Emergence Model of Perception With Global-Contour Precedence Based on Gestalt Theory and Primary Visual Cortex
Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions ca...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 34; S. 2721 - 2736 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions caused by occlusion and noise in natural images. In this paper, we present GPGrouper, a perceptual edge grouping model based on gestalt theory and the primary visual cortex (V1). Different from the existing methods, GPGrouper leverages the edge representation and grouping matrix (ERGM), a functional structure inspired by V1 mechanisms, to represent edges in a way that can effectively reduce grouping errors caused by occlusion between objects. ERGM is trained with natural image contours and further provides a priori guidance for the construction of the edge connection graph (ECG) that is useful to minimize the impact of noise on grouping. In the experiment, we compared GPGrouper and the state-of-the-art (SOTA) method of perceptual grouping on the visual psychology pathfinder challenge. The results demonstrate that GPGrouper outperforms the SOTA method in grouping performance. Furthermore, in the grouping experiments involving line segments with varying lengths detected by the Line Segment Detector (LSD), as well as those involving superpixel segmentation results with significant levels of interfering noise using the SLIC algorithm, GPGrouper was superior to the existing methods in terms of grouping effect and robustness. Moreover, the results of applying the grouping results to the vision tasks objectness demonstrate that GPGrouper can contribute significantly to high-level visual tasks. |
|---|---|
| AbstractList | Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions caused by occlusion and noise in natural images. In this paper, we present GPGrouper, a perceptual edge grouping model based on gestalt theory and the primary visual cortex (V1). Different from the existing methods, GPGrouper leverages the edge representation and grouping matrix (ERGM), a functional structure inspired by V1 mechanisms, to represent edges in a way that can effectively reduce grouping errors caused by occlusion between objects. ERGM is trained with natural image contours and further provides a priori guidance for the construction of the edge connection graph (ECG) that is useful to minimize the impact of noise on grouping. In the experiment, we compared GPGrouper and the state-of-the-art (SOTA) method of perceptual grouping on the visual psychology pathfinder challenge. The results demonstrate that GPGrouper outperforms the SOTA method in grouping performance. Furthermore, in the grouping experiments involving line segments with varying lengths detected by the Line Segment Detector (LSD), as well as those involving superpixel segmentation results with significant levels of interfering noise using the SLIC algorithm, GPGrouper was superior to the existing methods in terms of grouping effect and robustness. Moreover, the results of applying the grouping results to the vision tasks objectness demonstrate that GPGrouper can contribute significantly to high-level visual tasks. Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions caused by occlusion and noise in natural images. In this paper, we present GPGrouper, a perceptual edge grouping model based on gestalt theory and the primary visual cortex (V1). Different from the existing methods, GPGrouper leverages the edge representation and grouping matrix (ERGM), a functional structure inspired by V1 mechanisms, to represent edges in a way that can effectively reduce grouping errors caused by occlusion between objects. ERGM is trained with natural image contours and further provides a priori guidance for the construction of the edge connection graph (ECG) that is useful to minimize the impact of noise on grouping. In the experiment, we compared GPGrouper and the state-of-the-art (SOTA) method of perceptual grouping on the visual psychology pathfinder challenge. The results demonstrate that GPGrouper outperforms the SOTA method in grouping performance. Furthermore, in the grouping experiments involving line segments with varying lengths detected by the Line Segment Detector (LSD), as well as those involving superpixel segmentation results with significant levels of interfering noise using the SLIC algorithm, GPGrouper was superior to the existing methods in terms of grouping effect and robustness. Moreover, the results of applying the grouping results to the vision tasks objectness demonstrate that GPGrouper can contribute significantly to high-level visual tasks.Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions caused by occlusion and noise in natural images. In this paper, we present GPGrouper, a perceptual edge grouping model based on gestalt theory and the primary visual cortex (V1). Different from the existing methods, GPGrouper leverages the edge representation and grouping matrix (ERGM), a functional structure inspired by V1 mechanisms, to represent edges in a way that can effectively reduce grouping errors caused by occlusion between objects. ERGM is trained with natural image contours and further provides a priori guidance for the construction of the edge connection graph (ECG) that is useful to minimize the impact of noise on grouping. In the experiment, we compared GPGrouper and the state-of-the-art (SOTA) method of perceptual grouping on the visual psychology pathfinder challenge. The results demonstrate that GPGrouper outperforms the SOTA method in grouping performance. Furthermore, in the grouping experiments involving line segments with varying lengths detected by the Line Segment Detector (LSD), as well as those involving superpixel segmentation results with significant levels of interfering noise using the SLIC algorithm, GPGrouper was superior to the existing methods in terms of grouping effect and robustness. Moreover, the results of applying the grouping results to the vision tasks objectness demonstrate that GPGrouper can contribute significantly to high-level visual tasks. |
| Author | Wei, Hui Li, Jingmeng |
| Author_xml | – sequence: 1 givenname: Jingmeng orcidid: 0000-0001-9108-5211 surname: Li fullname: Li, Jingmeng email: jmli17@fudan.edu.cn organization: Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, Shanghai, China – sequence: 2 givenname: Hui orcidid: 0000-0003-2696-0707 surname: Wei fullname: Wei, Hui email: weihui@fudan.edu.cn organization: Laboratory of Algorithms for Cognitive Models, Innovation Center of Calligraphy and Painting Creation Technology, MCT, School of Computer Science, Fudan University, Shanghai, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40279221$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkcFP2zAUxi1UNEq3OweELHHZJZ2f7cTJcVTQIYHWQ7cdLcd5oUGp3dmJBP897lqmab74HX6f_b3vOycT5x0ScgFsDsCqL-v71Zwzns9FXnCWyxMyhUpCxpjkkzSzXGUKZHVGzmN8ZgxkDsUHciYZVxXnMCXudovhCZ1F-ugb7Klv6QqDxd3QeUd_dcOGLntfmz5beDf4MdBVQIvNH8mNidjQxC0xDqYf6HqDPrxS45qEdVuT5p9dHE1PFz4M-PKRnLamj_jpeM_Ij7vb9eJb9vB9eb_4-pBZwcSQ2VypSgGIpiptXcsayrKxaIErXnPLSyFz1QorCgYGalaYWuxPWWLRigrFjHw-vLsL_veYzOltFy32vXHox6hFiqlKf-Q8odf_oc9pS5fcaZGyhVJJKBJ1daTGeouN3h220-9JJoAdABt8jAHbvwgwvS9Lp7L0vix9LCtJLg-SDhH_wZMxJZl4A5s7jcg |
| CODEN | IIPRE4 |
| Cites_doi | 10.1016/B978-0-12-084320-6.50015-3 10.1007/s11263-013-0620-5 10.1007/978-3-642-15555-0_42 10.1037/0096-1523.7.6.1161 10.1109/TPAMI.2010.161 10.1007/s12524-018-0891-y 10.1007/s11263-014-0733-5 10.1080/22797254.2022.2037468 10.1109/CVPR.2010.5539956 10.1038/381607a0 10.1109/TIP.2007.904463 10.1007/s11263-007-0092-6 10.1109/TPAMI.2007.1186 10.5201/ipol.2014.67 10.1080/10106049.2022.2082545 10.1016/S0031-3203(98)00036-3 10.5201/ipol.2018.194 10.1109/TPAMI.2003.1201818 10.1109/JSTARS.2022.3213768 10.1016/j.jvcir.2017.07.003 10.1109/ICCV.2013.231 10.1007/s10851-008-0102-5 10.1145/3450626.3459833 10.1109/TPAMI.2004.1273918 10.32470/CCN.2019.1130-0 10.1109/CVPR.2015.7298795 10.1002/cne.901580305 10.1109/29.1644 10.1145/3459999 10.1609/aaai.v36i4.20379 10.1016/j.visres.2015.08.013 10.1016/j.patcog.2020.107693 10.1016/S0042-6989(00)00277-7 10.1109/CVPR.2017.544 10.1109/ICCV.2007.4408919 10.1038/s41583-023-00756-z 10.1109/CVPR.2011.5995739 10.5244/C.31.12 10.1109/ICCV48922.2021.00507 10.1037/11496-005 10.1007/s11263-009-0287-0 10.1037/0033-295X.94.2.115 10.1126/science.287.5456.1273 10.1037/a0029333 10.1016/j.measurement.2019.107432 10.1109/IROS.2018.8594434 10.1037/a0020248 10.1016/j.cviu.2023.103919 10.1007/978-3-031-72751-1_8 10.1109/ICCV.2019.00887 10.1016/S0042-6989(97)00169-7 10.1016/j.visres.2015.06.007 10.1109/TPAMI.2014.2359888 10.1109/CVPR52688.2022.00146 10.1049/iet-ipr.2018.6248 10.1016/j.neuron.2013.02.013 10.1109/LGRS.2018.2792421 10.1109/TPAMI.1986.4767851 10.32470/CCN.2018.1116-0 10.3758/BF03202991 10.1113/jphysiol.1959.sp006308 10.1007/978-3-319-10602-1_26 10.1016/j.neuron.2007.12.011 10.5244/C.27.128 10.1109/CVPR42600.2020.00817 10.1007/BF00309635 10.1109/TPAMI.2011.231 10.1038/280120a0 10.1523/JNEUROSCI.17-06-02112.1997 10.1007/978-981-13-7430-2_12 10.1109/TPAMI.2012.120 10.1016/j.visres.2015.09.004 10.1109/CVPR.2019.00395 10.1109/CVPR52688.2022.00143 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2025.3562054 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Psychology |
| EISSN | 1941-0042 |
| EndPage | 2736 |
| ExternalDocumentID | 40279221 10_1109_TIP_2025_3562054 10977740 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: NSFC grantid: 61771146 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c303t-c57797113d98cbb4b188dcec1272b2c283457f3c3601a1b06ab3333388e6f39e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484672500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Fri Oct 03 00:11:02 EDT 2025 Tue Jul 22 22:53:36 EDT 2025 Mon Jul 21 05:47:44 EDT 2025 Sat Nov 29 07:54:37 EST 2025 Wed Aug 27 01:53:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-c57797113d98cbb4b188dcec1272b2c283457f3c3601a1b06ab3333388e6f39e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9108-5211 0000-0003-2696-0707 |
| PMID | 40279221 |
| PQID | 3202187416 |
| PQPubID | 85429 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TIP_2025_3562054 ieee_primary_10977740 proquest_journals_3202187416 pubmed_primary_40279221 proquest_miscellaneous_3194977952 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Lawlor (ref44) ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref76 ref2 ref1 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Kovesi (ref39) 2024 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref16 doi: 10.1016/B978-0-12-084320-6.50015-3 – ident: ref49 doi: 10.1007/s11263-013-0620-5 – ident: ref51 doi: 10.1007/978-3-642-15555-0_42 – ident: ref17 doi: 10.1037/0096-1523.7.6.1161 – ident: ref67 doi: 10.1109/TPAMI.2010.161 – ident: ref26 doi: 10.1007/s12524-018-0891-y – ident: ref68 doi: 10.1007/s11263-014-0733-5 – ident: ref25 doi: 10.1080/22797254.2022.2037468 – ident: ref12 doi: 10.1109/CVPR.2010.5539956 – ident: ref55 doi: 10.1038/381607a0 – ident: ref15 doi: 10.1109/TIP.2007.904463 – ident: ref45 doi: 10.1007/s11263-007-0092-6 – ident: ref47 doi: 10.1109/TPAMI.2007.1186 – ident: ref75 doi: 10.5201/ipol.2014.67 – ident: ref23 doi: 10.1080/10106049.2022.2082545 – ident: ref2 doi: 10.1016/S0031-3203(98)00036-3 – ident: ref42 doi: 10.5201/ipol.2018.194 – ident: ref46 doi: 10.1109/TPAMI.2003.1201818 – ident: ref27 doi: 10.1109/JSTARS.2022.3213768 – ident: ref4 doi: 10.1016/j.jvcir.2017.07.003 – ident: ref32 doi: 10.1109/ICCV.2013.231 – ident: ref70 doi: 10.1007/s10851-008-0102-5 – ident: ref54 doi: 10.1145/3450626.3459833 – ident: ref31 doi: 10.1109/TPAMI.2004.1273918 – ident: ref38 doi: 10.32470/CCN.2019.1130-0 – ident: ref11 doi: 10.1109/CVPR.2015.7298795 – ident: ref61 doi: 10.1002/cne.901580305 – ident: ref60 doi: 10.1109/29.1644 – ident: ref18 doi: 10.1145/3459999 – ident: ref53 doi: 10.1609/aaai.v36i4.20379 – ident: ref41 doi: 10.1016/j.visres.2015.08.013 – ident: ref10 doi: 10.1016/j.patcog.2020.107693 – ident: ref43 doi: 10.1016/S0042-6989(00)00277-7 – ident: ref69 doi: 10.1109/CVPR.2017.544 – ident: ref14 doi: 10.1109/ICCV.2007.4408919 – ident: ref22 doi: 10.1038/s41583-023-00756-z – ident: ref71 doi: 10.1109/CVPR.2011.5995739 – ident: ref9 doi: 10.5244/C.31.12 – ident: ref34 doi: 10.1109/ICCV48922.2021.00507 – ident: ref20 doi: 10.1037/11496-005 – ident: ref56 doi: 10.1007/s11263-009-0287-0 – ident: ref1 doi: 10.1037/0033-295X.94.2.115 – ident: ref57 doi: 10.1126/science.287.5456.1273 – ident: ref19 doi: 10.1037/a0029333 – ident: ref29 doi: 10.1016/j.measurement.2019.107432 – ident: ref72 doi: 10.1109/IROS.2018.8594434 – ident: ref36 doi: 10.1037/a0020248 – ident: ref3 doi: 10.1016/j.cviu.2023.103919 – ident: ref7 doi: 10.1007/978-3-031-72751-1_8 – ident: ref24 doi: 10.1109/ICCV.2019.00887 – ident: ref58 doi: 10.1016/S0042-6989(97)00169-7 – ident: ref74 doi: 10.1016/j.visres.2015.06.007 – ident: ref5 doi: 10.1109/TPAMI.2014.2359888 – ident: ref35 doi: 10.1109/CVPR52688.2022.00146 – ident: ref6 doi: 10.1049/iet-ipr.2018.6248 – ident: ref63 doi: 10.1016/j.neuron.2013.02.013 – ident: ref8 doi: 10.1109/LGRS.2018.2792421 – ident: ref30 doi: 10.1109/TPAMI.1986.4767851 – ident: ref37 doi: 10.32470/CCN.2018.1116-0 – ident: ref76 doi: 10.3758/BF03202991 – ident: ref59 doi: 10.1113/jphysiol.1959.sp006308 – ident: ref52 doi: 10.1007/978-3-319-10602-1_26 – ident: ref65 doi: 10.1016/j.neuron.2007.12.011 – ident: ref13 doi: 10.5244/C.27.128 – ident: ref28 doi: 10.1109/CVPR42600.2020.00817 – ident: ref21 doi: 10.1007/BF00309635 – volume-title: MATLAB and Octave Functions for Computer Vision and Image Processing year: 2024 ident: ref39 – start-page: 1763 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref44 article-title: Third-order edge statistics: Contour continuation, curvature, and cortical connections – ident: ref50 doi: 10.1109/TPAMI.2011.231 – ident: ref62 doi: 10.1038/280120a0 – ident: ref64 doi: 10.1523/JNEUROSCI.17-06-02112.1997 – ident: ref66 doi: 10.1007/978-981-13-7430-2_12 – ident: ref73 doi: 10.1109/TPAMI.2012.120 – ident: ref40 doi: 10.1016/j.visres.2015.09.004 – ident: ref33 doi: 10.1109/CVPR.2019.00395 – ident: ref48 doi: 10.1109/CVPR52688.2022.00143 |
| SSID | ssj0014516 |
| Score | 2.4681356 |
| Snippet | Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2721 |
| SubjectTerms | Algorithms Computational modeling Computer vision Error reduction Gestalt Theory global precedence effect Graph theory Humans Image edge detection Image Processing, Computer-Assisted - methods Image segmentation Noise Object detection Occlusion Organizations perceptual edge grouping Perceptual organization primary visual cortex Primary Visual Cortex - diagnostic imaging Primary Visual Cortex - physiology Psychology Segments Vectors Visual Cortex - physiology Visual Perception - physiology Visual systems Visual tasks Visualization |
| Title | Emergence Model of Perception With Global-Contour Precedence Based on Gestalt Theory and Primary Visual Cortex |
| URI | https://ieeexplore.ieee.org/document/10977740 https://www.ncbi.nlm.nih.gov/pubmed/40279221 https://www.proquest.com/docview/3202187416 https://www.proquest.com/docview/3194977952 |
| Volume | 34 |
| WOSCitedRecordID | wos001484672500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5iCE3lsG4dbB0MeRKXHQJxftk-AmqBC-qBjd6i2H4Rlap0alM0_nuenTSCQw_kFCmW7eQ9533Pz-99AKeu3p1GKwNrpA4SIYtAF2lJK56wdpgh-c3Gk02Iuzs5napJm6zuc2EQ0R8-wzN362P5dmHWbqvs3EVLCa6Qh_5BiKxJ1upCBo5x1oc2UxEIwv2bmGSozu9vJ-QJRulZTNaeMEoPPpLbJFQU8TfmyPOrbIea3uSM---c7Gf41GJLdtEowxfYwWoA_RZnsnYVrwaw_6oI4QB63T_w-StUozYdE5ljSZuzRckm3dkX9jCrH1lDExC4ulY0IpvQPxM9Mym7JJNoGbW7ptcq5jVrMv9ZUVlq5stasL-z1ZomeeUO-f4_gD_j0f3VTdBSMgSGbF0dmFQIJTiPrZJG60RzKa1BwyMR6cgQVklSUcYmJj-v4DrMCh27S0rMylhhfAi71aLC78Di0JYmLBUvozBBqXSWZCYhPBNiwa3OhvB7I5n8XzPF3HssocpJoLkTaN4KdAgHTgCv2jXffgjHG1nm7dpc5Y4x3jERchriV_eYVpULlRQVLtbUhnSUulBpNIRvjQ50nW9U58eWQY-g5-bW7NMcw269XONP2DNP9Wy1PCHVncoTr7ovNdXnbA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VtGqXA5QtLUuhuFIvPQTivGwfW8RLwGoP25ZbFNsTsRLKVmy2Kv-eseON6IFDc4oUy3Yy48w3Hs98AF9cvTuNVkbWSB1lQlaRrvKaVjxh7bhA8puNJ5sQ47G8uVGTkKzuc2EQ0R8-w0N362P5dm6WbqvsyEVLCa6Qh_7SUWeFdK0-aOA4Z31wMxeRIOS_ikrG6mh6MSFfMMkPU7L3hFIG8JocJ6GShP9jkDzDyvNg0xud083_nO5b2Ajokn3r1GELXmAzhM2ANFlYx4shrD8pQziEQf8XfHgHzUlIyETmeNLu2Lxmk_70C_s1a29ZRxQQucpWNCKb0F8TPTcp-05G0TJqd0avVd21rMv9Z1VjqZkvbMF-zhZLmuSxO-b7dxt-nJ5Mj8-jQMoQGbJ2bWRyIZTgPLVKGq0zzaW0Bg1PRKITQ2gly0WdmpQ8vYrruKh06i4psahThel7WGvmDe4AS2Nbm7hWvE7iDKXSRVaYjBBNjBW3uhjB15Vkyt_dFEvvs8SqJIGWTqBlEOgItp0AnrTrvv0I9layLMPqXJSOM95xEXIa4nP_mNaVC5ZUDc6X1Ia0lLpQeTKCD50O9J2vVGf3mUEP4M359PqqvLoYX36EgZtnt2uzB2vt_RL34ZX5084W95-8Aj8C96zpzQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+Model+of+Perception+with+Global-contour+Precedence+Based+on+Gestalt+Theory+and+Primary+Visual+Cortex&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li%2C+Jingmeng&rft.au=Wei%2C+Hui&rft.date=2025-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=PP&rft_id=info:doi/10.1109%2FTIP.2025.3562054&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |