Quantum alternating operator ansatz for solving the minimum exact cover problem
The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approximate Optimization Algorithm (QAOA), where the search space is smaller in solving constrained combinatorial optimization problems. However, QAOA+ requires a trivial feasible solution as the initial state, so it cann...
Saved in:
| Published in: | Physica A Vol. 626; p. 129089 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.09.2023
|
| Subjects: | |
| ISSN: | 0378-4371 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approximate Optimization Algorithm (QAOA), where the search space is smaller in solving constrained combinatorial optimization problems. However, QAOA+ requires a trivial feasible solution as the initial state, so it cannot be applied directly for problems that are difficult to find a trivial feasible solution. For simplicity, we call them as Non-Trivial-Feasible-Solution Problems (NTFSP). In this paper, we take the Minimum Exact Cover (MEC) problem as an example, studying how to apply QAOA+ to NTFSP. As we know, Exact Cover (EC) is the feasible space of MEC problem, which has no trivial solutions. To overcome the above problem, the EC problem is divided into two steps to solve. First, disjoint sets are obtained, which is equivalent to solving independent sets. Second, on this basis, the sets covering all elements (i.e., EC) are solved. In other words, we transform MEC into a multi-objective constrained optimization problem, where feasible space consists of independent sets that are easy to find. Finally, we also verify the feasibility of the algorithm from numerical experiments. Furthermore, we compare QAOA+ with QAOA, and the results demonstrated that QAOA+ has a higher probability of finding a solution with the same rounds of both algorithms. Our method provides a feasible way for applying QAOA+ to NTFSP, and is expected to expand its application significantly.
•As a feasible space for MEC problem, Exact Cover (EC) has no trivial solutions. We transform MEC into a multi-objective constrained optimization problem, where feasible solutions are independent sets that are easy to find, and solve the problem using QAOA+ for the first time.•We verify the feasibility of the algorithm, and the numerical results show that the solution can be obtained with high probability, even though rounds of the algorithm is low.•To optimize quantum circuit, we remove rotating gates RZ. The results show that p-level optimized circuit only needs p parameters, which can achieve an experimental effect similar to original circuit with 2 p parameters.•We compare QAOA+ with QAOA, and the results demonstrated that QAOA+ has a higher probability of finding a solution with the same rounds of both algorithms. |
|---|---|
| AbstractList | The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approximate Optimization Algorithm (QAOA), where the search space is smaller in solving constrained combinatorial optimization problems. However, QAOA+ requires a trivial feasible solution as the initial state, so it cannot be applied directly for problems that are difficult to find a trivial feasible solution. For simplicity, we call them as Non-Trivial-Feasible-Solution Problems (NTFSP). In this paper, we take the Minimum Exact Cover (MEC) problem as an example, studying how to apply QAOA+ to NTFSP. As we know, Exact Cover (EC) is the feasible space of MEC problem, which has no trivial solutions. To overcome the above problem, the EC problem is divided into two steps to solve. First, disjoint sets are obtained, which is equivalent to solving independent sets. Second, on this basis, the sets covering all elements (i.e., EC) are solved. In other words, we transform MEC into a multi-objective constrained optimization problem, where feasible space consists of independent sets that are easy to find. Finally, we also verify the feasibility of the algorithm from numerical experiments. Furthermore, we compare QAOA+ with QAOA, and the results demonstrated that QAOA+ has a higher probability of finding a solution with the same rounds of both algorithms. Our method provides a feasible way for applying QAOA+ to NTFSP, and is expected to expand its application significantly.
•As a feasible space for MEC problem, Exact Cover (EC) has no trivial solutions. We transform MEC into a multi-objective constrained optimization problem, where feasible solutions are independent sets that are easy to find, and solve the problem using QAOA+ for the first time.•We verify the feasibility of the algorithm, and the numerical results show that the solution can be obtained with high probability, even though rounds of the algorithm is low.•To optimize quantum circuit, we remove rotating gates RZ. The results show that p-level optimized circuit only needs p parameters, which can achieve an experimental effect similar to original circuit with 2 p parameters.•We compare QAOA+ with QAOA, and the results demonstrated that QAOA+ has a higher probability of finding a solution with the same rounds of both algorithms. |
| ArticleNumber | 129089 |
| Author | Qin, Su-Juan Gao, Fei Song, Yan-Qi Wen, Qiao-Yan Wang, Sha-Sha Liu, Hai-Ling |
| Author_xml | – sequence: 1 givenname: Sha-Sha surname: Wang fullname: Wang, Sha-Sha – sequence: 2 givenname: Hai-Ling surname: Liu fullname: Liu, Hai-Ling – sequence: 3 givenname: Yan-Qi surname: Song fullname: Song, Yan-Qi – sequence: 4 givenname: Fei orcidid: 0000-0002-1546-4364 surname: Gao fullname: Gao, Fei email: gaof@bupt.edu.cn – sequence: 5 givenname: Su-Juan surname: Qin fullname: Qin, Su-Juan – sequence: 6 givenname: Qiao-Yan surname: Wen fullname: Wen, Qiao-Yan email: wqy@bupt.edu.cn |
| BookMark | eNqFkMtOwzAQRb0oEi3wBWz8Awl2nDjJggWqeEmVKiRYWxNnQl0ldmS7FeXrSSkrFrCaka7O1cxZkJl1Fgm55izljMubbTpuDgHSjGUi5VnNqnpG5kyUVZKLkp-TRQhbxhgvRTYn65cd2LgbKPQRvYVo7Dt1I3qIzlOwAeIn7aY1uH5_zOIG6WCsGSYGP0BHqt0ePR29a3ocLslZB33Aq595Qd4e7l-XT8lq_fi8vFslWjAREw2FlB1UvNF11jZNy3PGKqhknU9RAY2sq64oOXaIbYaMaRBZCVIi1nnRgLgg9alXexeCx05pE6frnY0eTK84U0cbaqu-baijDXWyMbHiFzt6M4A__EPdniic3tob9Cpog1ZjazzqqFpn_uS_AJpHgTA |
| CitedBy_id | crossref_primary_10_1088_2058_9565_ad200a crossref_primary_10_1103_PhysRevResearch_7_013243 crossref_primary_10_1002_qute_202400201 crossref_primary_10_1088_1674_1056_addd83 crossref_primary_10_1002_qute_202400364 crossref_primary_10_1007_s11128_025_04783_w crossref_primary_10_1016_j_physleta_2025_130690 crossref_primary_10_1007_s10773_024_05826_1 |
| Cites_doi | 10.1103/PhysRevApplied.19.024027 10.1016/j.physa.2022.128227 10.1103/PhysRevA.104.062414 10.1007/s11433-022-1921-y 10.1038/nphys3029 10.1109/QCE52317.2021.00016 10.1109/WCSP55476.2022.10039146 10.1088/1674-1056/ac523a 10.1093/imamat/6.1.76 10.1103/PhysRevA.102.052402 10.1090/S0025-5718-1970-0274029-X 10.1109/ACCESS.2017.2733557 10.3390/a12020034 10.1103/PhysRevA.99.022301 10.1103/PhysRevApplied.14.034009 10.1090/S0025-5718-1970-0258249-6 10.1142/S0219749920500112 10.1007/s11128-021-03232-8 10.22331/q-2022-04-13-687 10.1109/SFCS.1994.365700 10.1103/PhysRevA.97.062322 10.1109/TCAD.2022.3212196 10.1093/comjnl/13.3.317 10.1016/j.asoc.2022.108554 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.physa.2023.129089 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | 10_1016_j_physa_2023_129089 S0378437123006441 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFFL AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AAXKI AAXUO ABAOU ABFNM ABMAC ABNEU ABTAH ABXDB ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ACROA ADBBV ADEZE ADFHU ADGUI ADMUD ADVLN AEBSH AEKER AEYQN AFFNX AFJKZ AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AXLSJ AZFZN BBWZM BEHZQ BEZPJ BGSCR BKOJK BLXMC BNTGB BPUDD BULVW BZJEE EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W K-O KOM M38 M41 MHUIS MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSB SSF SSQ SSW SSZ T5K TN5 TWZ VOH WH7 WUQ XJT XOL XPP YNT YYP ZMT ZY4 ~02 ~G- 9DU AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO AEIPS AGQPQ AIIUN ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c303t-ca566fa81bc92dbbd14008a8694ca55ab698f571efeed2e00ca327a66ee945ba3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001145381900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-4371 |
| IngestDate | Tue Nov 18 22:01:50 EST 2025 Sat Nov 29 07:10:32 EST 2025 Tue Dec 03 03:45:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Trivial feasible solutions Minimum exact cover Quantum alternating operator ansatz Multi-objective constrained optimization problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-ca566fa81bc92dbbd14008a8694ca55ab698f571efeed2e00ca327a66ee945ba3 |
| ORCID | 0000-0002-1546-4364 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_physa_2023_129089 crossref_primary_10_1016_j_physa_2023_129089 elsevier_sciencedirect_doi_10_1016_j_physa_2023_129089 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-15 |
| PublicationDateYYYYMMDD | 2023-09-15 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Physica A |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Martins (b47) 2020 Karp (b46) 1972 Zhang, Mu, Liu, Wang, Zhang, Li, Wu, Zhao, Dong (b22) 2022; 118 Wang, Hadfield, Jiang, Rieffel (b19) 2018; 97 A. Mandl, J. Barzen, M. Bechtold, F. Leymann, K. Wild, Amplitude amplification-inspired QAOA: Improving the success probability for solving 3SAT Wang, Xue, Qu (b8) 2022; 8 Zhou, Wang, Choi, Pichler, Lukin (b42) 2020; 10 Pan, Wan, Liu, Wang, Qin, Wen, Gao (b5) 2020; 102 Liu, Yu, Wan, Qin, Gao, Wen (b12) 2022; 607 Guo, Liu, Li, Li, Gao, Qin, Wen (b13) 2022; 604 E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm Grover (b48) 1996 M. Fingerhuth, B. Tomá, C. Ing, A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding Zhou, Du, Tian, Tao (b21) 2023; 19 Botsinis, Alanis, Feng, Babar, Nguyen, Chandra, Ng, Zhang, Hanzo (b16) 2017; 5 Fletcher (b39) 1970; 13 Grökvist, Kjerrstrm (b49) 2004 Broyden (b38) 1970; 6 . Li, Alam, Ghosh (b17) 2023 Y.M. Li, H.L. Liu, S.J. Pan, S.J. Qin, F. Gao, Q.Y. Wen, Quantum discriminative canonical correlation analysis Azad, Behera, Ahmed, Panigrahi, Farouk (b25) 2022 Goldfarb (b40) 1970; 24 Wan, Yu, Pan, Qin, Gao, Wen (b11) 2021; 104 Li, Cai, Sun, Liu, Wan, Qin, Wen, Gao (b14) 2022; 65 H.L. Liu, S.J. Qin, L.C. Wan, C.H. Yu, S.J. Pan, F. Gao, Q.Y. Wen, A quantum algorithm for solving eigenproblem of the Laplacian matrix of a fully connected weighted graph Shanno (b41) 1970; 24 Wan, Yu, Pan, Gao, Wen, Qin (b9) 2018; 97 Yu, Gao, Wen (b3) 2021; 33 Saleem (b28) 2020; 18 Herrman, Treffert, Ostrowski, Lotshaw, Humble, Siopsis (b20) 2021; 20 X. Lee, Y. Saito, D. Cai, N. Asai, Parameters Fixing Strategy for Quantum Approximate Optimization Algorithm, in: 2021 IEEE International Conference on Quantum Computing and Engineering, 2021, pp. 10–16. Pan, Wan, Liu, Wu, Qin, Wen, Gao (b6) 2022; 31 P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134. Wang, Rubin, Dominy, Rieffel (b27) 2020; 10 Weggemans, Urech, Rausch, Spreeuw, Boucherie, Schreck, Schoutens, Minář, Speelman (b23) 2022; 6 Cook, Eidenbenz, Brtschi (b29) 2020 Y.X. Wang, J.Y. Quan, Q. Li, A Delegated Quantum Approximate Optimization Algorithm, in: International Conference on Wireless Communications and Signal Processing, (WCSP), 2022), pp. 804–808. Hadfield, Wang, O’Gorman, Rieffel, Venturelli, Biswas (b26) 2019; 12 Grönkvist (b44) 2005 M. Svensson, M. Andersson, M. Grnkvist, P. Vikstål, D. Dubhashi, G. Ferrini, G. Johansson, A heuristic method to solve large-scale integer linear programs by combining branch-and-price with a quantum algorithm Lloyd, Mohseni, Rebentrost (b4) 2014; 10 S. Chatterjee, D. Bera, Applying the quantum alternating operator ansatz to the graph matching problem Vikstål, Grnkvist, Svensson, Andersson, Johansson, Ferrini (b32) 2020; 14 Developer (b35) 2021 V. Choi, Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems Stanimirović, Zlatanović, Petković (b36) 2011; 26 Lucas (b34) 2014; 2 Jacobs, Garrow, Lohatepanont, Frank S. Koppelman, Coldren, Purnomo (b45) 2012 Yu, Gao, Liu, Huynh, Reynolds, Wang (b2) 2019; 99 10.1016/j.physa.2023.129089_b11 Grover (10.1016/j.physa.2023.129089_b2) 1996 Broyden (10.1016/j.physa.2023.129089_b39) 1970; 6 Saleem (10.1016/j.physa.2023.129089_b29) 2020; 18 Guo (10.1016/j.physa.2023.129089_b14) 2022; 604 10.1016/j.physa.2023.129089_b19 10.1016/j.physa.2023.129089_b16 10.1016/j.physa.2023.129089_b25 Hadfield (10.1016/j.physa.2023.129089_b27) 2019; 12 Jacobs (10.1016/j.physa.2023.129089_b46) 2012 Pan (10.1016/j.physa.2023.129089_b6) 2020; 102 Yu (10.1016/j.physa.2023.129089_b3) 2019; 99 Lloyd (10.1016/j.physa.2023.129089_b5) 2014; 10 Developer (10.1016/j.physa.2023.129089_b36) 2021 Martins (10.1016/j.physa.2023.129089_b49) 2020 Zhou (10.1016/j.physa.2023.129089_b43) 2020; 10 Cook (10.1016/j.physa.2023.129089_b30) 2020 Wang (10.1016/j.physa.2023.129089_b28) 2020; 10 Wan (10.1016/j.physa.2023.129089_b12) 2021; 104 Grökvist (10.1016/j.physa.2023.129089_b47) 2004 Wang (10.1016/j.physa.2023.129089_b20) 2018; 97 10.1016/j.physa.2023.129089_b34 Fletcher (10.1016/j.physa.2023.129089_b40) 1970; 13 10.1016/j.physa.2023.129089_b31 Zhou (10.1016/j.physa.2023.129089_b22) 2023; 19 10.1016/j.physa.2023.129089_b32 Herrman (10.1016/j.physa.2023.129089_b21) 2021; 20 Pan (10.1016/j.physa.2023.129089_b7) 2022; 31 Li (10.1016/j.physa.2023.129089_b18) 2023 Botsinis (10.1016/j.physa.2023.129089_b17) 2017; 5 Goldfarb (10.1016/j.physa.2023.129089_b41) 1970; 24 10.1016/j.physa.2023.129089_b38 10.1016/j.physa.2023.129089_b1 10.1016/j.physa.2023.129089_b44 Azad (10.1016/j.physa.2023.129089_b26) 2022 Karp (10.1016/j.physa.2023.129089_b48) 1972 Liu (10.1016/j.physa.2023.129089_b13) 2022; 607 Stanimirović (10.1016/j.physa.2023.129089_b37) 2011; 26 Shanno (10.1016/j.physa.2023.129089_b42) 1970; 24 10.1016/j.physa.2023.129089_b8 Weggemans (10.1016/j.physa.2023.129089_b24) 2022; 6 Vikstål (10.1016/j.physa.2023.129089_b33) 2020; 14 Zhang (10.1016/j.physa.2023.129089_b23) 2022; 118 Yu (10.1016/j.physa.2023.129089_b4) 2021; 33 Li (10.1016/j.physa.2023.129089_b15) 2022; 65 Grönkvist (10.1016/j.physa.2023.129089_b45) 2005 Wan (10.1016/j.physa.2023.129089_b10) 2018; 97 Wang (10.1016/j.physa.2023.129089_b9) 2022; 8 Lucas (10.1016/j.physa.2023.129089_b35) 2014; 2 |
| References_xml | – year: 2005 ident: b44 article-title: The Tail Assignment Problem – start-page: 212 year: 1996 end-page: 219 ident: b48 article-title: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing – reference: S. Chatterjee, D. Bera, Applying the quantum alternating operator ansatz to the graph matching problem, – volume: 13 start-page: 317 year: 1970 ident: b39 article-title: A new approach to variable metric algorithms publication-title: Comput. J. – volume: 6 start-page: 76 year: 1970 ident: b38 article-title: The convergence of a class of double-rank minimization algorithms 1. General considerations publication-title: IMA J. Appl. Math. – volume: 65 year: 2022 ident: b14 article-title: Novel quantum circuit implementation of advanced encryption standard with low costs publication-title: Sci. China Phys. Mech. Astron. – start-page: 1 year: 2022 end-page: 10 ident: b25 article-title: Solving vehicle routing problem using quantum approximate optimization algorithm publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 18 year: 2020 ident: b28 article-title: Max-independent set and the quantum alternating operator ansatz publication-title: Int. J. Quantum Inf. – start-page: 1852 year: 2023 end-page: 1860 ident: b17 article-title: Large-scale quantum approximate optimization via divide-and-conquer publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst – volume: 10 year: 2020 ident: b27 article-title: XY mixers: Analytical and numerical results for the quantum alternating operator ansatz publication-title: Phys. Rev. A – reference: V. Choi, Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems, – volume: 99 year: 2019 ident: b2 article-title: Quantum algorithm for visual tracking publication-title: Phys. Rev. A – reference: M. Fingerhuth, B. Tomá, C. Ing, A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding, – start-page: 35 year: 2012 end-page: 99 ident: b45 article-title: Airline planning and schedule development publication-title: Quantitative Problem Solving Methods in the Airline Industry – year: 2020 ident: b29 article-title: The quantum alternating operator ansatz on max- publication-title: APS March Meeting, vol. 65 – start-page: 85 year: 1972 end-page: 103 ident: b46 article-title: Reducibility among combinatorial problems publication-title: Complexity of Computer Computations – volume: 5 start-page: 23327 year: 2017 end-page: 23351 ident: b16 article-title: Quantum-assisted indoor localization for uplink mm-wave and downlink visible light communication systems publication-title: IEEE Access – volume: 20 start-page: 289 year: 2021 ident: b20 article-title: Impact of graph structures for QAOA on maxcut publication-title: Quantum Inf. Process. – volume: 118 year: 2022 ident: b22 article-title: Applying the quantum approximate optimization algorithm to the minimum vertex cover problem publication-title: Appl. Soft Comput. – volume: 19 year: 2023 ident: b21 article-title: Qaoa-in-QAOA: Solving large-scale MaxCut problems on small quantum machines publication-title: Phys. Rev. Appl. – reference: M. Svensson, M. Andersson, M. Grnkvist, P. Vikstål, D. Dubhashi, G. Ferrini, G. Johansson, A heuristic method to solve large-scale integer linear programs by combining branch-and-price with a quantum algorithm, – volume: 10 start-page: 631 year: 2014 ident: b4 article-title: Quantum principal component analysis publication-title: Nat. Phys. – volume: 2 year: 2014 ident: b34 article-title: Ising formulations of many NP problems publication-title: Front. Phys. – volume: 104 year: 2021 ident: b11 article-title: Block-encoding-based quantum algorithm for linear systems with displacement structures publication-title: Phys. Rev. A – volume: 33 start-page: 858 year: 2021 end-page: 866 ident: b3 article-title: An improved quantum algorithm for ridge regression publication-title: IEEE Trans. Knowl. Data Eng. – reference: E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm, – volume: 97 year: 2018 ident: b9 article-title: Asymptotic quantum algorithm for the Toeplitz systems publication-title: Phys. Rev. A – volume: 12 start-page: 34 year: 2019 ident: b26 article-title: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz publication-title: Algorithms – year: 2020 ident: b47 article-title: Applying Quantum Annealing to the Tail Assignment Problem – volume: 31 year: 2022 ident: b6 article-title: Quantum algorithm for neighborhood preserving embedding publication-title: Chin. Phys. B – reference: H.L. Liu, S.J. Qin, L.C. Wan, C.H. Yu, S.J. Pan, F. Gao, Q.Y. Wen, A quantum algorithm for solving eigenproblem of the Laplacian matrix of a fully connected weighted graph, – volume: 97 year: 2018 ident: b19 article-title: Quantum approximate optimization algorithm for maxcut: A fermionic view publication-title: Phys. Rev. A – volume: 6 start-page: 687 year: 2022 ident: b23 article-title: Solving correlation clustering with QAOA and a rydberg qudit system: A full-stack approach publication-title: Quantum – volume: 10 year: 2020 ident: b42 article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices publication-title: Phys. Rev. X – reference: Y.M. Li, H.L. Liu, S.J. Pan, S.J. Qin, F. Gao, Q.Y. Wen, Quantum discriminative canonical correlation analysis, – year: 2021 ident: b35 article-title: MindQuantum, version 0.6.0 – reference: A. Mandl, J. Barzen, M. Bechtold, F. Leymann, K. Wild, Amplitude amplification-inspired QAOA: Improving the success probability for solving 3SAT, – volume: 102 year: 2020 ident: b5 article-title: Improved quantum algorithm for A-optimal projection publication-title: Phys. Rev. A – reference: X. Lee, Y. Saito, D. Cai, N. Asai, Parameters Fixing Strategy for Quantum Approximate Optimization Algorithm, in: 2021 IEEE International Conference on Quantum Computing and Engineering, 2021, pp. 10–16. – reference: . – volume: 8 year: 2022 ident: b8 article-title: Multidimensional Bose quantum error correction based on neural network decoder publication-title: NPJ Quantum Inf. – volume: 14 year: 2020 ident: b32 article-title: Applying the quantum approximate optimization algorithm to the tail-assignment problem publication-title: Phys. Rev. Appl. – reference: Y.X. Wang, J.Y. Quan, Q. Li, A Delegated Quantum Approximate Optimization Algorithm, in: International Conference on Wireless Communications and Signal Processing, (WCSP), 2022), pp. 804–808. – volume: 26 start-page: 49 year: 2011 end-page: 63 ident: b36 article-title: On the linear weighted sum method for multi-objective optimization publication-title: Facta Univ. Ser. Math. Inform. – reference: P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134. – volume: 607 year: 2022 ident: b12 article-title: Quantum mean centering for block-encoding-based quantum algorithm publication-title: Physica A – volume: 604 year: 2022 ident: b13 article-title: Quantum algorithms for anomaly detection using amplitude estimation publication-title: Physica A – volume: 24 start-page: 23 year: 1970 ident: b40 article-title: A family of variable-metric methods derived by variational means publication-title: Math. Comp. – volume: 24 start-page: 647 year: 1970 ident: b41 article-title: Conditioning of quasi-Newton methods for function minimization publication-title: Math. Comp. – start-page: 166 year: 2004 end-page: 173 ident: b49 article-title: Tail assignment in practice publication-title: Operations Research Proceedings – volume: 19 year: 2023 ident: 10.1016/j.physa.2023.129089_b22 article-title: Qaoa-in-QAOA: Solving large-scale MaxCut problems on small quantum machines publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.19.024027 – volume: 607 year: 2022 ident: 10.1016/j.physa.2023.129089_b13 article-title: Quantum mean centering for block-encoding-based quantum algorithm publication-title: Physica A doi: 10.1016/j.physa.2022.128227 – year: 2020 ident: 10.1016/j.physa.2023.129089_b30 article-title: The quantum alternating operator ansatz on max-k vertex cover – ident: 10.1016/j.physa.2023.129089_b16 – start-page: 35 year: 2012 ident: 10.1016/j.physa.2023.129089_b46 article-title: Airline planning and schedule development – ident: 10.1016/j.physa.2023.129089_b31 – volume: 10 issue: 2 year: 2020 ident: 10.1016/j.physa.2023.129089_b43 article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices publication-title: Phys. Rev. X – volume: 104 year: 2021 ident: 10.1016/j.physa.2023.129089_b12 article-title: Block-encoding-based quantum algorithm for linear systems with displacement structures publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.062414 – volume: 8 issue: 134 year: 2022 ident: 10.1016/j.physa.2023.129089_b9 article-title: Multidimensional Bose quantum error correction based on neural network decoder publication-title: NPJ Quantum Inf. – ident: 10.1016/j.physa.2023.129089_b11 – volume: 65 year: 2022 ident: 10.1016/j.physa.2023.129089_b15 article-title: Novel quantum circuit implementation of advanced encryption standard with low costs publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-022-1921-y – volume: 10 start-page: 631 year: 2014 ident: 10.1016/j.physa.2023.129089_b5 article-title: Quantum principal component analysis publication-title: Nat. Phys. doi: 10.1038/nphys3029 – start-page: 166 year: 2004 ident: 10.1016/j.physa.2023.129089_b47 article-title: Tail assignment in practice – ident: 10.1016/j.physa.2023.129089_b32 – start-page: 85 year: 1972 ident: 10.1016/j.physa.2023.129089_b48 article-title: Reducibility among combinatorial problems – year: 2021 ident: 10.1016/j.physa.2023.129089_b36 – volume: 2 issue: 5 year: 2014 ident: 10.1016/j.physa.2023.129089_b35 article-title: Ising formulations of many NP problems publication-title: Front. Phys. – year: 2020 ident: 10.1016/j.physa.2023.129089_b49 – volume: 26 start-page: 49 year: 2011 ident: 10.1016/j.physa.2023.129089_b37 article-title: On the linear weighted sum method for multi-objective optimization publication-title: Facta Univ. Ser. Math. Inform. – ident: 10.1016/j.physa.2023.129089_b44 doi: 10.1109/QCE52317.2021.00016 – year: 2005 ident: 10.1016/j.physa.2023.129089_b45 – ident: 10.1016/j.physa.2023.129089_b19 doi: 10.1109/WCSP55476.2022.10039146 – ident: 10.1016/j.physa.2023.129089_b25 – start-page: 212 year: 1996 ident: 10.1016/j.physa.2023.129089_b2 article-title: A fast quantum mechanical algorithm for database search – volume: 33 start-page: 858 issue: 3 year: 2021 ident: 10.1016/j.physa.2023.129089_b4 article-title: An improved quantum algorithm for ridge regression publication-title: IEEE Trans. Knowl. Data Eng. – volume: 31 year: 2022 ident: 10.1016/j.physa.2023.129089_b7 article-title: Quantum algorithm for neighborhood preserving embedding publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac523a – volume: 6 start-page: 76 year: 1970 ident: 10.1016/j.physa.2023.129089_b39 article-title: The convergence of a class of double-rank minimization algorithms 1. General considerations publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/6.1.76 – volume: 102 issue: 5 year: 2020 ident: 10.1016/j.physa.2023.129089_b6 article-title: Improved quantum algorithm for A-optimal projection publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.052402 – volume: 24 start-page: 647 year: 1970 ident: 10.1016/j.physa.2023.129089_b42 article-title: Conditioning of quasi-Newton methods for function minimization publication-title: Math. Comp. doi: 10.1090/S0025-5718-1970-0274029-X – volume: 5 start-page: 23327 year: 2017 ident: 10.1016/j.physa.2023.129089_b17 article-title: Quantum-assisted indoor localization for uplink mm-wave and downlink visible light communication systems publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2733557 – volume: 12 start-page: 34 issue: 2 year: 2019 ident: 10.1016/j.physa.2023.129089_b27 article-title: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz publication-title: Algorithms doi: 10.3390/a12020034 – volume: 99 year: 2019 ident: 10.1016/j.physa.2023.129089_b3 article-title: Quantum algorithm for visual tracking publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.022301 – volume: 14 issue: 3 year: 2020 ident: 10.1016/j.physa.2023.129089_b33 article-title: Applying the quantum approximate optimization algorithm to the tail-assignment problem publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.034009 – volume: 24 start-page: 23 year: 1970 ident: 10.1016/j.physa.2023.129089_b41 article-title: A family of variable-metric methods derived by variational means publication-title: Math. Comp. doi: 10.1090/S0025-5718-1970-0258249-6 – volume: 18 issue: 4 year: 2020 ident: 10.1016/j.physa.2023.129089_b29 article-title: Max-independent set and the quantum alternating operator ansatz publication-title: Int. J. Quantum Inf. doi: 10.1142/S0219749920500112 – volume: 20 start-page: 289 issue: 9 year: 2021 ident: 10.1016/j.physa.2023.129089_b21 article-title: Impact of graph structures for QAOA on maxcut publication-title: Quantum Inf. Process. doi: 10.1007/s11128-021-03232-8 – volume: 6 start-page: 687 year: 2022 ident: 10.1016/j.physa.2023.129089_b24 article-title: Solving correlation clustering with QAOA and a rydberg qudit system: A full-stack approach publication-title: Quantum doi: 10.22331/q-2022-04-13-687 – volume: 604 issue: 3 year: 2022 ident: 10.1016/j.physa.2023.129089_b14 article-title: Quantum algorithms for anomaly detection using amplitude estimation publication-title: Physica A – ident: 10.1016/j.physa.2023.129089_b1 doi: 10.1109/SFCS.1994.365700 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.physa.2023.129089_b28 article-title: XY mixers: Analytical and numerical results for the quantum alternating operator ansatz publication-title: Phys. Rev. A – volume: 97 year: 2018 ident: 10.1016/j.physa.2023.129089_b10 article-title: Asymptotic quantum algorithm for the Toeplitz systems publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.062322 – ident: 10.1016/j.physa.2023.129089_b38 – ident: 10.1016/j.physa.2023.129089_b34 – start-page: 1852 year: 2023 ident: 10.1016/j.physa.2023.129089_b18 article-title: Large-scale quantum approximate optimization via divide-and-conquer publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst doi: 10.1109/TCAD.2022.3212196 – volume: 13 start-page: 317 year: 1970 ident: 10.1016/j.physa.2023.129089_b40 article-title: A new approach to variable metric algorithms publication-title: Comput. J. doi: 10.1093/comjnl/13.3.317 – volume: 97 year: 2018 ident: 10.1016/j.physa.2023.129089_b20 article-title: Quantum approximate optimization algorithm for maxcut: A fermionic view publication-title: Phys. Rev. A – start-page: 1 year: 2022 ident: 10.1016/j.physa.2023.129089_b26 article-title: Solving vehicle routing problem using quantum approximate optimization algorithm publication-title: IEEE Trans. Intell. Transp. Syst. – ident: 10.1016/j.physa.2023.129089_b8 – volume: 118 year: 2022 ident: 10.1016/j.physa.2023.129089_b23 article-title: Applying the quantum approximate optimization algorithm to the minimum vertex cover problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108554 |
| SSID | ssj0001732 |
| Score | 2.4875813 |
| Snippet | The Quantum Alternating Operator Ansatz (QAOA+) is an extension of the Quantum Approximate Optimization Algorithm (QAOA), where the search space is smaller in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 129089 |
| SubjectTerms | Minimum exact cover Multi-objective constrained optimization problem Quantum alternating operator ansatz Trivial feasible solutions |
| Title | Quantum alternating operator ansatz for solving the minimum exact cover problem |
| URI | https://dx.doi.org/10.1016/j.physa.2023.129089 |
| Volume | 626 |
| WOSCitedRecordID | wos001145381900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0378-4371 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001732 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA46FXwRr3gnD75pZCZt0z6KTFTECyjOp5KmGVa0DrfJ8Nd7cuvqhaEPPqyMrk1Dvm85J6dfzkFohwZhzqKQk4hKSQKeUwJGkJMgUHmcRQmAHptiE_ziIm63kysna-6ZcgK8LOPhMOn-K9RwDsDWW2f_AHfVKJyA7wA6HAF2OP4K-OsBDJaWHD-5WJ-WNXeVeZ2-q4uD99-NthB68eb3SukEI89wjxrqLZNSyzp3XamZuvd6ZUEdxT_vfLT5QRD4VOqeYmBMmijIuTeNOorj5L_3oiTXRaX8ESZae6yKegSCMi2XsHsw_c4rWIkGzJZS8bNqROvzoo522VJB36ZsGz143NeRHJ0IirL90dWfE2R_MVyVnNAr1R5T00iqG0ltI5NoivIwgSl76vC01T6rrPQBZ_YNk-u7z0hltH_f-vKz11LzRG7m0ZxbQuBDC_0CmlDlIpqx2PSW0KUjAK4RAHsCYEsADATAjgAYCIAdAbAhADYEwI4Ay-j2uHVzdEJc2QwiwR_pEynARe8IWI_IhOZZlsMauhmLOEoC-CkU8A-MOyE_UB3wj6hqNqVglIsoUioJwkywFdQoX0q1ijDYPsWVZLDmpYFgLJE5eHiSZryp4kzRNUT9sKTS5ZTXpU2e0jGQrKG96qauTaky_vLIj3fqvELr7aXAoHE3rv_tORtodkTuTdTovw7UFpqWb_2i97rt6PMBcseEaA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+alternating+operator+ansatz+for+solving+the+minimum+exact+cover+problem&rft.jtitle=Physica+A&rft.au=Wang%2C+Sha-Sha&rft.au=Liu%2C+Hai-Ling&rft.au=Song%2C+Yan-Qi&rft.au=Gao%2C+Fei&rft.date=2023-09-15&rft.issn=0378-4371&rft.volume=626&rft.spage=129089&rft_id=info:doi/10.1016%2Fj.physa.2023.129089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2023_129089 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |