Task offloading strategy and scheduling optimization for internet of vehicles based on deep reinforcement learning
Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of...
Gespeichert in:
| Veröffentlicht in: | Ad hoc networks Jg. 147; S. 103193 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.08.2023
|
| Schlagworte: | |
| ISSN: | 1570-8705, 1570-8713 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of data. However, the limited computing power of in-vehicle terminals cannot meet the demand. To solve this problem, we first simulate the task offloading model of vehicle terminal in Mobile Edge Computing (MEC) environment. Secondly, according to the model, we design and implement a MEC server collaboration scheme considering both delay and energy consumption. Thirdly, based on the optimization theory, the system optimization solution is formulated with the goal of minimizing system cost. Because the problem to be resolved is a mixed binary nonlinear programming problem, we model the problem as a Markov Decision Process (MDP). The original resource allocation decision is turned into a Reinforcement Learning (RL) problem. In order to achieve the optimal solution, the Deep Reinforcement Learning (DRL) method is used. Finally, we propose a Deep Deterministic Policy Gradient (DDPG) algorithm to deal with task offloading and scheduling optimization in high-dimensional continuous action space, and the experience replay mechanism is used to accelerate the convergence and enhance the stability of the network. The simulation results show that our scheme has good performance optimization in terms of convergence, system delay, average task energy consumption and system cost. For example, compared with the comparison algorithm, the system cost performance has improved by 9.12% under different task sizes, which indicates that our scheme is more suitable for highly dynamic Internet of Vehicles environment. |
|---|---|
| AbstractList | Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of data. However, the limited computing power of in-vehicle terminals cannot meet the demand. To solve this problem, we first simulate the task offloading model of vehicle terminal in Mobile Edge Computing (MEC) environment. Secondly, according to the model, we design and implement a MEC server collaboration scheme considering both delay and energy consumption. Thirdly, based on the optimization theory, the system optimization solution is formulated with the goal of minimizing system cost. Because the problem to be resolved is a mixed binary nonlinear programming problem, we model the problem as a Markov Decision Process (MDP). The original resource allocation decision is turned into a Reinforcement Learning (RL) problem. In order to achieve the optimal solution, the Deep Reinforcement Learning (DRL) method is used. Finally, we propose a Deep Deterministic Policy Gradient (DDPG) algorithm to deal with task offloading and scheduling optimization in high-dimensional continuous action space, and the experience replay mechanism is used to accelerate the convergence and enhance the stability of the network. The simulation results show that our scheme has good performance optimization in terms of convergence, system delay, average task energy consumption and system cost. For example, compared with the comparison algorithm, the system cost performance has improved by 9.12% under different task sizes, which indicates that our scheme is more suitable for highly dynamic Internet of Vehicles environment. |
| ArticleNumber | 103193 |
| Author | Liu, Mingzhen Zhao, Xu Li, Maozhen |
| Author_xml | – sequence: 1 givenname: Xu orcidid: 0000-0002-2351-8019 surname: Zhao fullname: Zhao, Xu email: zhaoxu@xpu.edu.cn organization: School of Electronic and Information, Xi'an Polytechnic University, Xi'an 710048, China – sequence: 2 givenname: Mingzhen surname: Liu fullname: Liu, Mingzhen organization: School of Computer Science, Xi'an Polytechnic University, Xi'an 710048, China – sequence: 3 givenname: Maozhen surname: Li fullname: Li, Maozhen organization: Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, United Kingdom |
| BookMark | eNqFkMtKQzEQhoNUsK0-gZu8QGsuPZcsXEjxBoKbug45yaRNPU1KEgv16U1bceFCVzMM8_3wfyM08MEDQteUTCmh9c16qswq6CkjjJcLp4KfoSGtGjJpG8oHPzupLtAopTUhTDBChyguVHrHwdo-KOP8EqccVYblHitvcNIrMB_94R622W3cp8oueGxDxM5niB5ygfEOVk73kHCnEhhcPgzAFkdwvrxq2IDPuAcVfYm6ROdW9QmuvucYvT3cL-ZPk5fXx-f53ctEc8LzRM-EILRjtFIzJoTgxDZtZ0RdNy0XlNWMdFqZrkxbtYJBI6xSFekU1YaD4WPET7k6hpQiWLmNbqPiXlIiD9rkWh61yYM2edJWKPGL0i4fWxcxrv-HvT2xUGrtHESZtAOvwbgIOksT3J_8F6Y4jiM |
| CitedBy_id | crossref_primary_10_1016_j_comnet_2024_110282 crossref_primary_10_1051_bioconf_20248601102 crossref_primary_10_1016_j_adhoc_2024_103435 crossref_primary_10_1051_bioconf_20248601101 crossref_primary_10_1007_s10723_025_09800_x crossref_primary_10_1016_j_adhoc_2025_103887 crossref_primary_10_1109_TCE_2023_3339468 crossref_primary_10_1016_j_swevo_2025_101878 crossref_primary_10_3390_computers12080162 crossref_primary_10_3390_electronics13152982 crossref_primary_10_1016_j_jnca_2024_103941 crossref_primary_10_1057_s41278_025_00327_2 |
| Cites_doi | 10.1109/TVT.2016.2643665 10.1109/TITS.2019.2934991 10.1109/JIOT.2021.3058363 10.1109/JIOT.2018.2876279 10.1098/rspa.2019.0439 10.1109/TVT.2020.3029561 10.1109/TNET.2019.2916577 10.1109/TVT.2019.2894437 10.1186/s13638-020-01848-5 10.1007/s11277-014-2102-7 10.1109/TMC.2020.3036871 10.1109/TVT.2018.2876388 10.1109/TII.2018.2810291 10.1109/TVT.2019.2935450 10.1038/nature14236 10.1109/TNET.2015.2487344 10.1016/j.future.2019.07.019 10.1016/j.jpdc.2018.06.008 10.1016/j.adhoc.2021.102639 10.1109/TNSM.2022.3191748 10.1007/s12083-021-01141-2 10.1109/JSAC.2019.2906789 10.1109/TVT.2019.2895593 10.1016/j.scs.2018.01.053 10.1109/TSMCC.2012.2218595 10.1016/j.jnca.2019.102518 10.1109/MNET.2019.1900120 10.1109/JIOT.2018.2869750 10.1016/j.automatica.2009.07.008 10.1109/TCCN.2020.3003036 10.1109/COMST.2018.2888904 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.adhoc.2023.103193 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1570-8713 |
| ExternalDocumentID | 10_1016_j_adhoc_2023_103193 S1570870523001130 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS EJD HZ~ UHS ~HD |
| ID | FETCH-LOGICAL-c303t-c49901b215a4299930f78bd966783912620bcadb620f5892e79faa50ba1cd3ed3 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005957400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-8705 |
| IngestDate | Tue Nov 18 20:40:15 EST 2025 Sat Nov 29 07:03:56 EST 2025 Fri Feb 23 02:38:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep reinforcement learning Internet of vehicles Mobile edge computing Scheduling optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-c49901b215a4299930f78bd966783912620bcadb620f5892e79faa50ba1cd3ed3 |
| ORCID | 0000-0002-2351-8019 |
| ParticipantIDs | crossref_primary_10_1016_j_adhoc_2023_103193 crossref_citationtrail_10_1016_j_adhoc_2023_103193 elsevier_sciencedirect_doi_10_1016_j_adhoc_2023_103193 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ad hoc networks |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Waheed (bib0032) 2022; 99 Ertam, Aydin (bib0040) 2017 Wang, Runhua, et al. "Joint computation offloading and resource allocation in vehicular edge computing based on an economic theory: walrasian equilibrium." (2021). Chen, Zhang, Wu, Mao, Ji, Bennis (bib0028) 2018; 6 Othman, Madani, Khan (bib0012) 2013; 16 Lu, Gu, Luo, Ding, Liu (bib0026) 2020; 102 Wang, Zhao, Xu, Yuan, Hsu (bib0010) 2019; 127 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib0038) 2015; 518 Xia, Wu, Wang, Zheng, Jin (bib0024) 2020; 69 Wang, Urgaonkar, Zafer, He, Chan, Leung (bib0025) 2019; 27 Li, Gao, Zhao, Shen (bib0006) 2020; 6 Hou, Wen, Zhang, Wu, Lei, Zhao (bib0020) May 2021 Cao, Yang, Cao (bib0021) 2018; 6 Somesula, Mothku, Kotte (bib0029) 2023; 29 Li, Assis, Yan, Simeonidou (bib0027) 2022; 19 Silva, Khan, Han (bib0001) 2018; 38 Zeng (bib0014) 2020; 99 Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (bib0037) 2015 Gao, Li, Zhao, Shen (bib0015) 2018; 67 Feng, Liu, Pei, Hou, Yang, Wu (bib0022) June 2021; 8 Tang, Wong (bib0031) 2022; 21 Yaqoob, Khan, Kazmi, Imran, Guizani, Hong (bib0005) 2019; 34 Li, Tang, Ma, Yang, Luo (bib0013) 2020; 152 Grondman, Busoniu, Lopes, Babuska (bib0036) 2012; 42 Tian, Deng, Chen (bib0041) 2021; 123 Wang, Liu, Kato (bib0007) 2018; 21 Sun, Guo, Song, Zhou, Jiang, Liu, Niu (bib0023) 2019; 68 Qi, Wang, Ma, Sun, Cao, Zhang, Liao (bib0030) 2019; 68 Chen, Liang, Dong (bib0033) 2016 Long, Luo, Zhu, Luo, Huang (bib0018) 2020; 2020 Mao (bib0017) 2020; 99 Li, Deng, Cai, Yao (bib0002) 2018; 14 Bhatnagar, Sutton, Ghavamzadeh, Lee (bib0039) 2009; 45 Zhu, Lv, Chen, Wang, Xiong, Wang (bib0004) 2019; 21 Cheng, Lyu, Quan, Zhou, He, Shi, Shen (bib0019) 2019; 37 Chen, Jiao, Li, Fu (bib0008) 2015; 24 Liu, Yu, Xie, Zhang (bib0034) 2019; 68 Toh, Sanguesa, Cano, Martinez (bib0003) 2020; 476 Wang, Chen, Wang (bib0009) 2015; 80 Lim, Lee (bib0011) 2020; 9 Wu, Yoshinaga, Ji, Murase, Zhang (bib0035) 2016; 66 Chen (10.1016/j.adhoc.2023.103193_bib0028) 2018; 6 Yaqoob (10.1016/j.adhoc.2023.103193_bib0005) 2019; 34 Zhu (10.1016/j.adhoc.2023.103193_bib0004) 2019; 21 Sun (10.1016/j.adhoc.2023.103193_bib0023) 2019; 68 Grondman (10.1016/j.adhoc.2023.103193_bib0036) 2012; 42 Somesula (10.1016/j.adhoc.2023.103193_bib0029) 2023; 29 Li (10.1016/j.adhoc.2023.103193_bib0002) 2018; 14 Wang (10.1016/j.adhoc.2023.103193_bib0025) 2019; 27 Wang (10.1016/j.adhoc.2023.103193_bib0009) 2015; 80 Ertam (10.1016/j.adhoc.2023.103193_bib0040) 2017 Tang (10.1016/j.adhoc.2023.103193_bib0031) 2022; 21 Zeng (10.1016/j.adhoc.2023.103193_bib0014) 2020; 99 Toh (10.1016/j.adhoc.2023.103193_bib0003) 2020; 476 Othman (10.1016/j.adhoc.2023.103193_bib0012) 2013; 16 Lillicrap (10.1016/j.adhoc.2023.103193_bib0037) 2015 Li (10.1016/j.adhoc.2023.103193_bib0006) 2020; 6 Cao (10.1016/j.adhoc.2023.103193_bib0021) 2018; 6 Silva (10.1016/j.adhoc.2023.103193_bib0001) 2018; 38 Gao (10.1016/j.adhoc.2023.103193_bib0015) 2018; 67 Feng (10.1016/j.adhoc.2023.103193_bib0022) 2021; 8 Hou (10.1016/j.adhoc.2023.103193_bib0020) 2021 10.1016/j.adhoc.2023.103193_bib0016 Lu (10.1016/j.adhoc.2023.103193_bib0026) 2020; 102 Qi (10.1016/j.adhoc.2023.103193_bib0030) 2019; 68 Wu (10.1016/j.adhoc.2023.103193_bib0035) 2016; 66 Long (10.1016/j.adhoc.2023.103193_bib0018) 2020; 2020 Bhatnagar (10.1016/j.adhoc.2023.103193_bib0039) 2009; 45 Wang (10.1016/j.adhoc.2023.103193_bib0010) 2019; 127 Liu (10.1016/j.adhoc.2023.103193_bib0034) 2019; 68 Cheng (10.1016/j.adhoc.2023.103193_bib0019) 2019; 37 Xia (10.1016/j.adhoc.2023.103193_bib0024) 2020; 69 Tian (10.1016/j.adhoc.2023.103193_bib0041) 2021; 123 Chen (10.1016/j.adhoc.2023.103193_bib0008) 2015; 24 Lim (10.1016/j.adhoc.2023.103193_bib0011) 2020; 9 Mao (10.1016/j.adhoc.2023.103193_bib0017) 2020; 99 Li (10.1016/j.adhoc.2023.103193_bib0027) 2022; 19 Mnih (10.1016/j.adhoc.2023.103193_bib0038) 2015; 518 Chen (10.1016/j.adhoc.2023.103193_bib0033) 2016 Li (10.1016/j.adhoc.2023.103193_bib0013) 2020; 152 Wang (10.1016/j.adhoc.2023.103193_bib0007) 2018; 21 Waheed (10.1016/j.adhoc.2023.103193_bib0032) 2022; 99 |
| References_xml | – volume: 37 start-page: 1117 year: 2019 end-page: 1129 ident: bib0019 article-title: Space/aerial-assisted computing offloading for iot applications: a learning-based approach publication-title: IEEE J. Sel. Areas Commun. – reference: Wang, Runhua, et al. "Joint computation offloading and resource allocation in vehicular edge computing based on an economic theory: walrasian equilibrium." (2021). – volume: 19 start-page: 4151 year: 2022 end-page: 4164 ident: bib0027 article-title: DRL-Based Long-Term Resource Planning for Task Offloading Policies in Multiserver Edge Computing Networks publication-title: IEEE Trans. Netw. Serv. Manage. – volume: 476 year: 2020 ident: bib0003 article-title: Advances in smart roads for future smart cities publication-title: Proc. R. Soc. A. – volume: 6 start-page: 4005 year: 2018 end-page: 4018 ident: bib0028 article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning publication-title: IEEE Internet Things J. – volume: 21 start-page: 1243 year: 2018 end-page: 1274 ident: bib0007 article-title: Networking and communications in autonomous driving: a survey publication-title: IEEE Commun. Surv. Tutor. – year: 2015 ident: bib0037 article-title: arXiv preprint – volume: 45 start-page: 2471 year: 2009 end-page: 2482 ident: bib0039 article-title: Natural actor–critic algorithms publication-title: Automatica – volume: 68 start-page: 3061 year: 2019 end-page: 3074 ident: bib0023 article-title: Adaptive learning-based task offloading for vehicular edge computing systems publication-title: IEEE Trans. Veh. Technol. – year: May 2021 ident: bib0020 article-title: Incentive-Driven Task Allocation for Collaborative Edge Computing in Industrial Internet of Things publication-title: IEEE Internet Things J. – volume: 6 start-page: 2427 year: 2018 end-page: 2438 ident: bib0021 article-title: Revisiting computation partitioning in future 5 G-based edge computing environments publication-title: IEEE Internet Things J. – volume: 42 start-page: 1291 year: 2012 end-page: 1307 ident: bib0036 article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients publication-title: IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.) – start-page: 1 year: 2016 end-page: 6 ident: bib0033 article-title: Joint offloading decision and resource allocation for multi-user multi-task mobile cloud publication-title: 2016 IEEE International Conference on Communications (ICC) – volume: 38 start-page: 697 year: 2018 end-page: 713 ident: bib0001 article-title: Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities publication-title: Sustain. Cities Soc. – volume: 99 start-page: 1 year: 2020 end-page: 11 ident: bib0014 article-title: Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing publication-title: IEEE Trans. Intellig. Transport. Syst. PP – volume: 69 start-page: 12 year: 2020 ident: bib0024 article-title: Cluster-enabled cooperative scheduling based on reinforcement learning for high-mobility vehicular networks publication-title: IEEE Trans. Veh. Technol. – volume: 14 start-page: 3253 year: 2018 end-page: 3260 ident: bib0002 article-title: Notice of retraction: intelligent transportation system in macao based on deep self-coding learning publication-title: IEEE Trans. Ind. Inf. – volume: 68 start-page: 4192 year: 2019 end-page: 4203 ident: bib0030 article-title: Knowledge-driven service offloading decision for vehicular edge computing: a deep reinforcement learning approach publication-title: IEEE Trans. Veh. Technol. – volume: 21 start-page: 4063 year: 2019 end-page: 4071 ident: bib0004 article-title: Parallel transportation systems: toward iot-enabled smart urban traffic control and management publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 102 start-page: 847 year: 2020 end-page: 861 ident: bib0026 article-title: Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning publication-title: Future Generat. Comp. Syst. – volume: 6 start-page: 1122 year: 2020 end-page: 1135 ident: bib0006 article-title: Deep reinforcement learning for collaborative edge computing in vehicular networks publication-title: IEEE Trans. Cogn. Commun. Netw. – volume: 99 start-page: 1 year: 2020 end-page: 12 ident: bib0017 article-title: Energy-Efficient Cooperative Communication and Computation for Wireless Powered Mobile-Edge Computing publication-title: IEEE Syst. J. PP – volume: 2020 start-page: 1 year: 2020 end-page: 21 ident: bib0018 article-title: Computation offloading through mobile vehicles in iot-edge-cloud network publication-title: EURASIP J. Wirel. Commun. Netw. – volume: 16 start-page: 393 year: 2013 end-page: 413 ident: bib0012 article-title: A survey of mobile cloud computing application models publication-title: IEEE Commun. Surv. Tutor. – volume: 29 start-page: 569 year: 2023 end-page: 588 ident: bib0029 article-title: Deep reinforcement learning mechanism for deadline-aware cache placement in device-to-device mobile edge networks publication-title: Proc. 8th Int. Conf. Transparent Opt. Networks, 5th Eur. Symp. Photonic Cryst., 5th Workshop All-Opt. Routing, 3rd Global Opt. Wireless Networking Semin., 2nd COST 270 Workshop Reliab. Issues Next Gener. Opt. Networks, 2nd Photonic Integr. Compon. Appl. Workshop – start-page: 755 year: 2017 end-page: 758 ident: bib0040 article-title: Data classification with deep learning using Tensorflow publication-title: 2017 International Conference on Computer Science and Engineering (UBMK) – volume: 24 start-page: 2795 year: 2015 end-page: 2808 ident: bib0008 article-title: Efficient multi-user computation offloading for mobile-edge cloud computing publication-title: IEEE/ACM Trans. Network. – volume: 152 year: 2020 ident: bib0013 article-title: Load balance based workflow job scheduling algorithm in distributed cloud publication-title: J. Netw. Comput. Appl. – volume: 99 start-page: 1 year: 2022 ident: bib0032 article-title: A Comprehensive Review of Computing Paradigms, Enabling Computation Offloading and Task Execution in Vehicular Networks publication-title: IEEE Access PP – volume: 123 year: 2021 ident: bib0041 article-title: A dynamic task offloading algorithm based on greedy matching in vehicle network[J] publication-title: Ad Hoc Netw. – volume: 127 start-page: 160 year: 2019 end-page: 168 ident: bib0010 article-title: Edge server placement in mobile edge computing publication-title: J. Parallel Distrib. Comput. – volume: 80 start-page: 1607 year: 2015 end-page: 1623 ident: bib0009 article-title: A survey of mobile cloud computing applications: perspectives and challenges publication-title: Wireless Person. Commun. – volume: 8 start-page: 9407 year: June 2021 end-page: 9421 ident: bib0022 article-title: Service Characteristics-Oriented Joint Optimization of Radio and Computing Resource Allocation in Mobile Edge Computing publication-title: IEEE Internet Things J. – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: bib0038 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 27 start-page: 1272 year: 2019 end-page: 1288 ident: bib0025 article-title: Dynamic service migration in mobile edge computing based on Markov decision process publication-title: IEEE/ACM Trans. Network. – volume: 9 start-page: 686 year: 2020 ident: bib0011 article-title: A load balancing algorithm for mobile devices in edge cloud computing environments publication-title: Electronics (Basel) – volume: 21 start-page: 1985 year: 2022 end-page: 1997 ident: bib0031 article-title: Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems publication-title: IEEE Trans. Mob. Comput. – volume: 66 start-page: 6336 year: 2016 end-page: 6348 ident: bib0035 article-title: A reinforcement learning-based data storage scheme for vehicular ad hoc networks publication-title: IEEE Trans. Veh. Technol. – volume: 67 year: 2018 ident: bib0015 article-title: Contention intensity based distributed coordination for v2v safety message broadcast publication-title: IEEE Trans. Veh. Technol. – volume: 68 start-page: 11 year: 2019 ident: bib0034 article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks publication-title: IEEE Trans. Veh. Technol. – volume: 34 start-page: 174 year: 2019 end-page: 181 ident: bib0005 article-title: Autonomous driving cars in smart cities: recent advances, requirements, and challenges publication-title: IEEE Netw. – year: 2015 ident: 10.1016/j.adhoc.2023.103193_bib0037 – volume: 66 start-page: 6336 issue: 7 year: 2016 ident: 10.1016/j.adhoc.2023.103193_bib0035 article-title: A reinforcement learning-based data storage scheme for vehicular ad hoc networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2643665 – volume: 21 start-page: 4063 issue: 10 year: 2019 ident: 10.1016/j.adhoc.2023.103193_bib0004 article-title: Parallel transportation systems: toward iot-enabled smart urban traffic control and management publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2934991 – volume: 8 start-page: 9407 issue: 11 year: 2021 ident: 10.1016/j.adhoc.2023.103193_bib0022 article-title: Service Characteristics-Oriented Joint Optimization of Radio and Computing Resource Allocation in Mobile Edge Computing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3058363 – volume: 6 start-page: 4005 issue: 3 year: 2018 ident: 10.1016/j.adhoc.2023.103193_bib0028 article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2876279 – volume: 476 issue: 2233 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0003 article-title: Advances in smart roads for future smart cities publication-title: Proc. R. Soc. A. doi: 10.1098/rspa.2019.0439 – volume: 69 start-page: 12 issue: 11 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0024 article-title: Cluster-enabled cooperative scheduling based on reinforcement learning for high-mobility vehicular networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3029561 – volume: 27 start-page: 1272 issue: 3 year: 2019 ident: 10.1016/j.adhoc.2023.103193_bib0025 article-title: Dynamic service migration in mobile edge computing based on Markov decision process publication-title: IEEE/ACM Trans. Network. doi: 10.1109/TNET.2019.2916577 – volume: 68 start-page: 4192 issue: 5 year: 2019 ident: 10.1016/j.adhoc.2023.103193_bib0030 article-title: Knowledge-driven service offloading decision for vehicular edge computing: a deep reinforcement learning approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2894437 – volume: 2020 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0018 article-title: Computation offloading through mobile vehicles in iot-edge-cloud network publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-020-01848-5 – volume: 80 start-page: 1607 issue: 4 year: 2015 ident: 10.1016/j.adhoc.2023.103193_bib0009 article-title: A survey of mobile cloud computing applications: perspectives and challenges publication-title: Wireless Person. Commun. doi: 10.1007/s11277-014-2102-7 – volume: 29 start-page: 569 issue: 2 year: 2023 ident: 10.1016/j.adhoc.2023.103193_bib0029 article-title: Deep reinforcement learning mechanism for deadline-aware cache placement in device-to-device mobile edge networks – volume: 21 start-page: 1985 issue: 6 year: 2022 ident: 10.1016/j.adhoc.2023.103193_bib0031 article-title: Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2020.3036871 – volume: 67 issue: 12 year: 2018 ident: 10.1016/j.adhoc.2023.103193_bib0015 article-title: Contention intensity based distributed coordination for v2v safety message broadcast publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2876388 – volume: 14 start-page: 3253 issue: 7 year: 2018 ident: 10.1016/j.adhoc.2023.103193_bib0002 article-title: Notice of retraction: intelligent transportation system in macao based on deep self-coding learning publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2810291 – volume: 68 start-page: 11 issue: 11 year: 2019 ident: 10.1016/j.adhoc.2023.103193_bib0034 article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2935450 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.adhoc.2023.103193_bib0038 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 24 start-page: 2795 issue: 5 year: 2015 ident: 10.1016/j.adhoc.2023.103193_bib0008 article-title: Efficient multi-user computation offloading for mobile-edge cloud computing publication-title: IEEE/ACM Trans. Network. doi: 10.1109/TNET.2015.2487344 – volume: 102 start-page: 847 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0026 article-title: Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning publication-title: Future Generat. Comp. Syst. doi: 10.1016/j.future.2019.07.019 – volume: 16 start-page: 393 issue: 1 year: 2013 ident: 10.1016/j.adhoc.2023.103193_bib0012 article-title: A survey of mobile cloud computing application models publication-title: IEEE Commun. Surv. Tutor. – start-page: 1 year: 2016 ident: 10.1016/j.adhoc.2023.103193_bib0033 article-title: Joint offloading decision and resource allocation for multi-user multi-task mobile cloud – volume: 9 start-page: 686 issue: 4 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0011 article-title: A load balancing algorithm for mobile devices in edge cloud computing environments publication-title: Electronics (Basel) – volume: 99 start-page: 1 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0014 article-title: Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing publication-title: IEEE Trans. Intellig. Transport. Syst. PP – year: 2021 ident: 10.1016/j.adhoc.2023.103193_bib0020 article-title: Incentive-Driven Task Allocation for Collaborative Edge Computing in Industrial Internet of Things publication-title: IEEE Internet Things J. – start-page: 755 year: 2017 ident: 10.1016/j.adhoc.2023.103193_bib0040 article-title: Data classification with deep learning using Tensorflow – volume: 127 start-page: 160 year: 2019 ident: 10.1016/j.adhoc.2023.103193_bib0010 article-title: Edge server placement in mobile edge computing publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2018.06.008 – volume: 123 year: 2021 ident: 10.1016/j.adhoc.2023.103193_bib0041 article-title: A dynamic task offloading algorithm based on greedy matching in vehicle network[J] publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2021.102639 – volume: 19 start-page: 4151 issue: 4 year: 2022 ident: 10.1016/j.adhoc.2023.103193_bib0027 article-title: DRL-Based Long-Term Resource Planning for Task Offloading Policies in Multiserver Edge Computing Networks publication-title: IEEE Trans. Netw. Serv. Manage. doi: 10.1109/TNSM.2022.3191748 – ident: 10.1016/j.adhoc.2023.103193_bib0016 doi: 10.1007/s12083-021-01141-2 – volume: 37 start-page: 1117 issue: 5 year: 2019 ident: 10.1016/j.adhoc.2023.103193_bib0019 article-title: Space/aerial-assisted computing offloading for iot applications: a learning-based approach publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2019.2906789 – volume: 68 start-page: 3061 issue: 4 year: 2019 ident: 10.1016/j.adhoc.2023.103193_bib0023 article-title: Adaptive learning-based task offloading for vehicular edge computing systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2895593 – volume: 38 start-page: 697 year: 2018 ident: 10.1016/j.adhoc.2023.103193_bib0001 article-title: Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.01.053 – volume: 42 start-page: 1291 issue: 6 year: 2012 ident: 10.1016/j.adhoc.2023.103193_bib0036 article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients publication-title: IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2012.2218595 – volume: 152 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0013 article-title: Load balance based workflow job scheduling algorithm in distributed cloud publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2019.102518 – volume: 99 start-page: 1 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0017 article-title: Energy-Efficient Cooperative Communication and Computation for Wireless Powered Mobile-Edge Computing publication-title: IEEE Syst. J. PP – volume: 34 start-page: 174 issue: 1 year: 2019 ident: 10.1016/j.adhoc.2023.103193_bib0005 article-title: Autonomous driving cars in smart cities: recent advances, requirements, and challenges publication-title: IEEE Netw. doi: 10.1109/MNET.2019.1900120 – volume: 6 start-page: 2427 issue: 2 year: 2018 ident: 10.1016/j.adhoc.2023.103193_bib0021 article-title: Revisiting computation partitioning in future 5 G-based edge computing environments publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2869750 – volume: 45 start-page: 2471 issue: 11 year: 2009 ident: 10.1016/j.adhoc.2023.103193_bib0039 article-title: Natural actor–critic algorithms publication-title: Automatica doi: 10.1016/j.automatica.2009.07.008 – volume: 99 start-page: 1 year: 2022 ident: 10.1016/j.adhoc.2023.103193_bib0032 article-title: A Comprehensive Review of Computing Paradigms, Enabling Computation Offloading and Task Execution in Vehicular Networks publication-title: IEEE Access PP – volume: 6 start-page: 1122 issue: 4 year: 2020 ident: 10.1016/j.adhoc.2023.103193_bib0006 article-title: Deep reinforcement learning for collaborative edge computing in vehicular networks publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2020.3003036 – volume: 21 start-page: 1243 issue: 2 year: 2018 ident: 10.1016/j.adhoc.2023.103193_bib0007 article-title: Networking and communications in autonomous driving: a survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2888904 |
| SSID | ssj0029201 |
| Score | 2.4405797 |
| Snippet | Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103193 |
| SubjectTerms | Deep reinforcement learning Internet of vehicles Mobile edge computing Scheduling optimization |
| Title | Task offloading strategy and scheduling optimization for internet of vehicles based on deep reinforcement learning |
| URI | https://dx.doi.org/10.1016/j.adhoc.2023.103193 |
| Volume | 147 |
| WOSCitedRecordID | wos001005957400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1570-8713 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029201 issn: 1570-8705 databaseCode: AIEXJ dateStart: 20030701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgM9oPISLRTtgZtx5Ve6u8cIFQFCFRJFiriYfTapgh2lSVT113f25RiCKkDi4lgrr9fZ-Tyenf1mBqHXlWaVlpSnJ4QXKZyaVJSFSGVFdKkrQzJjXLEJcnZGx2P2eTD4HmNh1jPSNPT6ms3_q6ihDYRtQ2f_QtzdTaEBzkHocASxw_HPBM8dWdzMWkePT658_lmfZwnWsvBtcSHoLSiLHyEK05ENp845qB01YK0nji-X2K-csjsKSut5stAu0ap0PsVYceKib-COVDJpZdJ4dnlnsH-bcOeTHa86BtB05Wn7zcXNZBOP9mnqI4jarjG4JIqyI8QFP9lWrIxXrSQD3Zv5PWzdb_PRqJ0-9ik4t3S7dzNcHnMF_-PYjmszBuS-wOIvSbO_2DvbwWCFBRqszO6h3YIMGaju3dGH0_HHblHOiszn1A1PFzNTOQ7g1lC_t156Fsn5PnoYlhJ45CHwCA108xjt9RJMPkELCwa8AQOOYMAABrwBA-6DAYOEcQQDdMYRDNiBAcMVFgz4JzDgCIan6Ou70_O379NQZSOVYL4s4a20W6MCTD9ubRNWZoZQoWAZTMB4zm3BAiG5EvBrhpQVmjDD-TATPJeq1Kp8hnaattHPEaZCFIYr5oooZKygesizXFU6N4yWVB6gIs5eLUMKelsJZVZHruFl7aa8tlNe-yk_QG-6TnOfgeXuy0-iWOpgRHrjsAYc3dXx8F87vkAPNi_BS7SzXKz0Ebov18vp1eJVwNstduGamg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+offloading+strategy+and+scheduling+optimization+for+internet+of+vehicles+based+on+deep+reinforcement+learning&rft.jtitle=Ad+hoc+networks&rft.au=Zhao%2C+Xu&rft.au=Liu%2C+Mingzhen&rft.au=Li%2C+Maozhen&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1570-8705&rft.eissn=1570-8713&rft.volume=147&rft_id=info:doi/10.1016%2Fj.adhoc.2023.103193&rft.externalDocID=S1570870523001130 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon |