024.108809
10.1016/j.intermet.2018.04.023
10.3390/ma16206622
10.1016/j.mtcomm.2024.109607
10.1016/j.jallcom.2023.170431
10.1016/j.eswa.2020.114312
10.1016/j.jallcom.2023.173279
10.1016/j.commatsci.2021.110723
10.1016/j.matdes.2022.111239
10.1016/j.jallcom.2016.11.188
10.1016/j.commatsci.2023.112612
10.1016/j.mser.2023.100746
10.1016/j.jallcom.2016.09.189
10.1016/j.commatsci.2024.112917
10.1016/j.jallcom.2023.170758
10.1103/PhysRevMaterials.3.095005
10.1016/j.jallcom.2024.178274
10.1016/j.intermet.2010.06.003
10.1007/s11837-019-03704-4
10.1007/s11661-015-3105-z
10.1016/j.jmrt.2025.01.150
10.3390/e20120967
10.1016/j.jallcom.2019.06.387
10.1063/5.0065303
10.1016/j.mattod.2015.11.026
10.1016/j.jmst.2022.08.046
10.1016/j.intermet.2023.108080
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.mtcomm.2025.113102
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4928
ExternalDocumentID 10_1016_j_mtcomm_2025_113102
S2352492825016149
GroupedDBID --M
0R~
4.4
457
4G.
6I.
7-5
AABXZ
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c303t-cb7de6939d52a0ee0c3f34b69eaa5ecf87a36cbe70224524cce97c6dc8f97b403
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001518640300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4928
IngestDate Sat Nov 29 06:58:00 EST 2025
Sat Nov 22 16:50:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Refractory high entropy alloys
Mechanical properties
Metaheuristics algorithms
Microstructure
Artificial neural networks
Calphad method
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-cb7de6939d52a0ee0c3f34b69eaa5ecf87a36cbe70224524cce97c6dc8f97b403
ORCID 0000-0003-2376-6124
0000-0001-8827-7386
0000-0001-9699-0261
0009-0007-0472-198X
OpenAccessLink https://dx.doi.org/10.1016/j.mtcomm.2025.113102
ParticipantIDs crossref_primary_10_1016_j_mtcomm_2025_113102
elsevier_sciencedirect_doi_10_1016_j_mtcomm_2025_113102
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Materials today communications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yao, Qiao, Hawk, Zhou, Chen, Gao (bib33) 2017
Román-Sedano, Campillo, Villalobos, Castillo, Flores (bib27) 2023
Yan, Lu, Wang (bib18) 2023
Yao, Liu, Gao, Jiang, Li, Liu, Zhang, Fan (bib30) 2018
Zhou, Cheng, Chen, Liang (bib3) 2022
Yan, Lu, Wang (bib28) 2021
Chen, Tong, Tseng, Yeh, Poplawsky, Wen, Gao, Kim, Chen, Ren, Feng, Li, Liaw (bib32) 2019
Roy, Balasubramanian (bib6) 2021
Hosseini, Vaghefi, Lee, Prorok, Mirkoohi (bib12) 2024
Guo, Hou, Pan, Pei, Song, Liaw, Zhao (bib16) 2023
Takeuchi, Inoue (bib24) 2010
Xiong, Guo, Zhan, Liu, Cao (bib5) 2023
Dangwal, Edalati (bib36) 2025
Iroc, Tukac, Tanrisevdi, El-Atwani, Tunes, Kalay, Aydogan (bib40) 2022
Sun, Wang, Mo, Wang, Liang, Shen (bib43) 2024
Kalali, Antharam, Hasan, Karthik, Phani, Bhanu Sankara Rao, Rajulapati (bib34) 2021
Aranda, Figueroa, Amigó, González-Ojeda, Lozada, Vidilli, Otani, Gonzalez (bib37) 2023
Zhang, Xie, Guo, Ding, Poh, Sha (bib10) 2023
Zhang, Chen, Tao, Cai, Liu, Ouyang, Peng, Du (bib23) 2020
Yao, Qiao, Hawk, Zhou, Chen, Gao (bib41) 2017
Raturi, Aditya C, Gurao, Biswas (bib22) 2019
Sun, Lu, Liu, Du, Xie, Lv, Song, Wu, Wang, Jiang, Lu (bib19) 2021
Melnick, Soolshenko (bib8) 2017
Wu, Tsai, Kuo, Tsai (bib13) 2018
Gao, Zhang, Yang, Guo (bib39) 2016
Naveen, Umre, Chakraborty, Rahul, Samal, Tewari (bib29) 2024
Aranda, Klyatskina, Barba-Pingarrón, Figueroa, Amigó, Gonzalez (bib42) 2025
Hu, Tan, Knibbe, Xu, Jiang, Wang, Li, Zhang (bib11) 2023
Lin, Yao, Yao, Liu, Liu, Zhang, Qin, Wu (bib2) 2023
Gou, LIU (bib4) 2011
Catal, Bedir, Yilmaz, Swider, Lee, El-Atwani, Maier, Ozdemir, Canadinc (bib21) 2024
González-Guillén, Romero-Resendiz, Naeem, Vidilli, Otani, Klyatskina, Gonzalez, Amigó (bib38) 2024
Bencze, Hasemann, Sergeev, Motalov, Müller, Krüger (bib9) 2024
Luíza da Costa, Dias de Lima, Barbosa (bib26) 2021
Xu, Song, Wang, Li, Pan, Hou, Zhao (bib17) 2025
Kumar, Linda, Shadangi, Jindal (bib44) 2024
Kumar Dewangan, Nagarjuna, Jain, Kumawat, Kumar, Sharma, Ahn (bib15) 2023
Li, Guo (bib14) 2019
Ye, Wang, Lu, Liu, Yang (bib1) 2016
Iroc, Tukac, Tanrisevdi, El-Atwani, Tunes, Kalay, Aydogan (bib31) 2022
Avula, Chavan, Mukherjee, Roy (bib35) 2024
Gao, Carney, Dogan, Jablonksi, Hawk, Alman (bib7) 2015
Chang, Jui, Lee, Yeh (bib20) 2019
Alkadri, Del Maestro, Driscoll (bib25) 2024
Kalali (10.1016/j.mtcomm.2025.113102_bib34) 2021
Gao (10.1016/j.mtcomm.2025.113102_bib39) 2016
Chang (10.1016/j.mtcomm.2025.113102_bib20) 2019
Bencze (10.1016/j.mtcomm.2025.113102_bib9) 2024
Wu (10.1016/j.mtcomm.2025.113102_bib13) 2018
Iroc (10.1016/j.mtcomm.2025.113102_bib31) 2022
Xiong (10.1016/j.mtcomm.2025.113102_bib5) 2023
Zhang (10.1016/j.mtcomm.2025.113102_bib10) 2023
Xu (10.1016/j.mtcomm.2025.113102_bib17) 2025
Yan (10.1016/j.mtcomm.2025.113102_bib18) 2023
Catal (10.1016/j.mtcomm.2025.113102_bib21) 2024
Yan (10.1016/j.mtcomm.2025.113102_bib28) 2021
Kumar (10.1016/j.mtcomm.2025.113102_bib44) 2024
Sun (10.1016/j.mtcomm.2025.113102_bib19) 2021
Zhang (10.1016/j.mtcomm.2025.113102_bib23) 2020
Luíza da Costa (10.1016/j.mtcomm.2025.113102_bib26) 2021
Dangwal (10.1016/j.mtcomm.2025.113102_bib36) 2025
Alkadri (10.1016/j.mtcomm.2025.113102_bib25) 2024
Guo (10.1016/j.mtcomm.2025.113102_bib16) 2023
Lin (10.1016/j.mtcomm.2025.113102_bib2) 2023
Takeuchi (10.1016/j.mtcomm.2025.113102_bib24) 2010
Avula (10.1016/j.mtcomm.2025.113102_bib35) 2024
Iroc (10.1016/j.mtcomm.2025.113102_bib40) 2022
González-Guillén (10.1016/j.mtcomm.2025.113102_bib38) 2024
Hu (10.1016/j.mtcomm.2025.113102_bib11) 2023
Yao (10.1016/j.mtcomm.2025.113102_bib30) 2018
Yao (10.1016/j.mtcomm.2025.113102_bib33) 2017
Zhou (10.1016/j.mtcomm.2025.113102_bib3) 2022
Hosseini (10.1016/j.mtcomm.2025.113102_bib12) 2024
Román-Sedano (10.1016/j.mtcomm.2025.113102_bib27) 2023
Ye (10.1016/j.mtcomm.2025.113102_bib1) 2016
Naveen (10.1016/j.mtcomm.2025.113102_bib29) 2024
Chen (10.1016/j.mtcomm.2025.113102_bib32) 2019
Yao (10.1016/j.mtcomm.2025.113102_bib41) 2017
Aranda (10.1016/j.mtcomm.2025.113102_bib42) 2025
Li (10.1016/j.mtcomm.2025.113102_bib14) 2019
Gao (10.1016/j.mtcomm.2025.113102_bib7) 2015
Melnick (10.1016/j.mtcomm.2025.113102_bib8) 2017
Kumar Dewangan (10.1016/j.mtcomm.2025.113102_bib15) 2023
Gou (10.1016/j.mtcomm.2025.113102_bib4) 2011
Aranda (10.1016/j.mtcomm.2025.113102_bib37) 2023
Raturi (10.1016/j.mtcomm.2025.113102_bib22) 2019
Sun (10.1016/j.mtcomm.2025.113102_bib43) 2024
Roy (10.1016/j.mtcomm.2025.113102_bib6) 2021
References_xml – year: 2023
  ident: bib2
  article-title: Construction of FeCrVTiMox high-entropy alloys with enhanced mechanical properties based on electronegativity difference regulation strategy
  publication-title: J. Alloy. Compd.
– year: 2022
  ident: bib40
  article-title: Design of oxygen-doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductility
  publication-title: Mater. Des.
– year: 2015
  ident: bib7
  article-title: Design of refractory high-entropy alloys
  publication-title: JOM
– year: 2023
  ident: bib16
  article-title: Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation
  publication-title: Mater. Des.
– year: 2023
  ident: bib27
  article-title: Hydrogen diffusion in nickel superalloys: electrochemical permeation study and computational AI predictive modeling
  publication-title: Materials
– year: 2019
  ident: bib14
  article-title: Machine-learning model for predicting phase formations of high-entropy alloys
  publication-title: Phys. Rev. Mater.
– year: 2017
  ident: bib8
  article-title: Thermodynamic design of high-entropy refractory alloys
  publication-title: J. Alloy. Compd.
– year: 2019
  ident: bib32
  article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures
  publication-title: Scr. Mater.
– year: 2016
  ident: bib39
  article-title: Senary refractory high-entropy alloy HfNbTaTiVZr
  publication-title: Metall. Mater. Trans. A
– year: 2024
  ident: bib44
  article-title: Influence of micro-segregation on the microstructure, and microhardness of MoNbTaxTi(1-x)W refractory high entropy alloys: experimental and DFT approach
  publication-title: Intermetallics
– year: 2021
  ident: bib26
  article-title: Evaluation of feature selection methods based on artificial neural network weights
  publication-title: Expert Syst. Appl.
– year: 2024
  ident: bib9
  article-title: Thermodynamic properties of refractory Mo-Nb-V-Ti high entropy alloys (HEAs)
  publication-title: J. Alloy. Compd.
– year: 2023
  ident: bib37
  article-title: Effect of Mo on high entropy Ti-Nb-Zr-Ta alloy: phase equilibria, microstructure and mechanical properties
  publication-title: J. Alloy. Compd.
– year: 2024
  ident: bib43
  article-title: Promoted high-temperature strength and room-temperature plasticity synergy by tuning dendrite segregation in NbMoTaW refractory high-entropy alloy
  publication-title: Int. J. Refract. Met. Hard Mater.
– year: 2025
  ident: bib36
  article-title: Developing a single-phase and nanograined refractory high-entropy alloy ZrHfNbTaW with ultrahigh hardness by phase transformation via high-pressure torsion
  publication-title: J. Alloy. Compd.
– year: 2021
  ident: bib6
  article-title: Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys
  publication-title: Comput. Mater. Sci.
– year: 2019
  ident: bib20
  article-title: Prediction of the composition and hardness of high-entropy alloys by machine learning
  publication-title: JOM
– year: 2016
  ident: bib1
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
– year: 2021
  ident: bib28
  article-title: Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning
  publication-title: Comput. Mater. Sci.
– year: 2021
  ident: bib34
  article-title: On the origins of ultra-high hardness and strain gradient plasticity in multi-phase nanocrystalline MoNbTaTiW based refractory high-entropy alloy
  publication-title: Materials Science Engineering A
– year: 2024
  ident: bib35
  article-title: Phase stability and mechanical properties of Ta enriched TiTaNbZrMo refractory high entropy alloys
  publication-title: J. Alloy. Compd.
– year: 2023
  ident: bib5
  article-title: Refractory high-entropy alloys: a focused review of preparation methods and properties
  publication-title: J. Mater. Sci. Technol.
– year: 2025
  ident: bib42
  article-title: Nanoindentation and orientation imaging analysis of high entropy Ti–Nb–Zr–Ta–Mo alloys exhibiting dendrite microstructure
  publication-title: J. Mater. Res. Technol.
– year: 2017
  ident: bib41
  article-title: Mechanical properties of refractory high-entropy alloys: experiments and modeling
  publication-title: J. Alloy. Compd.
– year: 2023
  ident: bib15
  article-title: Review on applications of artificial neural networks to develop high entropy alloys: a state-of-the-art technique
  publication-title: Mater. Today Commun.
– year: 2017
  ident: bib33
  article-title: Mechanical properties of refractory high-entropy alloys: experiments and modelling
  publication-title: J. Alloy. Compd.
– year: 2019
  ident: bib22
  article-title: ICME approach to explore equiatomic and non equiatomic single phase BCC refractory high entropy alloys
  publication-title: J. Alloy. Compd.
– year: 2023
  ident: bib11
  article-title: Recent applications of machine learning in alloy design: a review
  publication-title: Materials Science Engineering R Reports
– year: 2023
  ident: bib10
  article-title: Multi-objective optimization for high-performance Fe-based metallic glasses via machine learning approach
  publication-title: J. Alloy. Compd.
– year: 2024
  ident: bib12
  article-title: Machine learning-enabled prediction and optimization of hardness for Nb-Ti-V-Zr refractory high entropy alloy
  publication-title: Mater. Today Commun.
– year: 2020
  ident: bib23
  article-title: Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys
  publication-title: Mater. Des.
– year: 2024
  ident: bib25
  article-title: Unveiling surgical expertise through machine learning in a novel VR/AR spinal simulator: a multilayered approach using transfer learning and connection weights analysis
  publication-title: Comput. Biol. Med.
– year: 2022
  ident: bib3
  article-title: Composition design and preparation process of refractory high-entropy alloys: a review
  publication-title: Int. J. Refract. Met. Hard Mater.
– year: 2023
  ident: bib18
  article-title: Overview: recent studies of machine learning in phase prediction of high entropy alloys
  publication-title: Tungsten
– year: 2022
  ident: bib31
  article-title: Design of oxygen doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductility
  publication-title: Mater. Des.
– year: 2024
  ident: bib21
  article-title: Machine learning assisted design of novel refractory high entropy alloys with enhanced mechanical properties
  publication-title: Comput. Mater. Sci.
– year: 2024
  ident: bib38
  article-title: Microstructural and mechanical behavior of second-phase hardened porous refractory Ti-Nb-Zr-Ta alloys
  publication-title: J. Alloy. Compd.
– year: 2025
  ident: bib17
  article-title: Cryo-rolling and annealing-mediated phase transformation in Al5 Ti2.5 Fe25 Cr25 Ni42.5 high-entropy alloy: experimental, phase-field and CALPHAD investigation
  publication-title: J. Mater. Sci. Technol.
– year: 2011
  ident: bib4
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Progress Nat. Sci. Mater. Int.
– year: 2024
  ident: bib29
  article-title: Development of single-phase BCC refractory high entropy alloys using machine learning techniques
  publication-title: Comput. Mater. Sci.
– year: 2021
  ident: bib19
  article-title: Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data
  publication-title: Appl. Phys. Lett.
– year: 2010
  ident: bib24
  article-title: Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub regular solution model for assessing forming ability of amorphous and glassy alloys
  publication-title: Intermetallics
– year: 2018
  ident: bib13
  article-title: Effect of atomic size difference on the microstructure and mechanical properties of high-entropy alloys
  publication-title: Entropy
– year: 2018
  ident: bib30
  article-title: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy
  publication-title: Intermetallics
– year: 2021
  ident: 10.1016/j.mtcomm.2025.113102_bib6
  article-title: Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110381
– year: 2022
  ident: 10.1016/j.mtcomm.2025.113102_bib3
  article-title: Composition design and preparation process of refractory high-entropy alloys: a review
  publication-title: Int. J. Refract. Met. Hard Mater.
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib10
  article-title: Multi-objective optimization for high-performance Fe-based metallic glasses via machine learning approach
  publication-title: J. Alloy. Compd.
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib35
  article-title: Phase stability and mechanical properties of Ta enriched TiTaNbZrMo refractory high entropy alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2024.174408
– year: 2021
  ident: 10.1016/j.mtcomm.2025.113102_bib34
  article-title: On the origins of ultra-high hardness and strain gradient plasticity in multi-phase nanocrystalline MoNbTaTiW based refractory high-entropy alloy
  publication-title: Materials Science Engineering A
  doi: 10.1016/j.msea.2021.141098
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib38
  article-title: Microstructural and mechanical behavior of second-phase hardened porous refractory Ti-Nb-Zr-Ta alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2024.173605
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib25
  article-title: Unveiling surgical expertise through machine learning in a novel VR/AR spinal simulator: a multilayered approach using transfer learning and connection weights analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108809
– year: 2018
  ident: 10.1016/j.mtcomm.2025.113102_bib30
  article-title: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.04.023
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib27
  article-title: Hydrogen diffusion in nickel superalloys: electrochemical permeation study and computational AI predictive modeling
  publication-title: Materials
  doi: 10.3390/ma16206622
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib12
  article-title: Machine learning-enabled prediction and optimization of hardness for Nb-Ti-V-Zr refractory high entropy alloy
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2024.109607
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib2
  article-title: Construction of FeCrVTiMox high-entropy alloys with enhanced mechanical properties based on electronegativity difference regulation strategy
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2023.170431
– year: 2021
  ident: 10.1016/j.mtcomm.2025.113102_bib26
  article-title: Evaluation of feature selection methods based on artificial neural network weights
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114312
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib9
  article-title: Thermodynamic properties of refractory Mo-Nb-V-Ti high entropy alloys (HEAs)
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2023.173279
– year: 2021
  ident: 10.1016/j.mtcomm.2025.113102_bib28
  article-title: Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110723
– year: 2022
  ident: 10.1016/j.mtcomm.2025.113102_bib40
  article-title: Design of oxygen-doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductility
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111239
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib43
  article-title: Promoted high-temperature strength and room-temperature plasticity synergy by tuning dendrite segregation in NbMoTaW refractory high-entropy alloy
  publication-title: Int. J. Refract. Met. Hard Mater.
– year: 2017
  ident: 10.1016/j.mtcomm.2025.113102_bib41
  article-title: Mechanical properties of refractory high-entropy alloys: experiments and modeling
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.11.188
– year: 2011
  ident: 10.1016/j.mtcomm.2025.113102_bib4
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Progress Nat. Sci. Mater. Int.
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib21
  article-title: Machine learning assisted design of novel refractory high entropy alloys with enhanced mechanical properties
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2023.112612
– year: 2025
  ident: 10.1016/j.mtcomm.2025.113102_bib17
  article-title: Cryo-rolling and annealing-mediated phase transformation in Al5 Ti2.5 Fe25 Cr25 Ni42.5 high-entropy alloy: experimental, phase-field and CALPHAD investigation
  publication-title: J. Mater. Sci. Technol.
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib18
  article-title: Overview: recent studies of machine learning in phase prediction of high entropy alloys
  publication-title: Tungsten
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib11
  article-title: Recent applications of machine learning in alloy design: a review
  publication-title: Materials Science Engineering R Reports
  doi: 10.1016/j.mser.2023.100746
– year: 2017
  ident: 10.1016/j.mtcomm.2025.113102_bib8
  article-title: Thermodynamic design of high-entropy refractory alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.09.189
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib29
  article-title: Development of single-phase BCC refractory high entropy alloys using machine learning techniques
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2024.112917
– year: 2022
  ident: 10.1016/j.mtcomm.2025.113102_bib31
  article-title: Design of oxygen doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductility
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111239
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib37
  article-title: Effect of Mo on high entropy Ti-Nb-Zr-Ta alloy: phase equilibria, microstructure and mechanical properties
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2023.170758
– year: 2019
  ident: 10.1016/j.mtcomm.2025.113102_bib14
  article-title: Machine-learning model for predicting phase formations of high-entropy alloys
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.095005
– year: 2025
  ident: 10.1016/j.mtcomm.2025.113102_bib36
  article-title: Developing a single-phase and nanograined refractory high-entropy alloy ZrHfNbTaW with ultrahigh hardness by phase transformation via high-pressure torsion
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2024.178274
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib16
  article-title: Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation
  publication-title: Mater. Des.
– year: 2010
  ident: 10.1016/j.mtcomm.2025.113102_bib24
  article-title: Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub regular solution model for assessing forming ability of amorphous and glassy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.06.003
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib15
  article-title: Review on applications of artificial neural networks to develop high entropy alloys: a state-of-the-art technique
  publication-title: Mater. Today Commun.
– year: 2019
  ident: 10.1016/j.mtcomm.2025.113102_bib20
  article-title: Prediction of the composition and hardness of high-entropy alloys by machine learning
  publication-title: JOM
  doi: 10.1007/s11837-019-03704-4
– year: 2016
  ident: 10.1016/j.mtcomm.2025.113102_bib39
  article-title: Senary refractory high-entropy alloy HfNbTaTiVZr
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-015-3105-z
– year: 2025
  ident: 10.1016/j.mtcomm.2025.113102_bib42
  article-title: Nanoindentation and orientation imaging analysis of high entropy Ti–Nb–Zr–Ta–Mo alloys exhibiting dendrite microstructure
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2025.01.150
– year: 2018
  ident: 10.1016/j.mtcomm.2025.113102_bib13
  article-title: Effect of atomic size difference on the microstructure and mechanical properties of high-entropy alloys
  publication-title: Entropy
  doi: 10.3390/e20120967
– year: 2019
  ident: 10.1016/j.mtcomm.2025.113102_bib22
  article-title: ICME approach to explore equiatomic and non equiatomic single phase BCC refractory high entropy alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.06.387
– year: 2020
  ident: 10.1016/j.mtcomm.2025.113102_bib23
  article-title: Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys
  publication-title: Mater. Des.
– year: 2021
  ident: 10.1016/j.mtcomm.2025.113102_bib19
  article-title: Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0065303
– year: 2016
  ident: 10.1016/j.mtcomm.2025.113102_bib1
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.11.026
– year: 2017
  ident: 10.1016/j.mtcomm.2025.113102_bib33
  article-title: Mechanical properties of refractory high-entropy alloys: experiments and modelling
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.11.188
– year: 2023
  ident: 10.1016/j.mtcomm.2025.113102_bib5
  article-title: Refractory high-entropy alloys: a focused review of preparation methods and properties
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.08.046
– year: 2015
  ident: 10.1016/j.mtcomm.2025.113102_bib7
  article-title: Design of refractory high-entropy alloys
  publication-title: JOM
– year: 2024
  ident: 10.1016/j.mtcomm.2025.113102_bib44
  article-title: Influence of micro-segregation on the microstructure, and microhardness of MoNbTaxTi(1-x)W refractory high entropy alloys: experimental and DFT approach
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2023.108080
– year: 2019
  ident: 10.1016/j.mtcomm.2025.113102_bib32
  article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures
  publication-title: Scr. Mater.
SSID ssj0001850494
Score 2.3099904
Snippet Refractory high-entropy alloys are a novel class of materials for diverse fields. Their design has been enhanced by several empirical models, thermodynamic...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113102
SubjectTerms Artificial neural networks
Calphad method
Mechanical properties
Metaheuristics algorithms
Microstructure
Refractory high entropy alloys
Title Accelerated computational design of BCC refractory high entropy alloys using metaheuristics, CALPHAD, and artificial neural networks
URI https://dx.doi.org/10.1016/j.mtcomm.2025.113102
Volume 47
WOSCitedRecordID wos001518640300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-4928
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001850494
  issn: 2352-4928
  databaseCode: AIEXJ
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKx4ELAgFi_JIP3DpHXeLE8bGUooG2aWID9RY5jqt1omnVptO6M_8q_wfv2U7TQjWxA5e0shLH8fv0_OXLe8-EvI9iDstmkTCstMl4Cn5QCZ4waaJQSFHksZUuvh-L09N0OJRnrdavOhfm-ocoy_TmRs7-q6mhDYyNqbP3MPe6U2iA_2B0OILZ4fhPhu9pDUsJVoCwCWuzZVXrfYWN1kB6-KHf78DSOLeb7aw6WLO4gzLvdLbq4Jf41aKztCLCxFTq0ix9OWerqvaOz456H-uoTxyAL0KBpTHtjw0sX2zS3hNVuUcHqouJJ3ozLaWJtp9O7Hf7w5Kdm0KVLgMnQL9zq3DLnuqywScqIDZIN2jk3Hnpry_MLTsxely6dLXB-pzBYjYupwvFvmJShZW_z4NN5SOM11Gy3kGGQB4Zlz653Oxo8x7e1fT0LvrwEBhtuHP1cELGVTCpcBoCvGfQnL5drPuPRXQd2lhHzV1lrpcMe8lcLw_IXihimbbJXu_zYPilEQPTGOv02I0Q_fjrNE8bi_j3gHbTqA1qdPGEPPbvNLTnsPiUtEz5jPzcwCHdwiF1OKTTEQUc0gaHFHFIPQ6pwyG1OKTbODygHoUHFGBAGwxSh0FaY_A5-fZpcNE_Yn7LD6aBS1VM56IwiYxkEYeqa0xXR6OI54k0SsVGj1KhokTnRiD1jEMOTyKFTgqdjqTIeTd6QdrltDQvCcXtGXlXJeAqC25MlKaJ4CHPFbxwGN1N9wmrZzCbucou2V3G2yeinubMs1PHOjOAz51XvrrnnV6TRw3c35B2NV-at-Shvq7Gi_k7j53f4Ia0eA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+computational+design+of+BCC+refractory+high+entropy+alloys+using+metaheuristics%2C+CALPHAD%2C+and+artificial+neural+networks&rft.jtitle=Materials+today+communications&rft.au=Rom%C3%A1n-Sedano%2C+A.+Monzamodeth&rft.au=Aranda%2C+V.&rft.au=Hern%C3%A1ndez-Mecinas%2C+E.&rft.au=Espinosa-Rangel%2C+S.&rft.date=2025-07-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=47&rft.spage=113102&rft_id=info:doi/10.1016%2Fj.mtcomm.2025.113102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2025_113102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon