Quantum alternating operator ansatz for solving the minimum exact cover problem

The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approximate Optimization Algorithm (QAOA), where the search space is smaller in solving constrained combinatorial optimization problems. However, QAOA+ requires a trivial feasible solution as the initial state, so it cann...

Full description

Saved in:
Bibliographic Details
Published in:Physica A Vol. 626; p. 129089
Main Authors: Wang, Sha-Sha, Liu, Hai-Ling, Song, Yan-Qi, Gao, Fei, Qin, Su-Juan, Wen, Qiao-Yan
Format: Journal Article
Language:English
Published: Elsevier B.V 15.09.2023
Subjects:
ISSN:0378-4371
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approximate Optimization Algorithm (QAOA), where the search space is smaller in solving constrained combinatorial optimization problems. However, QAOA+ requires a trivial feasible solution as the initial state, so it cannot be applied directly for problems that are difficult to find a trivial feasible solution. For simplicity, we call them as Non-Trivial-Feasible-Solution Problems (NTFSP). In this paper, we take the Minimum Exact Cover (MEC) problem as an example, studying how to apply QAOA+ to NTFSP. As we know, Exact Cover (EC) is the feasible space of MEC problem, which has no trivial solutions. To overcome the above problem, the EC problem is divided into two steps to solve. First, disjoint sets are obtained, which is equivalent to solving independent sets. Second, on this basis, the sets covering all elements (i.e., EC) are solved. In other words, we transform MEC into a multi-objective constrained optimization problem, where feasible space consists of independent sets that are easy to find. Finally, we also verify the feasibility of the algorithm from numerical experiments. Furthermore, we compare QAOA+ with QAOA, and the results demonstrated that QAOA+ has a higher probability of finding a solution with the same rounds of both algorithms. Our method provides a feasible way for applying QAOA+ to NTFSP, and is expected to expand its application significantly. •As a feasible space for MEC problem, Exact Cover (EC) has no trivial solutions. We transform MEC into a multi-objective constrained optimization problem, where feasible solutions are independent sets that are easy to find, and solve the problem using QAOA+ for the first time.•We verify the feasibility of the algorithm, and the numerical results show that the solution can be obtained with high probability, even though rounds of the algorithm is low.•To optimize quantum circuit, we remove rotating gates RZ. The results show that p-level optimized circuit only needs p parameters, which can achieve an experimental effect similar to original circuit with 2 p parameters.•We compare QAOA+ with QAOA, and the results demonstrated that QAOA+ has a higher probability of finding a solution with the same rounds of both algorithms.
AbstractList The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approximate Optimization Algorithm (QAOA), where the search space is smaller in solving constrained combinatorial optimization problems. However, QAOA+ requires a trivial feasible solution as the initial state, so it cannot be applied directly for problems that are difficult to find a trivial feasible solution. For simplicity, we call them as Non-Trivial-Feasible-Solution Problems (NTFSP). In this paper, we take the Minimum Exact Cover (MEC) problem as an example, studying how to apply QAOA+ to NTFSP. As we know, Exact Cover (EC) is the feasible space of MEC problem, which has no trivial solutions. To overcome the above problem, the EC problem is divided into two steps to solve. First, disjoint sets are obtained, which is equivalent to solving independent sets. Second, on this basis, the sets covering all elements (i.e., EC) are solved. In other words, we transform MEC into a multi-objective constrained optimization problem, where feasible space consists of independent sets that are easy to find. Finally, we also verify the feasibility of the algorithm from numerical experiments. Furthermore, we compare QAOA+ with QAOA, and the results demonstrated that QAOA+ has a higher probability of finding a solution with the same rounds of both algorithms. Our method provides a feasible way for applying QAOA+ to NTFSP, and is expected to expand its application significantly. •As a feasible space for MEC problem, Exact Cover (EC) has no trivial solutions. We transform MEC into a multi-objective constrained optimization problem, where feasible solutions are independent sets that are easy to find, and solve the problem using QAOA+ for the first time.•We verify the feasibility of the algorithm, and the numerical results show that the solution can be obtained with high probability, even though rounds of the algorithm is low.•To optimize quantum circuit, we remove rotating gates RZ. The results show that p-level optimized circuit only needs p parameters, which can achieve an experimental effect similar to original circuit with 2 p parameters.•We compare QAOA+ with QAOA, and the results demonstrated that QAOA+ has a higher probability of finding a solution with the same rounds of both algorithms.
ArticleNumber 129089
Author Qin, Su-Juan
Gao, Fei
Song, Yan-Qi
Wen, Qiao-Yan
Wang, Sha-Sha
Liu, Hai-Ling
Author_xml – sequence: 1
  givenname: Sha-Sha
  surname: Wang
  fullname: Wang, Sha-Sha
– sequence: 2
  givenname: Hai-Ling
  surname: Liu
  fullname: Liu, Hai-Ling
– sequence: 3
  givenname: Yan-Qi
  surname: Song
  fullname: Song, Yan-Qi
– sequence: 4
  givenname: Fei
  orcidid: 0000-0002-1546-4364
  surname: Gao
  fullname: Gao, Fei
  email: gaof@bupt.edu.cn
– sequence: 5
  givenname: Su-Juan
  surname: Qin
  fullname: Qin, Su-Juan
– sequence: 6
  givenname: Qiao-Yan
  surname: Wen
  fullname: Wen, Qiao-Yan
  email: wqy@bupt.edu.cn
BookMark eNqFkMtOwzAQRb0oEi3wBWz8Awl2nDjJggWqeEmVKiRYWxNnQl0ldmS7FeXrSSkrFrCaka7O1cxZkJl1Fgm55izljMubbTpuDgHSjGUi5VnNqnpG5kyUVZKLkp-TRQhbxhgvRTYn65cd2LgbKPQRvYVo7Dt1I3qIzlOwAeIn7aY1uH5_zOIG6WCsGSYGP0BHqt0ePR29a3ocLslZB33Aq595Qd4e7l-XT8lq_fi8vFslWjAREw2FlB1UvNF11jZNy3PGKqhknU9RAY2sq64oOXaIbYaMaRBZCVIi1nnRgLgg9alXexeCx05pE6frnY0eTK84U0cbaqu-baijDXWyMbHiFzt6M4A__EPdniic3tob9Cpog1ZjazzqqFpn_uS_AJpHgTA
CitedBy_id crossref_primary_10_1088_2058_9565_ad200a
crossref_primary_10_1103_PhysRevResearch_7_013243
crossref_primary_10_1002_qute_202400201
crossref_primary_10_1088_1674_1056_addd83
crossref_primary_10_1002_qute_202400364
crossref_primary_10_1007_s11128_025_04783_w
crossref_primary_10_1016_j_physleta_2025_130690
crossref_primary_10_1007_s10773_024_05826_1
Cites_doi 10.1103/PhysRevApplied.19.024027
10.1016/j.physa.2022.128227
10.1103/PhysRevA.104.062414
10.1007/s11433-022-1921-y
10.1038/nphys3029
10.1109/QCE52317.2021.00016
10.1109/WCSP55476.2022.10039146
10.1088/1674-1056/ac523a
10.1093/imamat/6.1.76
10.1103/PhysRevA.102.052402
10.1090/S0025-5718-1970-0274029-X
10.1109/ACCESS.2017.2733557
10.3390/a12020034
10.1103/PhysRevA.99.022301
10.1103/PhysRevApplied.14.034009
10.1090/S0025-5718-1970-0258249-6
10.1142/S0219749920500112
10.1007/s11128-021-03232-8
10.22331/q-2022-04-13-687
10.1109/SFCS.1994.365700
10.1103/PhysRevA.97.062322
10.1109/TCAD.2022.3212196
10.1093/comjnl/13.3.317
10.1016/j.asoc.2022.108554
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2023.129089
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_physa_2023_129089
S0378437123006441
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AAXKI
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADGUI
ADMUD
ADVLN
AEBSH
AEKER
AEYQN
AFFNX
AFJKZ
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BKOJK
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XJT
XOL
XPP
YNT
YYP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-ca566fa81bc92dbbd14008a8694ca55ab698f571efeed2e00ca327a66ee945ba3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001145381900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Tue Nov 18 22:01:50 EST 2025
Sat Nov 29 07:10:32 EST 2025
Tue Dec 03 03:45:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Trivial feasible solutions
Minimum exact cover
Quantum alternating operator ansatz
Multi-objective constrained optimization problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-ca566fa81bc92dbbd14008a8694ca55ab698f571efeed2e00ca327a66ee945ba3
ORCID 0000-0002-1546-4364
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2023_129089
crossref_primary_10_1016_j_physa_2023_129089
elsevier_sciencedirect_doi_10_1016_j_physa_2023_129089
PublicationCentury 2000
PublicationDate 2023-09-15
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Martins (b47) 2020
Karp (b46) 1972
Zhang, Mu, Liu, Wang, Zhang, Li, Wu, Zhao, Dong (b22) 2022; 118
Wang, Hadfield, Jiang, Rieffel (b19) 2018; 97
A. Mandl, J. Barzen, M. Bechtold, F. Leymann, K. Wild, Amplitude amplification-inspired QAOA: Improving the success probability for solving 3SAT
Wang, Xue, Qu (b8) 2022; 8
Zhou, Wang, Choi, Pichler, Lukin (b42) 2020; 10
Pan, Wan, Liu, Wang, Qin, Wen, Gao (b5) 2020; 102
Liu, Yu, Wan, Qin, Gao, Wen (b12) 2022; 607
Guo, Liu, Li, Li, Gao, Qin, Wen (b13) 2022; 604
E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm
Grover (b48) 1996
M. Fingerhuth, B. Tomá, C. Ing, A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding
Zhou, Du, Tian, Tao (b21) 2023; 19
Botsinis, Alanis, Feng, Babar, Nguyen, Chandra, Ng, Zhang, Hanzo (b16) 2017; 5
Fletcher (b39) 1970; 13
Grökvist, Kjerrstrm (b49) 2004
Broyden (b38) 1970; 6
.
Li, Alam, Ghosh (b17) 2023
Y.M. Li, H.L. Liu, S.J. Pan, S.J. Qin, F. Gao, Q.Y. Wen, Quantum discriminative canonical correlation analysis
Azad, Behera, Ahmed, Panigrahi, Farouk (b25) 2022
Goldfarb (b40) 1970; 24
Wan, Yu, Pan, Qin, Gao, Wen (b11) 2021; 104
Li, Cai, Sun, Liu, Wan, Qin, Wen, Gao (b14) 2022; 65
H.L. Liu, S.J. Qin, L.C. Wan, C.H. Yu, S.J. Pan, F. Gao, Q.Y. Wen, A quantum algorithm for solving eigenproblem of the Laplacian matrix of a fully connected weighted graph
Shanno (b41) 1970; 24
Wan, Yu, Pan, Gao, Wen, Qin (b9) 2018; 97
Yu, Gao, Wen (b3) 2021; 33
Saleem (b28) 2020; 18
Herrman, Treffert, Ostrowski, Lotshaw, Humble, Siopsis (b20) 2021; 20
X. Lee, Y. Saito, D. Cai, N. Asai, Parameters Fixing Strategy for Quantum Approximate Optimization Algorithm, in: 2021 IEEE International Conference on Quantum Computing and Engineering, 2021, pp. 10–16.
Pan, Wan, Liu, Wu, Qin, Wen, Gao (b6) 2022; 31
P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134.
Wang, Rubin, Dominy, Rieffel (b27) 2020; 10
Weggemans, Urech, Rausch, Spreeuw, Boucherie, Schreck, Schoutens, Minář, Speelman (b23) 2022; 6
Cook, Eidenbenz, Brtschi (b29) 2020
Y.X. Wang, J.Y. Quan, Q. Li, A Delegated Quantum Approximate Optimization Algorithm, in: International Conference on Wireless Communications and Signal Processing, (WCSP), 2022), pp. 804–808.
Hadfield, Wang, O’Gorman, Rieffel, Venturelli, Biswas (b26) 2019; 12
Grönkvist (b44) 2005
M. Svensson, M. Andersson, M. Grnkvist, P. Vikstål, D. Dubhashi, G. Ferrini, G. Johansson, A heuristic method to solve large-scale integer linear programs by combining branch-and-price with a quantum algorithm
Lloyd, Mohseni, Rebentrost (b4) 2014; 10
S. Chatterjee, D. Bera, Applying the quantum alternating operator ansatz to the graph matching problem
Vikstål, Grnkvist, Svensson, Andersson, Johansson, Ferrini (b32) 2020; 14
Developer (b35) 2021
V. Choi, Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems
Stanimirović, Zlatanović, Petković (b36) 2011; 26
Lucas (b34) 2014; 2
Jacobs, Garrow, Lohatepanont, Frank S. Koppelman, Coldren, Purnomo (b45) 2012
Yu, Gao, Liu, Huynh, Reynolds, Wang (b2) 2019; 99
10.1016/j.physa.2023.129089_b11
Grover (10.1016/j.physa.2023.129089_b2) 1996
Broyden (10.1016/j.physa.2023.129089_b39) 1970; 6
Saleem (10.1016/j.physa.2023.129089_b29) 2020; 18
Guo (10.1016/j.physa.2023.129089_b14) 2022; 604
10.1016/j.physa.2023.129089_b19
10.1016/j.physa.2023.129089_b16
10.1016/j.physa.2023.129089_b25
Hadfield (10.1016/j.physa.2023.129089_b27) 2019; 12
Jacobs (10.1016/j.physa.2023.129089_b46) 2012
Pan (10.1016/j.physa.2023.129089_b6) 2020; 102
Yu (10.1016/j.physa.2023.129089_b3) 2019; 99
Lloyd (10.1016/j.physa.2023.129089_b5) 2014; 10
Developer (10.1016/j.physa.2023.129089_b36) 2021
Martins (10.1016/j.physa.2023.129089_b49) 2020
Zhou (10.1016/j.physa.2023.129089_b43) 2020; 10
Cook (10.1016/j.physa.2023.129089_b30) 2020
Wang (10.1016/j.physa.2023.129089_b28) 2020; 10
Wan (10.1016/j.physa.2023.129089_b12) 2021; 104
Grökvist (10.1016/j.physa.2023.129089_b47) 2004
Wang (10.1016/j.physa.2023.129089_b20) 2018; 97
10.1016/j.physa.2023.129089_b34
Fletcher (10.1016/j.physa.2023.129089_b40) 1970; 13
10.1016/j.physa.2023.129089_b31
Zhou (10.1016/j.physa.2023.129089_b22) 2023; 19
10.1016/j.physa.2023.129089_b32
Herrman (10.1016/j.physa.2023.129089_b21) 2021; 20
Pan (10.1016/j.physa.2023.129089_b7) 2022; 31
Li (10.1016/j.physa.2023.129089_b18) 2023
Botsinis (10.1016/j.physa.2023.129089_b17) 2017; 5
Goldfarb (10.1016/j.physa.2023.129089_b41) 1970; 24
10.1016/j.physa.2023.129089_b38
10.1016/j.physa.2023.129089_b1
10.1016/j.physa.2023.129089_b44
Azad (10.1016/j.physa.2023.129089_b26) 2022
Karp (10.1016/j.physa.2023.129089_b48) 1972
Liu (10.1016/j.physa.2023.129089_b13) 2022; 607
Stanimirović (10.1016/j.physa.2023.129089_b37) 2011; 26
Shanno (10.1016/j.physa.2023.129089_b42) 1970; 24
10.1016/j.physa.2023.129089_b8
Weggemans (10.1016/j.physa.2023.129089_b24) 2022; 6
Vikstål (10.1016/j.physa.2023.129089_b33) 2020; 14
Zhang (10.1016/j.physa.2023.129089_b23) 2022; 118
Yu (10.1016/j.physa.2023.129089_b4) 2021; 33
Li (10.1016/j.physa.2023.129089_b15) 2022; 65
Grönkvist (10.1016/j.physa.2023.129089_b45) 2005
Wan (10.1016/j.physa.2023.129089_b10) 2018; 97
Wang (10.1016/j.physa.2023.129089_b9) 2022; 8
Lucas (10.1016/j.physa.2023.129089_b35) 2014; 2
References_xml – year: 2005
  ident: b44
  article-title: The Tail Assignment Problem
– start-page: 212
  year: 1996
  end-page: 219
  ident: b48
  article-title: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing
– reference: S. Chatterjee, D. Bera, Applying the quantum alternating operator ansatz to the graph matching problem,
– volume: 13
  start-page: 317
  year: 1970
  ident: b39
  article-title: A new approach to variable metric algorithms
  publication-title: Comput. J.
– volume: 6
  start-page: 76
  year: 1970
  ident: b38
  article-title: The convergence of a class of double-rank minimization algorithms 1. General considerations
  publication-title: IMA J. Appl. Math.
– volume: 65
  year: 2022
  ident: b14
  article-title: Novel quantum circuit implementation of advanced encryption standard with low costs
  publication-title: Sci. China Phys. Mech. Astron.
– start-page: 1
  year: 2022
  end-page: 10
  ident: b25
  article-title: Solving vehicle routing problem using quantum approximate optimization algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 18
  year: 2020
  ident: b28
  article-title: Max-independent set and the quantum alternating operator ansatz
  publication-title: Int. J. Quantum Inf.
– start-page: 1852
  year: 2023
  end-page: 1860
  ident: b17
  article-title: Large-scale quantum approximate optimization via divide-and-conquer
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst
– volume: 10
  year: 2020
  ident: b27
  article-title: XY mixers: Analytical and numerical results for the quantum alternating operator ansatz
  publication-title: Phys. Rev. A
– reference: V. Choi, Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems,
– volume: 99
  year: 2019
  ident: b2
  article-title: Quantum algorithm for visual tracking
  publication-title: Phys. Rev. A
– reference: M. Fingerhuth, B. Tomá, C. Ing, A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding,
– start-page: 35
  year: 2012
  end-page: 99
  ident: b45
  article-title: Airline planning and schedule development
  publication-title: Quantitative Problem Solving Methods in the Airline Industry
– year: 2020
  ident: b29
  article-title: The quantum alternating operator ansatz on max-
  publication-title: APS March Meeting, vol. 65
– start-page: 85
  year: 1972
  end-page: 103
  ident: b46
  article-title: Reducibility among combinatorial problems
  publication-title: Complexity of Computer Computations
– volume: 5
  start-page: 23327
  year: 2017
  end-page: 23351
  ident: b16
  article-title: Quantum-assisted indoor localization for uplink mm-wave and downlink visible light communication systems
  publication-title: IEEE Access
– volume: 20
  start-page: 289
  year: 2021
  ident: b20
  article-title: Impact of graph structures for QAOA on maxcut
  publication-title: Quantum Inf. Process.
– volume: 118
  year: 2022
  ident: b22
  article-title: Applying the quantum approximate optimization algorithm to the minimum vertex cover problem
  publication-title: Appl. Soft Comput.
– volume: 19
  year: 2023
  ident: b21
  article-title: Qaoa-in-QAOA: Solving large-scale MaxCut problems on small quantum machines
  publication-title: Phys. Rev. Appl.
– reference: M. Svensson, M. Andersson, M. Grnkvist, P. Vikstål, D. Dubhashi, G. Ferrini, G. Johansson, A heuristic method to solve large-scale integer linear programs by combining branch-and-price with a quantum algorithm,
– volume: 10
  start-page: 631
  year: 2014
  ident: b4
  article-title: Quantum principal component analysis
  publication-title: Nat. Phys.
– volume: 2
  year: 2014
  ident: b34
  article-title: Ising formulations of many NP problems
  publication-title: Front. Phys.
– volume: 104
  year: 2021
  ident: b11
  article-title: Block-encoding-based quantum algorithm for linear systems with displacement structures
  publication-title: Phys. Rev. A
– volume: 33
  start-page: 858
  year: 2021
  end-page: 866
  ident: b3
  article-title: An improved quantum algorithm for ridge regression
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm,
– volume: 97
  year: 2018
  ident: b9
  article-title: Asymptotic quantum algorithm for the Toeplitz systems
  publication-title: Phys. Rev. A
– volume: 12
  start-page: 34
  year: 2019
  ident: b26
  article-title: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz
  publication-title: Algorithms
– year: 2020
  ident: b47
  article-title: Applying Quantum Annealing to the Tail Assignment Problem
– volume: 31
  year: 2022
  ident: b6
  article-title: Quantum algorithm for neighborhood preserving embedding
  publication-title: Chin. Phys. B
– reference: H.L. Liu, S.J. Qin, L.C. Wan, C.H. Yu, S.J. Pan, F. Gao, Q.Y. Wen, A quantum algorithm for solving eigenproblem of the Laplacian matrix of a fully connected weighted graph,
– volume: 97
  year: 2018
  ident: b19
  article-title: Quantum approximate optimization algorithm for maxcut: A fermionic view
  publication-title: Phys. Rev. A
– volume: 6
  start-page: 687
  year: 2022
  ident: b23
  article-title: Solving correlation clustering with QAOA and a rydberg qudit system: A full-stack approach
  publication-title: Quantum
– volume: 10
  year: 2020
  ident: b42
  article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– reference: Y.M. Li, H.L. Liu, S.J. Pan, S.J. Qin, F. Gao, Q.Y. Wen, Quantum discriminative canonical correlation analysis,
– year: 2021
  ident: b35
  article-title: MindQuantum, version 0.6.0
– reference: A. Mandl, J. Barzen, M. Bechtold, F. Leymann, K. Wild, Amplitude amplification-inspired QAOA: Improving the success probability for solving 3SAT,
– volume: 102
  year: 2020
  ident: b5
  article-title: Improved quantum algorithm for A-optimal projection
  publication-title: Phys. Rev. A
– reference: X. Lee, Y. Saito, D. Cai, N. Asai, Parameters Fixing Strategy for Quantum Approximate Optimization Algorithm, in: 2021 IEEE International Conference on Quantum Computing and Engineering, 2021, pp. 10–16.
– reference: .
– volume: 8
  year: 2022
  ident: b8
  article-title: Multidimensional Bose quantum error correction based on neural network decoder
  publication-title: NPJ Quantum Inf.
– volume: 14
  year: 2020
  ident: b32
  article-title: Applying the quantum approximate optimization algorithm to the tail-assignment problem
  publication-title: Phys. Rev. Appl.
– reference: Y.X. Wang, J.Y. Quan, Q. Li, A Delegated Quantum Approximate Optimization Algorithm, in: International Conference on Wireless Communications and Signal Processing, (WCSP), 2022), pp. 804–808.
– volume: 26
  start-page: 49
  year: 2011
  end-page: 63
  ident: b36
  article-title: On the linear weighted sum method for multi-objective optimization
  publication-title: Facta Univ. Ser. Math. Inform.
– reference: P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134.
– volume: 607
  year: 2022
  ident: b12
  article-title: Quantum mean centering for block-encoding-based quantum algorithm
  publication-title: Physica A
– volume: 604
  year: 2022
  ident: b13
  article-title: Quantum algorithms for anomaly detection using amplitude estimation
  publication-title: Physica A
– volume: 24
  start-page: 23
  year: 1970
  ident: b40
  article-title: A family of variable-metric methods derived by variational means
  publication-title: Math. Comp.
– volume: 24
  start-page: 647
  year: 1970
  ident: b41
  article-title: Conditioning of quasi-Newton methods for function minimization
  publication-title: Math. Comp.
– start-page: 166
  year: 2004
  end-page: 173
  ident: b49
  article-title: Tail assignment in practice
  publication-title: Operations Research Proceedings
– volume: 19
  year: 2023
  ident: 10.1016/j.physa.2023.129089_b22
  article-title: Qaoa-in-QAOA: Solving large-scale MaxCut problems on small quantum machines
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.19.024027
– volume: 607
  year: 2022
  ident: 10.1016/j.physa.2023.129089_b13
  article-title: Quantum mean centering for block-encoding-based quantum algorithm
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.128227
– year: 2020
  ident: 10.1016/j.physa.2023.129089_b30
  article-title: The quantum alternating operator ansatz on max-k vertex cover
– ident: 10.1016/j.physa.2023.129089_b16
– start-page: 35
  year: 2012
  ident: 10.1016/j.physa.2023.129089_b46
  article-title: Airline planning and schedule development
– ident: 10.1016/j.physa.2023.129089_b31
– volume: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.physa.2023.129089_b43
  article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– volume: 104
  year: 2021
  ident: 10.1016/j.physa.2023.129089_b12
  article-title: Block-encoding-based quantum algorithm for linear systems with displacement structures
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.062414
– volume: 8
  issue: 134
  year: 2022
  ident: 10.1016/j.physa.2023.129089_b9
  article-title: Multidimensional Bose quantum error correction based on neural network decoder
  publication-title: NPJ Quantum Inf.
– ident: 10.1016/j.physa.2023.129089_b11
– volume: 65
  year: 2022
  ident: 10.1016/j.physa.2023.129089_b15
  article-title: Novel quantum circuit implementation of advanced encryption standard with low costs
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-022-1921-y
– volume: 10
  start-page: 631
  year: 2014
  ident: 10.1016/j.physa.2023.129089_b5
  article-title: Quantum principal component analysis
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3029
– start-page: 166
  year: 2004
  ident: 10.1016/j.physa.2023.129089_b47
  article-title: Tail assignment in practice
– ident: 10.1016/j.physa.2023.129089_b32
– start-page: 85
  year: 1972
  ident: 10.1016/j.physa.2023.129089_b48
  article-title: Reducibility among combinatorial problems
– year: 2021
  ident: 10.1016/j.physa.2023.129089_b36
– volume: 2
  issue: 5
  year: 2014
  ident: 10.1016/j.physa.2023.129089_b35
  article-title: Ising formulations of many NP problems
  publication-title: Front. Phys.
– year: 2020
  ident: 10.1016/j.physa.2023.129089_b49
– volume: 26
  start-page: 49
  year: 2011
  ident: 10.1016/j.physa.2023.129089_b37
  article-title: On the linear weighted sum method for multi-objective optimization
  publication-title: Facta Univ. Ser. Math. Inform.
– ident: 10.1016/j.physa.2023.129089_b44
  doi: 10.1109/QCE52317.2021.00016
– year: 2005
  ident: 10.1016/j.physa.2023.129089_b45
– ident: 10.1016/j.physa.2023.129089_b19
  doi: 10.1109/WCSP55476.2022.10039146
– ident: 10.1016/j.physa.2023.129089_b25
– start-page: 212
  year: 1996
  ident: 10.1016/j.physa.2023.129089_b2
  article-title: A fast quantum mechanical algorithm for database search
– volume: 33
  start-page: 858
  issue: 3
  year: 2021
  ident: 10.1016/j.physa.2023.129089_b4
  article-title: An improved quantum algorithm for ridge regression
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 31
  year: 2022
  ident: 10.1016/j.physa.2023.129089_b7
  article-title: Quantum algorithm for neighborhood preserving embedding
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac523a
– volume: 6
  start-page: 76
  year: 1970
  ident: 10.1016/j.physa.2023.129089_b39
  article-title: The convergence of a class of double-rank minimization algorithms 1. General considerations
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/6.1.76
– volume: 102
  issue: 5
  year: 2020
  ident: 10.1016/j.physa.2023.129089_b6
  article-title: Improved quantum algorithm for A-optimal projection
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.052402
– volume: 24
  start-page: 647
  year: 1970
  ident: 10.1016/j.physa.2023.129089_b42
  article-title: Conditioning of quasi-Newton methods for function minimization
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1970-0274029-X
– volume: 5
  start-page: 23327
  year: 2017
  ident: 10.1016/j.physa.2023.129089_b17
  article-title: Quantum-assisted indoor localization for uplink mm-wave and downlink visible light communication systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2733557
– volume: 12
  start-page: 34
  issue: 2
  year: 2019
  ident: 10.1016/j.physa.2023.129089_b27
  article-title: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz
  publication-title: Algorithms
  doi: 10.3390/a12020034
– volume: 99
  year: 2019
  ident: 10.1016/j.physa.2023.129089_b3
  article-title: Quantum algorithm for visual tracking
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.022301
– volume: 14
  issue: 3
  year: 2020
  ident: 10.1016/j.physa.2023.129089_b33
  article-title: Applying the quantum approximate optimization algorithm to the tail-assignment problem
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.034009
– volume: 24
  start-page: 23
  year: 1970
  ident: 10.1016/j.physa.2023.129089_b41
  article-title: A family of variable-metric methods derived by variational means
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1970-0258249-6
– volume: 18
  issue: 4
  year: 2020
  ident: 10.1016/j.physa.2023.129089_b29
  article-title: Max-independent set and the quantum alternating operator ansatz
  publication-title: Int. J. Quantum Inf.
  doi: 10.1142/S0219749920500112
– volume: 20
  start-page: 289
  issue: 9
  year: 2021
  ident: 10.1016/j.physa.2023.129089_b21
  article-title: Impact of graph structures for QAOA on maxcut
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03232-8
– volume: 6
  start-page: 687
  year: 2022
  ident: 10.1016/j.physa.2023.129089_b24
  article-title: Solving correlation clustering with QAOA and a rydberg qudit system: A full-stack approach
  publication-title: Quantum
  doi: 10.22331/q-2022-04-13-687
– volume: 604
  issue: 3
  year: 2022
  ident: 10.1016/j.physa.2023.129089_b14
  article-title: Quantum algorithms for anomaly detection using amplitude estimation
  publication-title: Physica A
– ident: 10.1016/j.physa.2023.129089_b1
  doi: 10.1109/SFCS.1994.365700
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.physa.2023.129089_b28
  article-title: XY mixers: Analytical and numerical results for the quantum alternating operator ansatz
  publication-title: Phys. Rev. A
– volume: 97
  year: 2018
  ident: 10.1016/j.physa.2023.129089_b10
  article-title: Asymptotic quantum algorithm for the Toeplitz systems
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.062322
– ident: 10.1016/j.physa.2023.129089_b38
– ident: 10.1016/j.physa.2023.129089_b34
– start-page: 1852
  year: 2023
  ident: 10.1016/j.physa.2023.129089_b18
  article-title: Large-scale quantum approximate optimization via divide-and-conquer
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst
  doi: 10.1109/TCAD.2022.3212196
– volume: 13
  start-page: 317
  year: 1970
  ident: 10.1016/j.physa.2023.129089_b40
  article-title: A new approach to variable metric algorithms
  publication-title: Comput. J.
  doi: 10.1093/comjnl/13.3.317
– volume: 97
  year: 2018
  ident: 10.1016/j.physa.2023.129089_b20
  article-title: Quantum approximate optimization algorithm for maxcut: A fermionic view
  publication-title: Phys. Rev. A
– start-page: 1
  year: 2022
  ident: 10.1016/j.physa.2023.129089_b26
  article-title: Solving vehicle routing problem using quantum approximate optimization algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: 10.1016/j.physa.2023.129089_b8
– volume: 118
  year: 2022
  ident: 10.1016/j.physa.2023.129089_b23
  article-title: Applying the quantum approximate optimization algorithm to the minimum vertex cover problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108554
SSID ssj0001732
Score 2.4875813
Snippet The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approximate Optimization Algorithm (QAOA), where the search space is smaller in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129089
SubjectTerms Minimum exact cover
Multi-objective constrained optimization problem
Quantum alternating operator ansatz
Trivial feasible solutions
Title Quantum alternating operator ansatz for solving the minimum exact cover problem
URI https://dx.doi.org/10.1016/j.physa.2023.129089
Volume 626
WOSCitedRecordID wos001145381900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001732
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA46FXwRr3gnD75pZCZt0z6KTFTECyjOp5KmGVa0DrfJ8Nd7cuvqhaEPPqyMrk1Dvm85J6dfzkFohwZhzqKQk4hKSQKeUwJGkJMgUHmcRQmAHptiE_ziIm63kysna-6ZcgK8LOPhMOn-K9RwDsDWW2f_AHfVKJyA7wA6HAF2OP4K-OsBDJaWHD-5WJ-WNXeVeZ2-q4uD99-NthB68eb3SukEI89wjxrqLZNSyzp3XamZuvd6ZUEdxT_vfLT5QRD4VOqeYmBMmijIuTeNOorj5L_3oiTXRaX8ESZae6yKegSCMi2XsHsw_c4rWIkGzJZS8bNqROvzoo522VJB36ZsGz143NeRHJ0IirL90dWfE2R_MVyVnNAr1R5T00iqG0ltI5NoivIwgSl76vC01T6rrPQBZ_YNk-u7z0hltH_f-vKz11LzRG7m0ZxbQuBDC_0CmlDlIpqx2PSW0KUjAK4RAHsCYEsADATAjgAYCIAdAbAhADYEwI4Ay-j2uHVzdEJc2QwiwR_pEynARe8IWI_IhOZZlsMauhmLOEoC-CkU8A-MOyE_UB3wj6hqNqVglIsoUioJwkywFdQoX0q1ijDYPsWVZLDmpYFgLJE5eHiSZryp4kzRNUT9sKTS5ZTXpU2e0jGQrKG96qauTaky_vLIj3fqvELr7aXAoHE3rv_tORtodkTuTdTovw7UFpqWb_2i97rt6PMBcseEaA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+alternating+operator+ansatz+for+solving+the+minimum+exact+cover+problem&rft.jtitle=Physica+A&rft.au=Wang%2C+Sha-Sha&rft.au=Liu%2C+Hai-Ling&rft.au=Song%2C+Yan-Qi&rft.au=Gao%2C+Fei&rft.date=2023-09-15&rft.issn=0378-4371&rft.volume=626&rft.spage=129089&rft_id=info:doi/10.1016%2Fj.physa.2023.129089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2023_129089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon