Emergence Model of Perception With Global-Contour Precedence Based on Gestalt Theory and Primary Visual Cortex

Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 34; S. 2721 - 2736
Hauptverfasser: Li, Jingmeng, Wei, Hui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions caused by occlusion and noise in natural images. In this paper, we present GPGrouper, a perceptual edge grouping model based on gestalt theory and the primary visual cortex (V1). Different from the existing methods, GPGrouper leverages the edge representation and grouping matrix (ERGM), a functional structure inspired by V1 mechanisms, to represent edges in a way that can effectively reduce grouping errors caused by occlusion between objects. ERGM is trained with natural image contours and further provides a priori guidance for the construction of the edge connection graph (ECG) that is useful to minimize the impact of noise on grouping. In the experiment, we compared GPGrouper and the state-of-the-art (SOTA) method of perceptual grouping on the visual psychology pathfinder challenge. The results demonstrate that GPGrouper outperforms the SOTA method in grouping performance. Furthermore, in the grouping experiments involving line segments with varying lengths detected by the Line Segment Detector (LSD), as well as those involving superpixel segmentation results with significant levels of interfering noise using the SLIC algorithm, GPGrouper was superior to the existing methods in terms of grouping effect and robustness. Moreover, the results of applying the grouping results to the vision tasks objectness demonstrate that GPGrouper can contribute significantly to high-level visual tasks.
AbstractList Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions caused by occlusion and noise in natural images. In this paper, we present GPGrouper, a perceptual edge grouping model based on gestalt theory and the primary visual cortex (V1). Different from the existing methods, GPGrouper leverages the edge representation and grouping matrix (ERGM), a functional structure inspired by V1 mechanisms, to represent edges in a way that can effectively reduce grouping errors caused by occlusion between objects. ERGM is trained with natural image contours and further provides a priori guidance for the construction of the edge connection graph (ECG) that is useful to minimize the impact of noise on grouping. In the experiment, we compared GPGrouper and the state-of-the-art (SOTA) method of perceptual grouping on the visual psychology pathfinder challenge. The results demonstrate that GPGrouper outperforms the SOTA method in grouping performance. Furthermore, in the grouping experiments involving line segments with varying lengths detected by the Line Segment Detector (LSD), as well as those involving superpixel segmentation results with significant levels of interfering noise using the SLIC algorithm, GPGrouper was superior to the existing methods in terms of grouping effect and robustness. Moreover, the results of applying the grouping results to the vision tasks objectness demonstrate that GPGrouper can contribute significantly to high-level visual tasks.
Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions caused by occlusion and noise in natural images. In this paper, we present GPGrouper, a perceptual edge grouping model based on gestalt theory and the primary visual cortex (V1). Different from the existing methods, GPGrouper leverages the edge representation and grouping matrix (ERGM), a functional structure inspired by V1 mechanisms, to represent edges in a way that can effectively reduce grouping errors caused by occlusion between objects. ERGM is trained with natural image contours and further provides a priori guidance for the construction of the edge connection graph (ECG) that is useful to minimize the impact of noise on grouping. In the experiment, we compared GPGrouper and the state-of-the-art (SOTA) method of perceptual grouping on the visual psychology pathfinder challenge. The results demonstrate that GPGrouper outperforms the SOTA method in grouping performance. Furthermore, in the grouping experiments involving line segments with varying lengths detected by the Line Segment Detector (LSD), as well as those involving superpixel segmentation results with significant levels of interfering noise using the SLIC algorithm, GPGrouper was superior to the existing methods in terms of grouping effect and robustness. Moreover, the results of applying the grouping results to the vision tasks objectness demonstrate that GPGrouper can contribute significantly to high-level visual tasks.Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which has long been a basic and critical task in computer vision. Existing methods usually have a poor performance when coping with the junctions caused by occlusion and noise in natural images. In this paper, we present GPGrouper, a perceptual edge grouping model based on gestalt theory and the primary visual cortex (V1). Different from the existing methods, GPGrouper leverages the edge representation and grouping matrix (ERGM), a functional structure inspired by V1 mechanisms, to represent edges in a way that can effectively reduce grouping errors caused by occlusion between objects. ERGM is trained with natural image contours and further provides a priori guidance for the construction of the edge connection graph (ECG) that is useful to minimize the impact of noise on grouping. In the experiment, we compared GPGrouper and the state-of-the-art (SOTA) method of perceptual grouping on the visual psychology pathfinder challenge. The results demonstrate that GPGrouper outperforms the SOTA method in grouping performance. Furthermore, in the grouping experiments involving line segments with varying lengths detected by the Line Segment Detector (LSD), as well as those involving superpixel segmentation results with significant levels of interfering noise using the SLIC algorithm, GPGrouper was superior to the existing methods in terms of grouping effect and robustness. Moreover, the results of applying the grouping results to the vision tasks objectness demonstrate that GPGrouper can contribute significantly to high-level visual tasks.
Author Wei, Hui
Li, Jingmeng
Author_xml – sequence: 1
  givenname: Jingmeng
  orcidid: 0000-0001-9108-5211
  surname: Li
  fullname: Li, Jingmeng
  email: jmli17@fudan.edu.cn
  organization: Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, Shanghai, China
– sequence: 2
  givenname: Hui
  orcidid: 0000-0003-2696-0707
  surname: Wei
  fullname: Wei, Hui
  email: weihui@fudan.edu.cn
  organization: Laboratory of Algorithms for Cognitive Models, Innovation Center of Calligraphy and Painting Creation Technology, MCT, School of Computer Science, Fudan University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40279221$$D View this record in MEDLINE/PubMed
BookMark eNpdkcFP2zAUxi1UNEq3OweELHHZJZ2f7cTJcVTQIYHWQ7cdLcd5oUGp3dmJBP897lqmab74HX6f_b3vOycT5x0ScgFsDsCqL-v71Zwzns9FXnCWyxMyhUpCxpjkkzSzXGUKZHVGzmN8ZgxkDsUHciYZVxXnMCXudovhCZ1F-ugb7Klv6QqDxd3QeUd_dcOGLntfmz5beDf4MdBVQIvNH8mNidjQxC0xDqYf6HqDPrxS45qEdVuT5p9dHE1PFz4M-PKRnLamj_jpeM_Ij7vb9eJb9vB9eb_4-pBZwcSQ2VypSgGIpiptXcsayrKxaIErXnPLSyFz1QorCgYGalaYWuxPWWLRigrFjHw-vLsL_veYzOltFy32vXHox6hFiqlKf-Q8odf_oc9pS5fcaZGyhVJJKBJ1daTGeouN3h220-9JJoAdABt8jAHbvwgwvS9Lp7L0vix9LCtJLg-SDhH_wZMxJZl4A5s7jcg
CODEN IIPRE4
Cites_doi 10.1016/B978-0-12-084320-6.50015-3
10.1007/s11263-013-0620-5
10.1007/978-3-642-15555-0_42
10.1037/0096-1523.7.6.1161
10.1109/TPAMI.2010.161
10.1007/s12524-018-0891-y
10.1007/s11263-014-0733-5
10.1080/22797254.2022.2037468
10.1109/CVPR.2010.5539956
10.1038/381607a0
10.1109/TIP.2007.904463
10.1007/s11263-007-0092-6
10.1109/TPAMI.2007.1186
10.5201/ipol.2014.67
10.1080/10106049.2022.2082545
10.1016/S0031-3203(98)00036-3
10.5201/ipol.2018.194
10.1109/TPAMI.2003.1201818
10.1109/JSTARS.2022.3213768
10.1016/j.jvcir.2017.07.003
10.1109/ICCV.2013.231
10.1007/s10851-008-0102-5
10.1145/3450626.3459833
10.1109/TPAMI.2004.1273918
10.32470/CCN.2019.1130-0
10.1109/CVPR.2015.7298795
10.1002/cne.901580305
10.1109/29.1644
10.1145/3459999
10.1609/aaai.v36i4.20379
10.1016/j.visres.2015.08.013
10.1016/j.patcog.2020.107693
10.1016/S0042-6989(00)00277-7
10.1109/CVPR.2017.544
10.1109/ICCV.2007.4408919
10.1038/s41583-023-00756-z
10.1109/CVPR.2011.5995739
10.5244/C.31.12
10.1109/ICCV48922.2021.00507
10.1037/11496-005
10.1007/s11263-009-0287-0
10.1037/0033-295X.94.2.115
10.1126/science.287.5456.1273
10.1037/a0029333
10.1016/j.measurement.2019.107432
10.1109/IROS.2018.8594434
10.1037/a0020248
10.1016/j.cviu.2023.103919
10.1007/978-3-031-72751-1_8
10.1109/ICCV.2019.00887
10.1016/S0042-6989(97)00169-7
10.1016/j.visres.2015.06.007
10.1109/TPAMI.2014.2359888
10.1109/CVPR52688.2022.00146
10.1049/iet-ipr.2018.6248
10.1016/j.neuron.2013.02.013
10.1109/LGRS.2018.2792421
10.1109/TPAMI.1986.4767851
10.32470/CCN.2018.1116-0
10.3758/BF03202991
10.1113/jphysiol.1959.sp006308
10.1007/978-3-319-10602-1_26
10.1016/j.neuron.2007.12.011
10.5244/C.27.128
10.1109/CVPR42600.2020.00817
10.1007/BF00309635
10.1109/TPAMI.2011.231
10.1038/280120a0
10.1523/JNEUROSCI.17-06-02112.1997
10.1007/978-981-13-7430-2_12
10.1109/TPAMI.2012.120
10.1016/j.visres.2015.09.004
10.1109/CVPR.2019.00395
10.1109/CVPR52688.2022.00143
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2025.3562054
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Psychology
EISSN 1941-0042
EndPage 2736
ExternalDocumentID 40279221
10_1109_TIP_2025_3562054
10977740
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSFC
  grantid: 61771146
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c303t-c57797113d98cbb4b188dcec1272b2c283457f3c3601a1b06ab3333388e6f39e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484672500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Fri Oct 03 00:11:02 EDT 2025
Tue Jul 22 22:53:36 EDT 2025
Mon Jul 21 05:47:44 EDT 2025
Sat Nov 29 07:54:37 EST 2025
Wed Aug 27 01:53:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-c57797113d98cbb4b188dcec1272b2c283457f3c3601a1b06ab3333388e6f39e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9108-5211
0000-0003-2696-0707
PMID 40279221
PQID 3202187416
PQPubID 85429
PageCount 16
ParticipantIDs crossref_primary_10_1109_TIP_2025_3562054
ieee_primary_10977740
proquest_journals_3202187416
pubmed_primary_40279221
proquest_miscellaneous_3194977952
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Lawlor (ref44)
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref2
ref1
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Kovesi (ref39) 2024
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref16
  doi: 10.1016/B978-0-12-084320-6.50015-3
– ident: ref49
  doi: 10.1007/s11263-013-0620-5
– ident: ref51
  doi: 10.1007/978-3-642-15555-0_42
– ident: ref17
  doi: 10.1037/0096-1523.7.6.1161
– ident: ref67
  doi: 10.1109/TPAMI.2010.161
– ident: ref26
  doi: 10.1007/s12524-018-0891-y
– ident: ref68
  doi: 10.1007/s11263-014-0733-5
– ident: ref25
  doi: 10.1080/22797254.2022.2037468
– ident: ref12
  doi: 10.1109/CVPR.2010.5539956
– ident: ref55
  doi: 10.1038/381607a0
– ident: ref15
  doi: 10.1109/TIP.2007.904463
– ident: ref45
  doi: 10.1007/s11263-007-0092-6
– ident: ref47
  doi: 10.1109/TPAMI.2007.1186
– ident: ref75
  doi: 10.5201/ipol.2014.67
– ident: ref23
  doi: 10.1080/10106049.2022.2082545
– ident: ref2
  doi: 10.1016/S0031-3203(98)00036-3
– ident: ref42
  doi: 10.5201/ipol.2018.194
– ident: ref46
  doi: 10.1109/TPAMI.2003.1201818
– ident: ref27
  doi: 10.1109/JSTARS.2022.3213768
– ident: ref4
  doi: 10.1016/j.jvcir.2017.07.003
– ident: ref32
  doi: 10.1109/ICCV.2013.231
– ident: ref70
  doi: 10.1007/s10851-008-0102-5
– ident: ref54
  doi: 10.1145/3450626.3459833
– ident: ref31
  doi: 10.1109/TPAMI.2004.1273918
– ident: ref38
  doi: 10.32470/CCN.2019.1130-0
– ident: ref11
  doi: 10.1109/CVPR.2015.7298795
– ident: ref61
  doi: 10.1002/cne.901580305
– ident: ref60
  doi: 10.1109/29.1644
– ident: ref18
  doi: 10.1145/3459999
– ident: ref53
  doi: 10.1609/aaai.v36i4.20379
– ident: ref41
  doi: 10.1016/j.visres.2015.08.013
– ident: ref10
  doi: 10.1016/j.patcog.2020.107693
– ident: ref43
  doi: 10.1016/S0042-6989(00)00277-7
– ident: ref69
  doi: 10.1109/CVPR.2017.544
– ident: ref14
  doi: 10.1109/ICCV.2007.4408919
– ident: ref22
  doi: 10.1038/s41583-023-00756-z
– ident: ref71
  doi: 10.1109/CVPR.2011.5995739
– ident: ref9
  doi: 10.5244/C.31.12
– ident: ref34
  doi: 10.1109/ICCV48922.2021.00507
– ident: ref20
  doi: 10.1037/11496-005
– ident: ref56
  doi: 10.1007/s11263-009-0287-0
– ident: ref1
  doi: 10.1037/0033-295X.94.2.115
– ident: ref57
  doi: 10.1126/science.287.5456.1273
– ident: ref19
  doi: 10.1037/a0029333
– ident: ref29
  doi: 10.1016/j.measurement.2019.107432
– ident: ref72
  doi: 10.1109/IROS.2018.8594434
– ident: ref36
  doi: 10.1037/a0020248
– ident: ref3
  doi: 10.1016/j.cviu.2023.103919
– ident: ref7
  doi: 10.1007/978-3-031-72751-1_8
– ident: ref24
  doi: 10.1109/ICCV.2019.00887
– ident: ref58
  doi: 10.1016/S0042-6989(97)00169-7
– ident: ref74
  doi: 10.1016/j.visres.2015.06.007
– ident: ref5
  doi: 10.1109/TPAMI.2014.2359888
– ident: ref35
  doi: 10.1109/CVPR52688.2022.00146
– ident: ref6
  doi: 10.1049/iet-ipr.2018.6248
– ident: ref63
  doi: 10.1016/j.neuron.2013.02.013
– ident: ref8
  doi: 10.1109/LGRS.2018.2792421
– ident: ref30
  doi: 10.1109/TPAMI.1986.4767851
– ident: ref37
  doi: 10.32470/CCN.2018.1116-0
– ident: ref76
  doi: 10.3758/BF03202991
– ident: ref59
  doi: 10.1113/jphysiol.1959.sp006308
– ident: ref52
  doi: 10.1007/978-3-319-10602-1_26
– ident: ref65
  doi: 10.1016/j.neuron.2007.12.011
– ident: ref13
  doi: 10.5244/C.27.128
– ident: ref28
  doi: 10.1109/CVPR42600.2020.00817
– ident: ref21
  doi: 10.1007/BF00309635
– volume-title: MATLAB and Octave Functions for Computer Vision and Image Processing
  year: 2024
  ident: ref39
– start-page: 1763
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Third-order edge statistics: Contour continuation, curvature, and cortical connections
– ident: ref50
  doi: 10.1109/TPAMI.2011.231
– ident: ref62
  doi: 10.1038/280120a0
– ident: ref64
  doi: 10.1523/JNEUROSCI.17-06-02112.1997
– ident: ref66
  doi: 10.1007/978-981-13-7430-2_12
– ident: ref73
  doi: 10.1109/TPAMI.2012.120
– ident: ref40
  doi: 10.1016/j.visres.2015.09.004
– ident: ref33
  doi: 10.1109/CVPR.2019.00395
– ident: ref48
  doi: 10.1109/CVPR52688.2022.00143
SSID ssj0014516
Score 2.4681356
Snippet Perceptual edge grouping is a technique for organizing the cluttered edge pixels into meaningful structures and further serves high-level vision tasks, which...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2721
SubjectTerms Algorithms
Computational modeling
Computer vision
Error reduction
Gestalt Theory
global precedence effect
Graph theory
Humans
Image edge detection
Image Processing, Computer-Assisted - methods
Image segmentation
Noise
Object detection
Occlusion
Organizations
perceptual edge grouping
Perceptual organization
primary visual cortex
Primary Visual Cortex - diagnostic imaging
Primary Visual Cortex - physiology
Psychology
Segments
Vectors
Visual Cortex - physiology
Visual Perception - physiology
Visual systems
Visual tasks
Visualization
Title Emergence Model of Perception With Global-Contour Precedence Based on Gestalt Theory and Primary Visual Cortex
URI https://ieeexplore.ieee.org/document/10977740
https://www.ncbi.nlm.nih.gov/pubmed/40279221
https://www.proquest.com/docview/3202187416
https://www.proquest.com/docview/3194977952
Volume 34
WOSCitedRecordID wos001484672500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5iCE3lsG4dbB0MeRKXHQJxftk-AmqBC-qBjd6i2H4Rlap0alM0_nuenTSCQw_kFCmW7eQ9533Pz-99AKeu3p1GKwNrpA4SIYtAF2lJK56wdpgh-c3Gk02Iuzs5napJm6zuc2EQ0R8-wzN362P5dmHWbqvs3EVLCa6Qh_5BiKxJ1upCBo5x1oc2UxEIwv2bmGSozu9vJ-QJRulZTNaeMEoPPpLbJFQU8TfmyPOrbIea3uSM---c7Gf41GJLdtEowxfYwWoA_RZnsnYVrwaw_6oI4QB63T_w-StUozYdE5ljSZuzRckm3dkX9jCrH1lDExC4ulY0IpvQPxM9Mym7JJNoGbW7ptcq5jVrMv9ZUVlq5stasL-z1ZomeeUO-f4_gD_j0f3VTdBSMgSGbF0dmFQIJTiPrZJG60RzKa1BwyMR6cgQVklSUcYmJj-v4DrMCh27S0rMylhhfAi71aLC78Di0JYmLBUvozBBqXSWZCYhPBNiwa3OhvB7I5n8XzPF3HssocpJoLkTaN4KdAgHTgCv2jXffgjHG1nm7dpc5Y4x3jERchriV_eYVpULlRQVLtbUhnSUulBpNIRvjQ50nW9U58eWQY-g5-bW7NMcw269XONP2DNP9Wy1PCHVncoTr7ovNdXnbA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VtGqXA5QtLUuhuFIvPQTivGwfW8RLwGoP25ZbFNsTsRLKVmy2Kv-eseON6IFDc4oUy3Yy48w3Hs98AF9cvTuNVkbWSB1lQlaRrvKaVjxh7bhA8puNJ5sQ47G8uVGTkKzuc2EQ0R8-w0N362P5dm6WbqvsyEVLCa6Qh_7SUWeFdK0-aOA4Z31wMxeRIOS_ikrG6mh6MSFfMMkPU7L3hFIG8JocJ6GShP9jkDzDyvNg0xud083_nO5b2Ajokn3r1GELXmAzhM2ANFlYx4shrD8pQziEQf8XfHgHzUlIyETmeNLu2Lxmk_70C_s1a29ZRxQQucpWNCKb0F8TPTcp-05G0TJqd0avVd21rMv9Z1VjqZkvbMF-zhZLmuSxO-b7dxt-nJ5Mj8-jQMoQGbJ2bWRyIZTgPLVKGq0zzaW0Bg1PRKITQ2gly0WdmpQ8vYrruKh06i4psahThel7WGvmDe4AS2Nbm7hWvE7iDKXSRVaYjBBNjBW3uhjB15Vkyt_dFEvvs8SqJIGWTqBlEOgItp0AnrTrvv0I9layLMPqXJSOM95xEXIa4nP_mNaVC5ZUDc6X1Ia0lLpQeTKCD50O9J2vVGf3mUEP4M359PqqvLoYX36EgZtnt2uzB2vt_RL34ZX5084W95-8Aj8C96zpzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+Model+of+Perception+with+Global-contour+Precedence+Based+on+Gestalt+Theory+and+Primary+Visual+Cortex&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li%2C+Jingmeng&rft.au=Wei%2C+Hui&rft.date=2025-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=PP&rft_id=info:doi/10.1109%2FTIP.2025.3562054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon