Task offloading strategy and scheduling optimization for internet of vehicles based on deep reinforcement learning

Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ad hoc networks Jg. 147; S. 103193
Hauptverfasser: Zhao, Xu, Liu, Mingzhen, Li, Maozhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.08.2023
Schlagworte:
ISSN:1570-8705, 1570-8713
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of data. However, the limited computing power of in-vehicle terminals cannot meet the demand. To solve this problem, we first simulate the task offloading model of vehicle terminal in Mobile Edge Computing (MEC) environment. Secondly, according to the model, we design and implement a MEC server collaboration scheme considering both delay and energy consumption. Thirdly, based on the optimization theory, the system optimization solution is formulated with the goal of minimizing system cost. Because the problem to be resolved is a mixed binary nonlinear programming problem, we model the problem as a Markov Decision Process (MDP). The original resource allocation decision is turned into a Reinforcement Learning (RL) problem. In order to achieve the optimal solution, the Deep Reinforcement Learning (DRL) method is used. Finally, we propose a Deep Deterministic Policy Gradient (DDPG) algorithm to deal with task offloading and scheduling optimization in high-dimensional continuous action space, and the experience replay mechanism is used to accelerate the convergence and enhance the stability of the network. The simulation results show that our scheme has good performance optimization in terms of convergence, system delay, average task energy consumption and system cost. For example, compared with the comparison algorithm, the system cost performance has improved by 9.12% under different task sizes, which indicates that our scheme is more suitable for highly dynamic Internet of Vehicles environment.
AbstractList Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of data. However, the limited computing power of in-vehicle terminals cannot meet the demand. To solve this problem, we first simulate the task offloading model of vehicle terminal in Mobile Edge Computing (MEC) environment. Secondly, according to the model, we design and implement a MEC server collaboration scheme considering both delay and energy consumption. Thirdly, based on the optimization theory, the system optimization solution is formulated with the goal of minimizing system cost. Because the problem to be resolved is a mixed binary nonlinear programming problem, we model the problem as a Markov Decision Process (MDP). The original resource allocation decision is turned into a Reinforcement Learning (RL) problem. In order to achieve the optimal solution, the Deep Reinforcement Learning (DRL) method is used. Finally, we propose a Deep Deterministic Policy Gradient (DDPG) algorithm to deal with task offloading and scheduling optimization in high-dimensional continuous action space, and the experience replay mechanism is used to accelerate the convergence and enhance the stability of the network. The simulation results show that our scheme has good performance optimization in terms of convergence, system delay, average task energy consumption and system cost. For example, compared with the comparison algorithm, the system cost performance has improved by 9.12% under different task sizes, which indicates that our scheme is more suitable for highly dynamic Internet of Vehicles environment.
ArticleNumber 103193
Author Liu, Mingzhen
Zhao, Xu
Li, Maozhen
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0002-2351-8019
  surname: Zhao
  fullname: Zhao, Xu
  email: zhaoxu@xpu.edu.cn
  organization: School of Electronic and Information, Xi'an Polytechnic University, Xi'an 710048, China
– sequence: 2
  givenname: Mingzhen
  surname: Liu
  fullname: Liu, Mingzhen
  organization: School of Computer Science, Xi'an Polytechnic University, Xi'an 710048, China
– sequence: 3
  givenname: Maozhen
  surname: Li
  fullname: Li, Maozhen
  organization: Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, United Kingdom
BookMark eNqFkMtKQzEQhoNUsK0-gZu8QGsuPZcsXEjxBoKbug45yaRNPU1KEgv16U1bceFCVzMM8_3wfyM08MEDQteUTCmh9c16qswq6CkjjJcLp4KfoSGtGjJpG8oHPzupLtAopTUhTDBChyguVHrHwdo-KOP8EqccVYblHitvcNIrMB_94R622W3cp8oueGxDxM5niB5ygfEOVk73kHCnEhhcPgzAFkdwvrxq2IDPuAcVfYm6ROdW9QmuvucYvT3cL-ZPk5fXx-f53ctEc8LzRM-EILRjtFIzJoTgxDZtZ0RdNy0XlNWMdFqZrkxbtYJBI6xSFekU1YaD4WPET7k6hpQiWLmNbqPiXlIiD9rkWh61yYM2edJWKPGL0i4fWxcxrv-HvT2xUGrtHESZtAOvwbgIOksT3J_8F6Y4jiM
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110282
crossref_primary_10_1051_bioconf_20248601102
crossref_primary_10_1016_j_adhoc_2024_103435
crossref_primary_10_1051_bioconf_20248601101
crossref_primary_10_1007_s10723_025_09800_x
crossref_primary_10_1016_j_adhoc_2025_103887
crossref_primary_10_1109_TCE_2023_3339468
crossref_primary_10_1016_j_swevo_2025_101878
crossref_primary_10_3390_computers12080162
crossref_primary_10_3390_electronics13152982
crossref_primary_10_1016_j_jnca_2024_103941
crossref_primary_10_1057_s41278_025_00327_2
Cites_doi 10.1109/TVT.2016.2643665
10.1109/TITS.2019.2934991
10.1109/JIOT.2021.3058363
10.1109/JIOT.2018.2876279
10.1098/rspa.2019.0439
10.1109/TVT.2020.3029561
10.1109/TNET.2019.2916577
10.1109/TVT.2019.2894437
10.1186/s13638-020-01848-5
10.1007/s11277-014-2102-7
10.1109/TMC.2020.3036871
10.1109/TVT.2018.2876388
10.1109/TII.2018.2810291
10.1109/TVT.2019.2935450
10.1038/nature14236
10.1109/TNET.2015.2487344
10.1016/j.future.2019.07.019
10.1016/j.jpdc.2018.06.008
10.1016/j.adhoc.2021.102639
10.1109/TNSM.2022.3191748
10.1007/s12083-021-01141-2
10.1109/JSAC.2019.2906789
10.1109/TVT.2019.2895593
10.1016/j.scs.2018.01.053
10.1109/TSMCC.2012.2218595
10.1016/j.jnca.2019.102518
10.1109/MNET.2019.1900120
10.1109/JIOT.2018.2869750
10.1016/j.automatica.2009.07.008
10.1109/TCCN.2020.3003036
10.1109/COMST.2018.2888904
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.adhoc.2023.103193
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1570-8713
ExternalDocumentID 10_1016_j_adhoc_2023_103193
S1570870523001130
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EJD
HZ~
UHS
~HD
ID FETCH-LOGICAL-c303t-c49901b215a4299930f78bd966783912620bcadb620f5892e79faa50ba1cd3ed3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005957400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-8705
IngestDate Tue Nov 18 20:40:15 EST 2025
Sat Nov 29 07:03:56 EST 2025
Fri Feb 23 02:38:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning
Internet of vehicles
Mobile edge computing
Scheduling optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-c49901b215a4299930f78bd966783912620bcadb620f5892e79faa50ba1cd3ed3
ORCID 0000-0002-2351-8019
ParticipantIDs crossref_primary_10_1016_j_adhoc_2023_103193
crossref_citationtrail_10_1016_j_adhoc_2023_103193
elsevier_sciencedirect_doi_10_1016_j_adhoc_2023_103193
PublicationCentury 2000
PublicationDate 2023-08-01
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Ad hoc networks
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Waheed (bib0032) 2022; 99
Ertam, Aydin (bib0040) 2017
Wang, Runhua, et al. "Joint computation offloading and resource allocation in vehicular edge computing based on an economic theory: walrasian equilibrium." (2021).
Chen, Zhang, Wu, Mao, Ji, Bennis (bib0028) 2018; 6
Othman, Madani, Khan (bib0012) 2013; 16
Lu, Gu, Luo, Ding, Liu (bib0026) 2020; 102
Wang, Zhao, Xu, Yuan, Hsu (bib0010) 2019; 127
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib0038) 2015; 518
Xia, Wu, Wang, Zheng, Jin (bib0024) 2020; 69
Wang, Urgaonkar, Zafer, He, Chan, Leung (bib0025) 2019; 27
Li, Gao, Zhao, Shen (bib0006) 2020; 6
Hou, Wen, Zhang, Wu, Lei, Zhao (bib0020) May 2021
Cao, Yang, Cao (bib0021) 2018; 6
Somesula, Mothku, Kotte (bib0029) 2023; 29
Li, Assis, Yan, Simeonidou (bib0027) 2022; 19
Silva, Khan, Han (bib0001) 2018; 38
Zeng (bib0014) 2020; 99
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (bib0037) 2015
Gao, Li, Zhao, Shen (bib0015) 2018; 67
Feng, Liu, Pei, Hou, Yang, Wu (bib0022) June 2021; 8
Tang, Wong (bib0031) 2022; 21
Yaqoob, Khan, Kazmi, Imran, Guizani, Hong (bib0005) 2019; 34
Li, Tang, Ma, Yang, Luo (bib0013) 2020; 152
Grondman, Busoniu, Lopes, Babuska (bib0036) 2012; 42
Tian, Deng, Chen (bib0041) 2021; 123
Wang, Liu, Kato (bib0007) 2018; 21
Sun, Guo, Song, Zhou, Jiang, Liu, Niu (bib0023) 2019; 68
Qi, Wang, Ma, Sun, Cao, Zhang, Liao (bib0030) 2019; 68
Chen, Liang, Dong (bib0033) 2016
Long, Luo, Zhu, Luo, Huang (bib0018) 2020; 2020
Mao (bib0017) 2020; 99
Li, Deng, Cai, Yao (bib0002) 2018; 14
Bhatnagar, Sutton, Ghavamzadeh, Lee (bib0039) 2009; 45
Zhu, Lv, Chen, Wang, Xiong, Wang (bib0004) 2019; 21
Cheng, Lyu, Quan, Zhou, He, Shi, Shen (bib0019) 2019; 37
Chen, Jiao, Li, Fu (bib0008) 2015; 24
Liu, Yu, Xie, Zhang (bib0034) 2019; 68
Toh, Sanguesa, Cano, Martinez (bib0003) 2020; 476
Wang, Chen, Wang (bib0009) 2015; 80
Lim, Lee (bib0011) 2020; 9
Wu, Yoshinaga, Ji, Murase, Zhang (bib0035) 2016; 66
Chen (10.1016/j.adhoc.2023.103193_bib0028) 2018; 6
Yaqoob (10.1016/j.adhoc.2023.103193_bib0005) 2019; 34
Zhu (10.1016/j.adhoc.2023.103193_bib0004) 2019; 21
Sun (10.1016/j.adhoc.2023.103193_bib0023) 2019; 68
Grondman (10.1016/j.adhoc.2023.103193_bib0036) 2012; 42
Somesula (10.1016/j.adhoc.2023.103193_bib0029) 2023; 29
Li (10.1016/j.adhoc.2023.103193_bib0002) 2018; 14
Wang (10.1016/j.adhoc.2023.103193_bib0025) 2019; 27
Wang (10.1016/j.adhoc.2023.103193_bib0009) 2015; 80
Ertam (10.1016/j.adhoc.2023.103193_bib0040) 2017
Tang (10.1016/j.adhoc.2023.103193_bib0031) 2022; 21
Zeng (10.1016/j.adhoc.2023.103193_bib0014) 2020; 99
Toh (10.1016/j.adhoc.2023.103193_bib0003) 2020; 476
Othman (10.1016/j.adhoc.2023.103193_bib0012) 2013; 16
Lillicrap (10.1016/j.adhoc.2023.103193_bib0037) 2015
Li (10.1016/j.adhoc.2023.103193_bib0006) 2020; 6
Cao (10.1016/j.adhoc.2023.103193_bib0021) 2018; 6
Silva (10.1016/j.adhoc.2023.103193_bib0001) 2018; 38
Gao (10.1016/j.adhoc.2023.103193_bib0015) 2018; 67
Feng (10.1016/j.adhoc.2023.103193_bib0022) 2021; 8
Hou (10.1016/j.adhoc.2023.103193_bib0020) 2021
10.1016/j.adhoc.2023.103193_bib0016
Lu (10.1016/j.adhoc.2023.103193_bib0026) 2020; 102
Qi (10.1016/j.adhoc.2023.103193_bib0030) 2019; 68
Wu (10.1016/j.adhoc.2023.103193_bib0035) 2016; 66
Long (10.1016/j.adhoc.2023.103193_bib0018) 2020; 2020
Bhatnagar (10.1016/j.adhoc.2023.103193_bib0039) 2009; 45
Wang (10.1016/j.adhoc.2023.103193_bib0010) 2019; 127
Liu (10.1016/j.adhoc.2023.103193_bib0034) 2019; 68
Cheng (10.1016/j.adhoc.2023.103193_bib0019) 2019; 37
Xia (10.1016/j.adhoc.2023.103193_bib0024) 2020; 69
Tian (10.1016/j.adhoc.2023.103193_bib0041) 2021; 123
Chen (10.1016/j.adhoc.2023.103193_bib0008) 2015; 24
Lim (10.1016/j.adhoc.2023.103193_bib0011) 2020; 9
Mao (10.1016/j.adhoc.2023.103193_bib0017) 2020; 99
Li (10.1016/j.adhoc.2023.103193_bib0027) 2022; 19
Mnih (10.1016/j.adhoc.2023.103193_bib0038) 2015; 518
Chen (10.1016/j.adhoc.2023.103193_bib0033) 2016
Li (10.1016/j.adhoc.2023.103193_bib0013) 2020; 152
Wang (10.1016/j.adhoc.2023.103193_bib0007) 2018; 21
Waheed (10.1016/j.adhoc.2023.103193_bib0032) 2022; 99
References_xml – volume: 37
  start-page: 1117
  year: 2019
  end-page: 1129
  ident: bib0019
  article-title: Space/aerial-assisted computing offloading for iot applications: a learning-based approach
  publication-title: IEEE J. Sel. Areas Commun.
– reference: Wang, Runhua, et al. "Joint computation offloading and resource allocation in vehicular edge computing based on an economic theory: walrasian equilibrium." (2021).
– volume: 19
  start-page: 4151
  year: 2022
  end-page: 4164
  ident: bib0027
  article-title: DRL-Based Long-Term Resource Planning for Task Offloading Policies in Multiserver Edge Computing Networks
  publication-title: IEEE Trans. Netw. Serv. Manage.
– volume: 476
  year: 2020
  ident: bib0003
  article-title: Advances in smart roads for future smart cities
  publication-title: Proc. R. Soc. A.
– volume: 6
  start-page: 4005
  year: 2018
  end-page: 4018
  ident: bib0028
  article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning
  publication-title: IEEE Internet Things J.
– volume: 21
  start-page: 1243
  year: 2018
  end-page: 1274
  ident: bib0007
  article-title: Networking and communications in autonomous driving: a survey
  publication-title: IEEE Commun. Surv. Tutor.
– year: 2015
  ident: bib0037
  article-title: arXiv preprint
– volume: 45
  start-page: 2471
  year: 2009
  end-page: 2482
  ident: bib0039
  article-title: Natural actor–critic algorithms
  publication-title: Automatica
– volume: 68
  start-page: 3061
  year: 2019
  end-page: 3074
  ident: bib0023
  article-title: Adaptive learning-based task offloading for vehicular edge computing systems
  publication-title: IEEE Trans. Veh. Technol.
– year: May 2021
  ident: bib0020
  article-title: Incentive-Driven Task Allocation for Collaborative Edge Computing in Industrial Internet of Things
  publication-title: IEEE Internet Things J.
– volume: 6
  start-page: 2427
  year: 2018
  end-page: 2438
  ident: bib0021
  article-title: Revisiting computation partitioning in future 5 G-based edge computing environments
  publication-title: IEEE Internet Things J.
– volume: 42
  start-page: 1291
  year: 2012
  end-page: 1307
  ident: bib0036
  article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients
  publication-title: IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.)
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0033
  article-title: Joint offloading decision and resource allocation for multi-user multi-task mobile cloud
  publication-title: 2016 IEEE International Conference on Communications (ICC)
– volume: 38
  start-page: 697
  year: 2018
  end-page: 713
  ident: bib0001
  article-title: Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities
  publication-title: Sustain. Cities Soc.
– volume: 99
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0014
  article-title: Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing
  publication-title: IEEE Trans. Intellig. Transport. Syst. PP
– volume: 69
  start-page: 12
  year: 2020
  ident: bib0024
  article-title: Cluster-enabled cooperative scheduling based on reinforcement learning for high-mobility vehicular networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 14
  start-page: 3253
  year: 2018
  end-page: 3260
  ident: bib0002
  article-title: Notice of retraction: intelligent transportation system in macao based on deep self-coding learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 68
  start-page: 4192
  year: 2019
  end-page: 4203
  ident: bib0030
  article-title: Knowledge-driven service offloading decision for vehicular edge computing: a deep reinforcement learning approach
  publication-title: IEEE Trans. Veh. Technol.
– volume: 21
  start-page: 4063
  year: 2019
  end-page: 4071
  ident: bib0004
  article-title: Parallel transportation systems: toward iot-enabled smart urban traffic control and management
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 102
  start-page: 847
  year: 2020
  end-page: 861
  ident: bib0026
  article-title: Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
  publication-title: Future Generat. Comp. Syst.
– volume: 6
  start-page: 1122
  year: 2020
  end-page: 1135
  ident: bib0006
  article-title: Deep reinforcement learning for collaborative edge computing in vehicular networks
  publication-title: IEEE Trans. Cogn. Commun. Netw.
– volume: 99
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0017
  article-title: Energy-Efficient Cooperative Communication and Computation for Wireless Powered Mobile-Edge Computing
  publication-title: IEEE Syst. J. PP
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib0018
  article-title: Computation offloading through mobile vehicles in iot-edge-cloud network
  publication-title: EURASIP J. Wirel. Commun. Netw.
– volume: 16
  start-page: 393
  year: 2013
  end-page: 413
  ident: bib0012
  article-title: A survey of mobile cloud computing application models
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 29
  start-page: 569
  year: 2023
  end-page: 588
  ident: bib0029
  article-title: Deep reinforcement learning mechanism for deadline-aware cache placement in device-to-device mobile edge networks
  publication-title: Proc. 8th Int. Conf. Transparent Opt. Networks, 5th Eur. Symp. Photonic Cryst., 5th Workshop All-Opt. Routing, 3rd Global Opt. Wireless Networking Semin., 2nd COST 270 Workshop Reliab. Issues Next Gener. Opt. Networks, 2nd Photonic Integr. Compon. Appl. Workshop
– start-page: 755
  year: 2017
  end-page: 758
  ident: bib0040
  article-title: Data classification with deep learning using Tensorflow
  publication-title: 2017 International Conference on Computer Science and Engineering (UBMK)
– volume: 24
  start-page: 2795
  year: 2015
  end-page: 2808
  ident: bib0008
  article-title: Efficient multi-user computation offloading for mobile-edge cloud computing
  publication-title: IEEE/ACM Trans. Network.
– volume: 152
  year: 2020
  ident: bib0013
  article-title: Load balance based workflow job scheduling algorithm in distributed cloud
  publication-title: J. Netw. Comput. Appl.
– volume: 99
  start-page: 1
  year: 2022
  ident: bib0032
  article-title: A Comprehensive Review of Computing Paradigms, Enabling Computation Offloading and Task Execution in Vehicular Networks
  publication-title: IEEE Access PP
– volume: 123
  year: 2021
  ident: bib0041
  article-title: A dynamic task offloading algorithm based on greedy matching in vehicle network[J]
  publication-title: Ad Hoc Netw.
– volume: 127
  start-page: 160
  year: 2019
  end-page: 168
  ident: bib0010
  article-title: Edge server placement in mobile edge computing
  publication-title: J. Parallel Distrib. Comput.
– volume: 80
  start-page: 1607
  year: 2015
  end-page: 1623
  ident: bib0009
  article-title: A survey of mobile cloud computing applications: perspectives and challenges
  publication-title: Wireless Person. Commun.
– volume: 8
  start-page: 9407
  year: June 2021
  end-page: 9421
  ident: bib0022
  article-title: Service Characteristics-Oriented Joint Optimization of Radio and Computing Resource Allocation in Mobile Edge Computing
  publication-title: IEEE Internet Things J.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: bib0038
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 27
  start-page: 1272
  year: 2019
  end-page: 1288
  ident: bib0025
  article-title: Dynamic service migration in mobile edge computing based on Markov decision process
  publication-title: IEEE/ACM Trans. Network.
– volume: 9
  start-page: 686
  year: 2020
  ident: bib0011
  article-title: A load balancing algorithm for mobile devices in edge cloud computing environments
  publication-title: Electronics (Basel)
– volume: 21
  start-page: 1985
  year: 2022
  end-page: 1997
  ident: bib0031
  article-title: Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems
  publication-title: IEEE Trans. Mob. Comput.
– volume: 66
  start-page: 6336
  year: 2016
  end-page: 6348
  ident: bib0035
  article-title: A reinforcement learning-based data storage scheme for vehicular ad hoc networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 67
  year: 2018
  ident: bib0015
  article-title: Contention intensity based distributed coordination for v2v safety message broadcast
  publication-title: IEEE Trans. Veh. Technol.
– volume: 68
  start-page: 11
  year: 2019
  ident: bib0034
  article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 34
  start-page: 174
  year: 2019
  end-page: 181
  ident: bib0005
  article-title: Autonomous driving cars in smart cities: recent advances, requirements, and challenges
  publication-title: IEEE Netw.
– year: 2015
  ident: 10.1016/j.adhoc.2023.103193_bib0037
– volume: 66
  start-page: 6336
  issue: 7
  year: 2016
  ident: 10.1016/j.adhoc.2023.103193_bib0035
  article-title: A reinforcement learning-based data storage scheme for vehicular ad hoc networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2643665
– volume: 21
  start-page: 4063
  issue: 10
  year: 2019
  ident: 10.1016/j.adhoc.2023.103193_bib0004
  article-title: Parallel transportation systems: toward iot-enabled smart urban traffic control and management
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2934991
– volume: 8
  start-page: 9407
  issue: 11
  year: 2021
  ident: 10.1016/j.adhoc.2023.103193_bib0022
  article-title: Service Characteristics-Oriented Joint Optimization of Radio and Computing Resource Allocation in Mobile Edge Computing
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3058363
– volume: 6
  start-page: 4005
  issue: 3
  year: 2018
  ident: 10.1016/j.adhoc.2023.103193_bib0028
  article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2876279
– volume: 476
  issue: 2233
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0003
  article-title: Advances in smart roads for future smart cities
  publication-title: Proc. R. Soc. A.
  doi: 10.1098/rspa.2019.0439
– volume: 69
  start-page: 12
  issue: 11
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0024
  article-title: Cluster-enabled cooperative scheduling based on reinforcement learning for high-mobility vehicular networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3029561
– volume: 27
  start-page: 1272
  issue: 3
  year: 2019
  ident: 10.1016/j.adhoc.2023.103193_bib0025
  article-title: Dynamic service migration in mobile edge computing based on Markov decision process
  publication-title: IEEE/ACM Trans. Network.
  doi: 10.1109/TNET.2019.2916577
– volume: 68
  start-page: 4192
  issue: 5
  year: 2019
  ident: 10.1016/j.adhoc.2023.103193_bib0030
  article-title: Knowledge-driven service offloading decision for vehicular edge computing: a deep reinforcement learning approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2894437
– volume: 2020
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0018
  article-title: Computation offloading through mobile vehicles in iot-edge-cloud network
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-020-01848-5
– volume: 80
  start-page: 1607
  issue: 4
  year: 2015
  ident: 10.1016/j.adhoc.2023.103193_bib0009
  article-title: A survey of mobile cloud computing applications: perspectives and challenges
  publication-title: Wireless Person. Commun.
  doi: 10.1007/s11277-014-2102-7
– volume: 29
  start-page: 569
  issue: 2
  year: 2023
  ident: 10.1016/j.adhoc.2023.103193_bib0029
  article-title: Deep reinforcement learning mechanism for deadline-aware cache placement in device-to-device mobile edge networks
– volume: 21
  start-page: 1985
  issue: 6
  year: 2022
  ident: 10.1016/j.adhoc.2023.103193_bib0031
  article-title: Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2020.3036871
– volume: 67
  issue: 12
  year: 2018
  ident: 10.1016/j.adhoc.2023.103193_bib0015
  article-title: Contention intensity based distributed coordination for v2v safety message broadcast
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2876388
– volume: 14
  start-page: 3253
  issue: 7
  year: 2018
  ident: 10.1016/j.adhoc.2023.103193_bib0002
  article-title: Notice of retraction: intelligent transportation system in macao based on deep self-coding learning
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2810291
– volume: 68
  start-page: 11
  issue: 11
  year: 2019
  ident: 10.1016/j.adhoc.2023.103193_bib0034
  article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2935450
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.adhoc.2023.103193_bib0038
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 24
  start-page: 2795
  issue: 5
  year: 2015
  ident: 10.1016/j.adhoc.2023.103193_bib0008
  article-title: Efficient multi-user computation offloading for mobile-edge cloud computing
  publication-title: IEEE/ACM Trans. Network.
  doi: 10.1109/TNET.2015.2487344
– volume: 102
  start-page: 847
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0026
  article-title: Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
  publication-title: Future Generat. Comp. Syst.
  doi: 10.1016/j.future.2019.07.019
– volume: 16
  start-page: 393
  issue: 1
  year: 2013
  ident: 10.1016/j.adhoc.2023.103193_bib0012
  article-title: A survey of mobile cloud computing application models
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 1
  year: 2016
  ident: 10.1016/j.adhoc.2023.103193_bib0033
  article-title: Joint offloading decision and resource allocation for multi-user multi-task mobile cloud
– volume: 9
  start-page: 686
  issue: 4
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0011
  article-title: A load balancing algorithm for mobile devices in edge cloud computing environments
  publication-title: Electronics (Basel)
– volume: 99
  start-page: 1
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0014
  article-title: Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing
  publication-title: IEEE Trans. Intellig. Transport. Syst. PP
– year: 2021
  ident: 10.1016/j.adhoc.2023.103193_bib0020
  article-title: Incentive-Driven Task Allocation for Collaborative Edge Computing in Industrial Internet of Things
  publication-title: IEEE Internet Things J.
– start-page: 755
  year: 2017
  ident: 10.1016/j.adhoc.2023.103193_bib0040
  article-title: Data classification with deep learning using Tensorflow
– volume: 127
  start-page: 160
  year: 2019
  ident: 10.1016/j.adhoc.2023.103193_bib0010
  article-title: Edge server placement in mobile edge computing
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2018.06.008
– volume: 123
  year: 2021
  ident: 10.1016/j.adhoc.2023.103193_bib0041
  article-title: A dynamic task offloading algorithm based on greedy matching in vehicle network[J]
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2021.102639
– volume: 19
  start-page: 4151
  issue: 4
  year: 2022
  ident: 10.1016/j.adhoc.2023.103193_bib0027
  article-title: DRL-Based Long-Term Resource Planning for Task Offloading Policies in Multiserver Edge Computing Networks
  publication-title: IEEE Trans. Netw. Serv. Manage.
  doi: 10.1109/TNSM.2022.3191748
– ident: 10.1016/j.adhoc.2023.103193_bib0016
  doi: 10.1007/s12083-021-01141-2
– volume: 37
  start-page: 1117
  issue: 5
  year: 2019
  ident: 10.1016/j.adhoc.2023.103193_bib0019
  article-title: Space/aerial-assisted computing offloading for iot applications: a learning-based approach
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2019.2906789
– volume: 68
  start-page: 3061
  issue: 4
  year: 2019
  ident: 10.1016/j.adhoc.2023.103193_bib0023
  article-title: Adaptive learning-based task offloading for vehicular edge computing systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2895593
– volume: 38
  start-page: 697
  year: 2018
  ident: 10.1016/j.adhoc.2023.103193_bib0001
  article-title: Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.01.053
– volume: 42
  start-page: 1291
  issue: 6
  year: 2012
  ident: 10.1016/j.adhoc.2023.103193_bib0036
  article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients
  publication-title: IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2012.2218595
– volume: 152
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0013
  article-title: Load balance based workflow job scheduling algorithm in distributed cloud
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2019.102518
– volume: 99
  start-page: 1
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0017
  article-title: Energy-Efficient Cooperative Communication and Computation for Wireless Powered Mobile-Edge Computing
  publication-title: IEEE Syst. J. PP
– volume: 34
  start-page: 174
  issue: 1
  year: 2019
  ident: 10.1016/j.adhoc.2023.103193_bib0005
  article-title: Autonomous driving cars in smart cities: recent advances, requirements, and challenges
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2019.1900120
– volume: 6
  start-page: 2427
  issue: 2
  year: 2018
  ident: 10.1016/j.adhoc.2023.103193_bib0021
  article-title: Revisiting computation partitioning in future 5 G-based edge computing environments
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2869750
– volume: 45
  start-page: 2471
  issue: 11
  year: 2009
  ident: 10.1016/j.adhoc.2023.103193_bib0039
  article-title: Natural actor–critic algorithms
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.07.008
– volume: 99
  start-page: 1
  year: 2022
  ident: 10.1016/j.adhoc.2023.103193_bib0032
  article-title: A Comprehensive Review of Computing Paradigms, Enabling Computation Offloading and Task Execution in Vehicular Networks
  publication-title: IEEE Access PP
– volume: 6
  start-page: 1122
  issue: 4
  year: 2020
  ident: 10.1016/j.adhoc.2023.103193_bib0006
  article-title: Deep reinforcement learning for collaborative edge computing in vehicular networks
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2020.3003036
– volume: 21
  start-page: 1243
  issue: 2
  year: 2018
  ident: 10.1016/j.adhoc.2023.103193_bib0007
  article-title: Networking and communications in autonomous driving: a survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2888904
SSID ssj0029201
Score 2.4405797
Snippet Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103193
SubjectTerms Deep reinforcement learning
Internet of vehicles
Mobile edge computing
Scheduling optimization
Title Task offloading strategy and scheduling optimization for internet of vehicles based on deep reinforcement learning
URI https://dx.doi.org/10.1016/j.adhoc.2023.103193
Volume 147
WOSCitedRecordID wos001005957400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1570-8713
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029201
  issn: 1570-8705
  databaseCode: AIEXJ
  dateStart: 20030701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgM9oPISLRTtgZtx5Ve6u8cIFQFCFRJFiriYfTapgh2lSVT113f25RiCKkDi4lgrr9fZ-Tyenf1mBqHXlWaVlpSnJ4QXKZyaVJSFSGVFdKkrQzJjXLEJcnZGx2P2eTD4HmNh1jPSNPT6ms3_q6ihDYRtQ2f_QtzdTaEBzkHocASxw_HPBM8dWdzMWkePT658_lmfZwnWsvBtcSHoLSiLHyEK05ENp845qB01YK0nji-X2K-csjsKSut5stAu0ap0PsVYceKib-COVDJpZdJ4dnlnsH-bcOeTHa86BtB05Wn7zcXNZBOP9mnqI4jarjG4JIqyI8QFP9lWrIxXrSQD3Zv5PWzdb_PRqJ0-9ik4t3S7dzNcHnMF_-PYjmszBuS-wOIvSbO_2DvbwWCFBRqszO6h3YIMGaju3dGH0_HHblHOiszn1A1PFzNTOQ7g1lC_t156Fsn5PnoYlhJ45CHwCA108xjt9RJMPkELCwa8AQOOYMAABrwBA-6DAYOEcQQDdMYRDNiBAcMVFgz4JzDgCIan6Ou70_O379NQZSOVYL4s4a20W6MCTD9ubRNWZoZQoWAZTMB4zm3BAiG5EvBrhpQVmjDD-TATPJeq1Kp8hnaattHPEaZCFIYr5oooZKygesizXFU6N4yWVB6gIs5eLUMKelsJZVZHruFl7aa8tlNe-yk_QG-6TnOfgeXuy0-iWOpgRHrjsAYc3dXx8F87vkAPNi_BS7SzXKz0Ebov18vp1eJVwNstduGamg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+offloading+strategy+and+scheduling+optimization+for+internet+of+vehicles+based+on+deep+reinforcement+learning&rft.jtitle=Ad+hoc+networks&rft.au=Zhao%2C+Xu&rft.au=Liu%2C+Mingzhen&rft.au=Li%2C+Maozhen&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1570-8705&rft.eissn=1570-8713&rft.volume=147&rft_id=info:doi/10.1016%2Fj.adhoc.2023.103193&rft.externalDocID=S1570870523001130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon