Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure

In this paper, an ultrasensitive surface plasmon resonance (SPR) biosensor structure (CaF2 Prism /ZnO/Au/BlueP-MoS2/Sensing medium) based on angular interrogation technique has been studied to see the effect of Blue Phosphorus/MoS2 heterostructure with an adhesive layer of zinc oxide (ZnO). The adhe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optik (Stuttgart) Jg. 244; S. 167618
Hauptverfasser: Singh, Sachin, Sharma, Anuj K., Lohia, Pooja, Dwivedi, D.K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier GmbH 01.10.2021
Schlagworte:
ISSN:0030-4026, 1618-1336
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, an ultrasensitive surface plasmon resonance (SPR) biosensor structure (CaF2 Prism /ZnO/Au/BlueP-MoS2/Sensing medium) based on angular interrogation technique has been studied to see the effect of Blue Phosphorus/MoS2 heterostructure with an adhesive layer of zinc oxide (ZnO). The adhesive layer is ZnO used between calcium fluoride (CaF2) prism and gold (Au) layer. Transfer matrix method is used for numerical analysis at operating wavelength 633 nm. The layers ZnO and Blue Phosphorus/MoS2 heterostructure are optimized to achieve the maximum sensitivity with minimum reflectance. The performance parameters, such as sensitivity (2280RIU−1), quality factor (56.211RIU−1), detection accuracy (0.2810), full width at half maximum (4.0561), and limit of detection (4.3859 × 10−6) are calculated for proposed SPR biosensor at room temperature. For two layers of BlueP/MoS2 heterostructure, the maximum sensitivity is 2350RIU−1. The result shows that the sensitivity of proposed structure is 17.5% greater as compared to the conventional structure. Transverse magnetic (TM) field is plotted, and the value of penetration depth is calculated as 145.25 nm for proposed SPR sensor. The proposed SPR sensor could be very useful in the SPR chip to detect biomolecules or analyte in visible range.
AbstractList In this paper, an ultrasensitive surface plasmon resonance (SPR) biosensor structure (CaF2 Prism /ZnO/Au/BlueP-MoS2/Sensing medium) based on angular interrogation technique has been studied to see the effect of Blue Phosphorus/MoS2 heterostructure with an adhesive layer of zinc oxide (ZnO). The adhesive layer is ZnO used between calcium fluoride (CaF2) prism and gold (Au) layer. Transfer matrix method is used for numerical analysis at operating wavelength 633 nm. The layers ZnO and Blue Phosphorus/MoS2 heterostructure are optimized to achieve the maximum sensitivity with minimum reflectance. The performance parameters, such as sensitivity (2280RIU−1), quality factor (56.211RIU−1), detection accuracy (0.2810), full width at half maximum (4.0561), and limit of detection (4.3859 × 10−6) are calculated for proposed SPR biosensor at room temperature. For two layers of BlueP/MoS2 heterostructure, the maximum sensitivity is 2350RIU−1. The result shows that the sensitivity of proposed structure is 17.5% greater as compared to the conventional structure. Transverse magnetic (TM) field is plotted, and the value of penetration depth is calculated as 145.25 nm for proposed SPR sensor. The proposed SPR sensor could be very useful in the SPR chip to detect biomolecules or analyte in visible range.
ArticleNumber 167618
Author Singh, Sachin
Sharma, Anuj K.
Lohia, Pooja
Dwivedi, D.K.
Author_xml – sequence: 1
  givenname: Sachin
  surname: Singh
  fullname: Singh, Sachin
  organization: Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India 273010
– sequence: 2
  givenname: Anuj K.
  surname: Sharma
  fullname: Sharma, Anuj K.
  organization: Department of Applied Sciences (Physics Division), National Institute of Technology Delhi, Narela, New Delhi, India 110040
– sequence: 3
  givenname: Pooja
  surname: Lohia
  fullname: Lohia, Pooja
  organization: Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India 273010
– sequence: 4
  givenname: D.K.
  surname: Dwivedi
  fullname: Dwivedi, D.K.
  email: dkdpms@mmmut.ac.in
  organization: Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India 273010
BookMark eNqFkL9u3DAMh4UiBXpJ-wRd9AK-UJZOlocORZB_QIoOTWdBlmmYB58USHKSy0v0levLdeqQDMRvID8S_E7ZSYgBGfsqYC1A6PPtmrYTxnUNtVgL3WhhPrCVWKISUuoTtgKQUCmo9Sd2mvMWAJoGmhX7cz9iTFjIu4m74KZ9pszjwDOGTIUeqew5htEFjzsM5bU1p8F55A-Ty7sYeMIcw2GAdxQPXEz8icrIXyh4Hp-px2V1z7tpXqAx5qXSnM9_xF81H7Fgirmk2Zc54Wf2cXBTxi__8oz9vrq8v7ip7n5e3158v6u8BFkqD403WniDUg1dq6VqcWgFGGEMOAXS6Y3yGyXNRkGvFDhhOq1rqTrR-s7IMyaPe_1yPCcc7EOinUt7K8AenNqtfXVqD07t0elCtf9RnoorFENJjqZ32G9HFpe3HgmTzZ5wsdZTQl9sH-lN_i-CHpkz
CitedBy_id crossref_primary_10_1002_pssa_202300340
crossref_primary_10_1007_s11468_025_03123_z
crossref_primary_10_1016_j_ijleo_2024_172191
crossref_primary_10_1109_JSEN_2023_3334104
crossref_primary_10_1007_s11468_022_01692_x
crossref_primary_10_1007_s11082_024_07342_2
crossref_primary_10_1063_5_0245116
crossref_primary_10_1016_j_rinp_2025_108252
crossref_primary_10_1016_j_ijleo_2022_169857
crossref_primary_10_1007_s11220_025_00602_9
crossref_primary_10_1007_s11220_025_00606_5
crossref_primary_10_3390_s23177495
crossref_primary_10_1007_s12596_023_01107_y
crossref_primary_10_1007_s11082_024_07227_4
crossref_primary_10_1007_s11468_024_02429_8
crossref_primary_10_1016_j_rio_2025_100873
crossref_primary_10_1007_s11468_025_02866_z
crossref_primary_10_1007_s12596_025_02447_7
crossref_primary_10_1109_JPHOT_2025_3532399
crossref_primary_10_1007_s11468_025_03071_8
crossref_primary_10_1088_1402_4896_acb023
crossref_primary_10_1007_s12596_025_02460_w
crossref_primary_10_1557_s43578_024_01494_3
crossref_primary_10_1007_s11468_023_01913_x
crossref_primary_10_1007_s11468_023_02174_4
crossref_primary_10_1007_s11468_025_03277_w
crossref_primary_10_1007_s12596_025_02571_4
crossref_primary_10_1016_j_talo_2025_100401
crossref_primary_10_3390_photonics9070490
crossref_primary_10_1007_s11468_024_02209_4
crossref_primary_10_1007_s11468_024_02537_5
crossref_primary_10_1007_s12596_025_02877_3
crossref_primary_10_1088_1402_4896_ad6ec7
crossref_primary_10_1007_s11468_024_02307_3
crossref_primary_10_1109_ACCESS_2022_3211099
crossref_primary_10_1002_adpr_202400136
crossref_primary_10_1016_j_ijleo_2022_169757
crossref_primary_10_1007_s11082_023_05419_y
crossref_primary_10_1002_pssa_202300567
crossref_primary_10_1088_1402_4896_ac68ad
crossref_primary_10_1016_j_optmat_2024_115019
crossref_primary_10_1007_s11082_024_07322_6
crossref_primary_10_1007_s11468_024_02482_3
crossref_primary_10_1007_s11468_024_02545_5
crossref_primary_10_1007_s11220_025_00593_7
crossref_primary_10_1016_j_optlastec_2024_111302
crossref_primary_10_1007_s11468_025_02798_8
crossref_primary_10_1007_s11468_023_01938_2
crossref_primary_10_1007_s11468_024_02665_y
crossref_primary_10_1088_1402_4896_acd4f7
crossref_primary_10_1007_s00604_025_07281_z
crossref_primary_10_1007_s11468_022_01631_w
crossref_primary_10_1007_s12596_022_00973_2
crossref_primary_10_1007_s11468_025_03002_7
crossref_primary_10_1007_s11468_023_01884_z
crossref_primary_10_1088_1361_6463_ad32a7
crossref_primary_10_1007_s12596_024_02224_y
Cites_doi 10.1038/natrevmats.2016.42
10.1007/s00339-015-9442-3
10.1016/j.optmat.2020.110123
10.1016/j.ijleo.2019.163430
10.1182/bloodadvances.2019000979
10.1007/s11051-020-04872-0
10.1002/ehf2.13280
10.1016/j.optcom.2020.125337
10.1016/j.spmi.2018.03.062
10.1016/j.ijleo.2017.05.001
10.1007/s11468-020-01315-3
10.1007/s00216-003-2101-0
10.3390/s19173794
10.1016/j.spmi.2019.03.016
10.1016/j.spmi.2021.106867
10.1016/j.ijleo.2012.12.021
10.1007/s00339-021-04408-w
10.3390/photonics5030015
10.1186/1556-276X-8-73
10.1007/s11468-020-01165-z
10.1007/s10043-019-00564-w
10.3788/COL201513.082801
10.1016/j.ijleo.2021.166378
10.1116/1.2735951
10.3390/s17102161
10.3390/mi11080779
10.1016/j.optcom.2015.10.010
10.1007/s12039-010-0006-y
10.1063/1.2210078
10.1038/nature12385
10.1016/j.ijleo.2020.165525
10.3390/s110201565
10.1016/j.ijleo.2016.05.103
10.1109/LPT.2016.2597856
10.1038/lsa.2016.179
10.1007/s00339-018-1804-1
10.1049/iet-opt.2018.5023
10.1016/j.snb.2011.01.068
10.1016/j.optcom.2017.03.035
10.3390/nano10030579
10.1039/9781847558220
10.1007/s00339-020-04248-0
10.1007/s11468-021-01421-w
10.1016/j.snb.2017.04.110
ContentType Journal Article
Copyright 2021 Elsevier GmbH
Copyright_xml – notice: 2021 Elsevier GmbH
DBID AAYXX
CITATION
DOI 10.1016/j.ijleo.2021.167618
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1618-1336
ExternalDocumentID 10_1016_j_ijleo_2021_167618
S0030402621012262
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
TN5
VOH
XOL
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-c07c861c8e34fb96349ef91081880a403a654c5438540d440a18b66234b19cb83
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693419000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-4026
IngestDate Sat Nov 29 07:29:58 EST 2025
Tue Nov 18 22:06:26 EST 2025
Fri Feb 23 02:43:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Limit of detection
Heterostructure
Zinc oxide
Sensitivity
Biosensor
TM field
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-c07c861c8e34fb96349ef91081880a403a654c5438540d440a18b66234b19cb83
ParticipantIDs crossref_primary_10_1016_j_ijleo_2021_167618
crossref_citationtrail_10_1016_j_ijleo_2021_167618
elsevier_sciencedirect_doi_10_1016_j_ijleo_2021_167618
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Optik (Stuttgart)
PublicationYear 2021
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References setareh, kaatuzian (bib50) 2021; 153
Liu, Wang, Cheng, Pang, Lv (bib26) 2021
Singh, Sharma, Lohia, Dwivedi (bib30) 2021; 8
Suvarnaphaet, Pechprasarn (bib4) 2017; 17
Geim, Grigorieva (bib36) 2013; 499
R. Tabassum, B.D. Gupta, Surface Plasmon Resonance Based Fiber Optic Detection of Chlorine Utilizing Polyvinylpyrollidone Supported Zinc Oxide Thin Films, n.d.
Paliwal, Gaur, Sharma, Tomar, Gupta (bib39) 2016; 127
Han, Ding, Landry, Hua, Huang (bib49) 2020; 15
Singh, Pal, Prajapati, Saini (bib44) 2020; 4
Al Mahfuz, Hossain, Haque, Hai, Namihira, Ahmed (bib14) 2019; 19
Peng, Wang, Sa, Wu, Sun (bib37) 2016; 6
Pal, Verma, Saini, Prajapati (bib27) 2019; 13
Liu, Weiss, Duan, Cheng, Huang, Duan (bib31) 2016; 1
Wang, Deng, Li, Huang, Gong, Tom, Yao (bib7) 2016; 5
Wu, Guo, Wang, Lu, Dai, Xiang, Fan (bib23) 2017; 249
Sharma, Patel, Pargaien (bib18) 2012; 3
Rizal, Pisana, Hrvoic (bib11) 2018; 5
Handbook of Surface Plasmon Resonance, Royal Society of Chemistry, 2008. https://doi.org/10.1039/9781847558220.
Srivastava, Verma, Das, Prajapati (bib40) 2020; 203
Maurya, Prajapati, Singh, Saini, Tripathi (bib43) 2016; 359
Agarwal, Prajapati, Maurya (bib5) 2016; 28
Rahman, Rana, Rahman, Anower, Mollah, Paul (bib21) 2020; 107
Roh, Chung, Lee (bib3) 2011; 11
Kumar, Yadav, Kushwaha, Srivastava (bib46) 2020; 2
Wei, Nong, Tang, Zhang, Jiang, Zhu (bib2) 2015; 13
Walsh, Addou, Wallace, Hinkle (bib35) 2018
Srivastava, Gupta (bib1) 2011; 156
Pal, Jha (bib22) 2021; 231
Rahman, Anower, Hasan, Hossain, Haque (bib29) 2017; 396
Alagdar, Yousif, Areed, Elzalabani (bib32) 2020; 22
Rahman, Anower, Rahman, Hasan, Hossain, Haque (bib42) 2017; 140
Raikwar, Srivastava, Saini, Prajapati (bib48) 2021; 127
Wang, Sun, Wei, Lei, Cai, Li, Dong (bib20) 2006; 88
Peng, Wang, Sa, Wu, Sun (bib33) 2016; 6
Singh, Paswan, Raghuwanshi (bib47) 2021
Pal, Verma, Raikwar, Prajapati, Saini (bib41) 2018; 124
Girón-Sedas, Oliveira, Mejía-Salazar (bib10) 2018; 117
Singh, Prajapati (bib13) 2020; 224
Prajapati, Srivastava (bib24) 2019; 129
Bartolomeo (bib28) 2020; 10
Xu, Xiao, Stepanov, Ren, Wu, Cai, Zhang, Dai, Mei, Jiang (bib45) 2013; 8
AlaguVibisha, Nayak, Maheswari, Priyadharsini, Nisha, Jaroszewicz, Rajesh, Jha (bib15) 2020; 463
Kumar, Pal, Pal, Mishra, Prajapati (bib25) 2021; 127
S.K. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures, 2010.
Pal, Prajapati, Saini (bib34) 2020; 27
Maurya, Prajapati, Singh, Saini (bib12) 2015; 121
Prajapati, Yadav, Verma, Singh, Saini (bib9) 2013; 124
Duenow, Gessert, Wood, Barnes, Young, To, Coutts (bib17) 2007; 25
Homola (bib6) 2003; 377
Singh, Singh, Umar, Lohia, Albargi, Castañeda, Dwivedi (bib38) 2020; 11
Kumar (10.1016/j.ijleo.2021.167618_bib25) 2021; 127
Singh (10.1016/j.ijleo.2021.167618_bib47) 2021
Singh (10.1016/j.ijleo.2021.167618_bib30) 2021; 8
Girón-Sedas (10.1016/j.ijleo.2021.167618_bib10) 2018; 117
10.1016/j.ijleo.2021.167618_bib8
Wei (10.1016/j.ijleo.2021.167618_bib2) 2015; 13
Geim (10.1016/j.ijleo.2021.167618_bib36) 2013; 499
Alagdar (10.1016/j.ijleo.2021.167618_bib32) 2020; 22
Wang (10.1016/j.ijleo.2021.167618_bib7) 2016; 5
Liu (10.1016/j.ijleo.2021.167618_bib26) 2021
Singh (10.1016/j.ijleo.2021.167618_bib38) 2020; 11
AlaguVibisha (10.1016/j.ijleo.2021.167618_bib15) 2020; 463
Wang (10.1016/j.ijleo.2021.167618_bib20) 2006; 88
Roh (10.1016/j.ijleo.2021.167618_bib3) 2011; 11
Wu (10.1016/j.ijleo.2021.167618_bib23) 2017; 249
Bartolomeo (10.1016/j.ijleo.2021.167618_bib28) 2020; 10
Srivastava (10.1016/j.ijleo.2021.167618_bib40) 2020; 203
Rahman (10.1016/j.ijleo.2021.167618_bib29) 2017; 396
Rahman (10.1016/j.ijleo.2021.167618_bib42) 2017; 140
Liu (10.1016/j.ijleo.2021.167618_bib31) 2016; 1
Prajapati (10.1016/j.ijleo.2021.167618_bib9) 2013; 124
Pal (10.1016/j.ijleo.2021.167618_bib41) 2018; 124
Pal (10.1016/j.ijleo.2021.167618_bib22) 2021; 231
Paliwal (10.1016/j.ijleo.2021.167618_bib39) 2016; 127
Singh (10.1016/j.ijleo.2021.167618_bib44) 2020; 4
Kumar (10.1016/j.ijleo.2021.167618_bib46) 2020; 2
10.1016/j.ijleo.2021.167618_bib19
10.1016/j.ijleo.2021.167618_bib16
Rahman (10.1016/j.ijleo.2021.167618_bib21) 2020; 107
Suvarnaphaet (10.1016/j.ijleo.2021.167618_bib4) 2017; 17
Pal (10.1016/j.ijleo.2021.167618_bib34) 2020; 27
Pal (10.1016/j.ijleo.2021.167618_bib27) 2019; 13
Peng (10.1016/j.ijleo.2021.167618_bib37) 2016; 6
Duenow (10.1016/j.ijleo.2021.167618_bib17) 2007; 25
Maurya (10.1016/j.ijleo.2021.167618_bib43) 2016; 359
Walsh (10.1016/j.ijleo.2021.167618_bib35) 2018
Maurya (10.1016/j.ijleo.2021.167618_bib12) 2015; 121
Srivastava (10.1016/j.ijleo.2021.167618_bib1) 2011; 156
Singh (10.1016/j.ijleo.2021.167618_bib13) 2020; 224
Peng (10.1016/j.ijleo.2021.167618_bib33) 2016; 6
Xu (10.1016/j.ijleo.2021.167618_bib45) 2013; 8
Homola (10.1016/j.ijleo.2021.167618_bib6) 2003; 377
Prajapati (10.1016/j.ijleo.2021.167618_bib24) 2019; 129
Han (10.1016/j.ijleo.2021.167618_bib49) 2020; 15
Rizal (10.1016/j.ijleo.2021.167618_bib11) 2018; 5
Raikwar (10.1016/j.ijleo.2021.167618_bib48) 2021; 127
Al Mahfuz (10.1016/j.ijleo.2021.167618_bib14) 2019; 19
Sharma (10.1016/j.ijleo.2021.167618_bib18) 2012; 3
Agarwal (10.1016/j.ijleo.2021.167618_bib5) 2016; 28
setareh (10.1016/j.ijleo.2021.167618_bib50) 2021; 153
References_xml – reference: R. Tabassum, B.D. Gupta, Surface Plasmon Resonance Based Fiber Optic Detection of Chlorine Utilizing Polyvinylpyrollidone Supported Zinc Oxide Thin Films, n.d.
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: bib36
  article-title: Van der Waals heterostructures
  publication-title: Nature
– volume: 15
  start-page: 1489
  year: 2020
  end-page: 1498
  ident: bib49
  article-title: Highly sensitive SPR sensor based on Ag-ITO-BlueP/TMDCs-graphene heterostructure
  publication-title: Plasmonics
– volume: 129
  start-page: 152
  year: 2019
  end-page: 162
  ident: bib24
  article-title: Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure
  publication-title: Superlattices Microstruct.
– volume: 19
  start-page: 3794
  year: 2019
  ident: bib14
  article-title: A bimetallic-coated, low propagation loss, photonic crystal fiber based plasmonic refractive index sensor
  publication-title: Sensors
– volume: 121
  start-page: 525
  year: 2015
  end-page: 533
  ident: bib12
  article-title: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 6
  year: 2016
  ident: bib33
  article-title: Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures
  publication-title: Sci. Rep.
– volume: 13
  start-page: 082801
  year: 2015
  end-page: 082805
  ident: bib2
  article-title: Reflection-type infrared biosensor based on surface plasmonics in graphene ribbon arrays
  publication-title: Chin. Opt. Lett.
– volume: 5
  start-page: 15
  year: 2018
  ident: bib11
  article-title: Improved magneto-optic surface plasmon resonance biosensors
  publication-title: Photonics
– volume: 3
  year: 2012
  ident: bib18
  article-title: Synthesis, characterization and properties of Mn-doped ZnO nanocrystals
  publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol.
– volume: 25
  start-page: 955
  year: 2007
  end-page: 960
  ident: bib17
  article-title: Transparent conducting zinc oxide thin films doped with aluminum and molybdenum
  publication-title: J. Vac. Sci. Technol. A: Vac., Surf., Films
– volume: 2
  year: 2020
  ident: bib46
  article-title: A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor
  publication-title: Sens. Actuators Rep.
– volume: 127
  start-page: 92
  year: 2021
  ident: bib48
  article-title: 2D-antimonene-based surface plasmon resonance sensor for improvement of sensitivity
  publication-title: Appl. Phys. A
– volume: 17
  year: 2017
  ident: bib4
  article-title: Graphene-based materials for biosensors: a review
  publication-title: Sensors (Basel, Switzerland)
– volume: 153
  year: 2021
  ident: bib50
  article-title: Sensitivity enhancement of a surface plasmon resonance sensor using Blue Phosphorene/MoS2 hetero-structure and barium titanate
  publication-title: Superlattices Microstruct.
– volume: 203
  year: 2020
  ident: bib40
  article-title: A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus
  publication-title: Optik
– volume: 5
  year: 2016
  ident: bib7
  article-title: Excitation and propagation of surface plasmon polaritons on a non-structured surface with a permittivity gradient
  publication-title: Light.: Sci. Appl.
– reference: Handbook of Surface Plasmon Resonance, Royal Society of Chemistry, 2008. https://doi.org/10.1039/9781847558220.
– volume: 231
  year: 2021
  ident: bib22
  article-title: A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets
  publication-title: Optik
– volume: 8
  start-page: 2328
  year: 2021
  end-page: 2333
  ident: bib30
  article-title: Plasma P-selectin is a predictor of mortality in heart failure with preserved ejection fraction
  publication-title: ESC Heart Fail.
– volume: 124
  start-page: 3607
  year: 2013
  end-page: 3610
  ident: bib9
  article-title: Effect of metamaterial layer on optical surface plasmon resonance sensor
  publication-title: Optik
– volume: 377
  start-page: 528
  year: 2003
  end-page: 539
  ident: bib6
  article-title: Present and future of surface plasmon resonance biosensors
  publication-title: Anal. Bioanal. Chem.
– volume: 127
  start-page: 7642
  year: 2016
  end-page: 7647
  ident: bib39
  article-title: Sensitive optical biosensor based on surface plasmon resonance using ZnO/Au bilayered structure
  publication-title: Optik
– year: 2021
  ident: bib26
  article-title: High sensitivity in Ni-based SPR sensor of blue phosphorene/transition metal dichalcogenides hybrid nanostructure
  publication-title: Plasmonics
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib28
  article-title: Emerging 2d materials and their van der waals heterostructures
  publication-title: Nanomaterials
– volume: 107
  year: 2020
  ident: bib21
  article-title: Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials
  publication-title: Opt. Mater.
– volume: 140
  start-page: 989
  year: 2017
  end-page: 997
  ident: bib42
  article-title: Modeling of a highly sensitive MoS2-Graphene hybrid based fiber optic SPR biosensor for sensing DNA hybridization
  publication-title: Optik
– reference: S.K. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures, 2010.
– volume: 27
  start-page: 57
  year: 2020
  end-page: 64
  ident: bib34
  article-title: Influence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization
  publication-title: Opt. Rev.
– volume: 124
  start-page: 394
  year: 2018
  ident: bib41
  article-title: Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor
  publication-title: Appl. Phys. A
– volume: 28
  start-page: 2415
  year: 2016
  end-page: 2418
  ident: bib5
  article-title: Effect of metallic adhesion layer thickness on surface roughness for sensing application
  publication-title: IEEE Photonics Technol. Lett.
– volume: 127
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib25
  article-title: High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 396
  start-page: 36
  year: 2017
  end-page: 43
  ident: bib29
  article-title: Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor
  publication-title: Opt. Commun.
– volume: 463
  year: 2020
  ident: bib15
  article-title: Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni
  publication-title: Opt. Commun.
– volume: 22
  start-page: 189
  year: 2020
  ident: bib32
  article-title: Improved the quality factor and sensitivity of a surface plasmon resonance sensor with transition metal dichalcogenide 2D nanomaterials
  publication-title: J. Nanopart. Res.
– volume: 224
  year: 2020
  ident: bib13
  article-title: TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement
  publication-title: Optik
– volume: 11
  start-page: 1565
  year: 2011
  end-page: 1588
  ident: bib3
  article-title: Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors
  publication-title: Sensors
– volume: 11
  start-page: 1
  year: 2020
  end-page: 28
  ident: bib38
  article-title: 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications
  publication-title: Micromachines
– volume: 88
  year: 2006
  ident: bib20
  article-title: Zinc oxide nanocomb biosensor for glucose detection
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 398
  year: 2020
  end-page: 407
  ident: bib44
  article-title: von Willebrand factor/ADAMTS13 ratio at presentation of acute ischemic brain injury is predictive of outcome
  publication-title: Blood Adv.
– volume: 249
  start-page: 542
  year: 2017
  end-page: 548
  ident: bib23
  article-title: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor
  publication-title: Sens. Actuators, B: Chem.
– volume: 6
  start-page: 2
  year: 2016
  end-page: 11
  ident: bib37
  article-title: Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures
  publication-title: Sci. Rep.
– volume: 117
  start-page: 423
  year: 2018
  end-page: 428
  ident: bib10
  article-title: μ-near-zero metamaterial slabs for a new concept of plasmonic sensing platforms
  publication-title: Superlattices Microstruct.
– volume: 13
  start-page: 196
  year: 2019
  end-page: 201
  ident: bib27
  article-title: Sensitivity enhancement using silicon black phosphorous –TMDC coated surface plasmon resonance biosensor
  publication-title: IET Optoelectron.
– volume: 1
  start-page: 16042
  year: 2016
  ident: bib31
  article-title: Van der Waals heterostructures and devices
  publication-title: Nat. Rev. Mater.
– volume: 8
  start-page: 1
  year: 2013
  end-page: 5
  ident: bib45
  article-title: Efficiency enhancements in Ag nanoparticles-SiO2-TiO2sandwiched structure via plasmonic effect-enhanced light capturing
  publication-title: Nanoscale Res. Lett.
– volume: 156
  start-page: 559
  year: 2011
  end-page: 562
  ident: bib1
  article-title: Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor
  publication-title: Sens. Actuators, B: Chem.
– volume: 359
  start-page: 426
  year: 2016
  end-page: 434
  ident: bib43
  article-title: Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon
  publication-title: Opt. Commun.
– year: 2021
  ident: bib47
  article-title: Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with Bi-layer of gold for chemical sensing
  publication-title: Plasmonics
– start-page: 515
  year: 2018
  end-page: 531
  ident: bib35
  article-title: Molecular beam epitaxy of transition metal dichalcogenides
  publication-title: Molecular Beam Epitaxy
– volume: 1
  start-page: 16042
  year: 2016
  ident: 10.1016/j.ijleo.2021.167618_bib31
  article-title: Van der Waals heterostructures and devices
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.42
– volume: 121
  start-page: 525
  year: 2015
  ident: 10.1016/j.ijleo.2021.167618_bib12
  article-title: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-015-9442-3
– volume: 107
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib21
  article-title: Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110123
– volume: 203
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib40
  article-title: A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163430
– volume: 4
  start-page: 398
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib44
  article-title: von Willebrand factor/ADAMTS13 ratio at presentation of acute ischemic brain injury is predictive of outcome
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2019000979
– ident: 10.1016/j.ijleo.2021.167618_bib16
– volume: 22
  start-page: 189
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib32
  article-title: Improved the quality factor and sensitivity of a surface plasmon resonance sensor with transition metal dichalcogenide 2D nanomaterials
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-020-04872-0
– volume: 8
  start-page: 2328
  year: 2021
  ident: 10.1016/j.ijleo.2021.167618_bib30
  article-title: Plasma P-selectin is a predictor of mortality in heart failure with preserved ejection fraction
  publication-title: ESC Heart Fail.
  doi: 10.1002/ehf2.13280
– volume: 463
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib15
  article-title: Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2020.125337
– volume: 117
  start-page: 423
  year: 2018
  ident: 10.1016/j.ijleo.2021.167618_bib10
  article-title: μ-near-zero metamaterial slabs for a new concept of plasmonic sensing platforms
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2018.03.062
– volume: 140
  start-page: 989
  year: 2017
  ident: 10.1016/j.ijleo.2021.167618_bib42
  article-title: Modeling of a highly sensitive MoS2-Graphene hybrid based fiber optic SPR biosensor for sensing DNA hybridization
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.05.001
– year: 2021
  ident: 10.1016/j.ijleo.2021.167618_bib47
  article-title: Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with Bi-layer of gold for chemical sensing
  publication-title: Plasmonics
  doi: 10.1007/s11468-020-01315-3
– volume: 3
  year: 2012
  ident: 10.1016/j.ijleo.2021.167618_bib18
  article-title: Synthesis, characterization and properties of Mn-doped ZnO nanocrystals
  publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol.
– volume: 2
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib46
  article-title: A comparative study among WS2, MoS2 and graphene based surface plasmon resonance (SPR) sensor
  publication-title: Sens. Actuators Rep.
– volume: 377
  start-page: 528
  year: 2003
  ident: 10.1016/j.ijleo.2021.167618_bib6
  article-title: Present and future of surface plasmon resonance biosensors
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-003-2101-0
– volume: 19
  start-page: 3794
  year: 2019
  ident: 10.1016/j.ijleo.2021.167618_bib14
  article-title: A bimetallic-coated, low propagation loss, photonic crystal fiber based plasmonic refractive index sensor
  publication-title: Sensors
  doi: 10.3390/s19173794
– volume: 129
  start-page: 152
  year: 2019
  ident: 10.1016/j.ijleo.2021.167618_bib24
  article-title: Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2019.03.016
– start-page: 515
  year: 2018
  ident: 10.1016/j.ijleo.2021.167618_bib35
  article-title: Molecular beam epitaxy of transition metal dichalcogenides
– volume: 153
  year: 2021
  ident: 10.1016/j.ijleo.2021.167618_bib50
  article-title: Sensitivity enhancement of a surface plasmon resonance sensor using Blue Phosphorene/MoS2 hetero-structure and barium titanate
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2021.106867
– volume: 124
  start-page: 3607
  year: 2013
  ident: 10.1016/j.ijleo.2021.167618_bib9
  article-title: Effect of metamaterial layer on optical surface plasmon resonance sensor
  publication-title: Optik
  doi: 10.1016/j.ijleo.2012.12.021
– volume: 127
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijleo.2021.167618_bib25
  article-title: High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-021-04408-w
– volume: 5
  start-page: 15
  year: 2018
  ident: 10.1016/j.ijleo.2021.167618_bib11
  article-title: Improved magneto-optic surface plasmon resonance biosensors
  publication-title: Photonics
  doi: 10.3390/photonics5030015
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijleo.2021.167618_bib45
  article-title: Efficiency enhancements in Ag nanoparticles-SiO2-TiO2sandwiched structure via plasmonic effect-enhanced light capturing
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-73
– volume: 15
  start-page: 1489
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib49
  article-title: Highly sensitive SPR sensor based on Ag-ITO-BlueP/TMDCs-graphene heterostructure
  publication-title: Plasmonics
  doi: 10.1007/s11468-020-01165-z
– volume: 27
  start-page: 57
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib34
  article-title: Influence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization
  publication-title: Opt. Rev.
  doi: 10.1007/s10043-019-00564-w
– volume: 13
  start-page: 082801
  year: 2015
  ident: 10.1016/j.ijleo.2021.167618_bib2
  article-title: Reflection-type infrared biosensor based on surface plasmonics in graphene ribbon arrays
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL201513.082801
– volume: 231
  year: 2021
  ident: 10.1016/j.ijleo.2021.167618_bib22
  article-title: A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166378
– volume: 25
  start-page: 955
  year: 2007
  ident: 10.1016/j.ijleo.2021.167618_bib17
  article-title: Transparent conducting zinc oxide thin films doped with aluminum and molybdenum
  publication-title: J. Vac. Sci. Technol. A: Vac., Surf., Films
  doi: 10.1116/1.2735951
– volume: 6
  year: 2016
  ident: 10.1016/j.ijleo.2021.167618_bib33
  article-title: Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures
  publication-title: Sci. Rep.
– volume: 17
  year: 2017
  ident: 10.1016/j.ijleo.2021.167618_bib4
  article-title: Graphene-based materials for biosensors: a review
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s17102161
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib38
  article-title: 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications
  publication-title: Micromachines
  doi: 10.3390/mi11080779
– volume: 359
  start-page: 426
  year: 2016
  ident: 10.1016/j.ijleo.2021.167618_bib43
  article-title: Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2015.10.010
– ident: 10.1016/j.ijleo.2021.167618_bib19
  doi: 10.1007/s12039-010-0006-y
– volume: 88
  year: 2006
  ident: 10.1016/j.ijleo.2021.167618_bib20
  article-title: Zinc oxide nanocomb biosensor for glucose detection
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2210078
– volume: 499
  start-page: 419
  year: 2013
  ident: 10.1016/j.ijleo.2021.167618_bib36
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 6
  start-page: 2
  year: 2016
  ident: 10.1016/j.ijleo.2021.167618_bib37
  article-title: Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures
  publication-title: Sci. Rep.
– volume: 224
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib13
  article-title: TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165525
– volume: 11
  start-page: 1565
  year: 2011
  ident: 10.1016/j.ijleo.2021.167618_bib3
  article-title: Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors
  publication-title: Sensors
  doi: 10.3390/s110201565
– volume: 127
  start-page: 7642
  year: 2016
  ident: 10.1016/j.ijleo.2021.167618_bib39
  article-title: Sensitive optical biosensor based on surface plasmon resonance using ZnO/Au bilayered structure
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.05.103
– volume: 28
  start-page: 2415
  year: 2016
  ident: 10.1016/j.ijleo.2021.167618_bib5
  article-title: Effect of metallic adhesion layer thickness on surface roughness for sensing application
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2016.2597856
– volume: 5
  year: 2016
  ident: 10.1016/j.ijleo.2021.167618_bib7
  article-title: Excitation and propagation of surface plasmon polaritons on a non-structured surface with a permittivity gradient
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/lsa.2016.179
– volume: 124
  start-page: 394
  year: 2018
  ident: 10.1016/j.ijleo.2021.167618_bib41
  article-title: Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1804-1
– volume: 13
  start-page: 196
  year: 2019
  ident: 10.1016/j.ijleo.2021.167618_bib27
  article-title: Sensitivity enhancement using silicon black phosphorous –TMDC coated surface plasmon resonance biosensor
  publication-title: IET Optoelectron.
  doi: 10.1049/iet-opt.2018.5023
– volume: 156
  start-page: 559
  year: 2011
  ident: 10.1016/j.ijleo.2021.167618_bib1
  article-title: Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor
  publication-title: Sens. Actuators, B: Chem.
  doi: 10.1016/j.snb.2011.01.068
– volume: 396
  start-page: 36
  year: 2017
  ident: 10.1016/j.ijleo.2021.167618_bib29
  article-title: Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2017.03.035
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijleo.2021.167618_bib28
  article-title: Emerging 2d materials and their van der waals heterostructures
  publication-title: Nanomaterials
  doi: 10.3390/nano10030579
– ident: 10.1016/j.ijleo.2021.167618_bib8
  doi: 10.1039/9781847558220
– volume: 127
  start-page: 92
  year: 2021
  ident: 10.1016/j.ijleo.2021.167618_bib48
  article-title: 2D-antimonene-based surface plasmon resonance sensor for improvement of sensitivity
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-04248-0
– year: 2021
  ident: 10.1016/j.ijleo.2021.167618_bib26
  article-title: High sensitivity in Ni-based SPR sensor of blue phosphorene/transition metal dichalcogenides hybrid nanostructure
  publication-title: Plasmonics
  doi: 10.1007/s11468-021-01421-w
– volume: 249
  start-page: 542
  year: 2017
  ident: 10.1016/j.ijleo.2021.167618_bib23
  article-title: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor
  publication-title: Sens. Actuators, B: Chem.
  doi: 10.1016/j.snb.2017.04.110
SSID ssj0007707
Score 2.5232427
Snippet In this paper, an ultrasensitive surface plasmon resonance (SPR) biosensor structure (CaF2 Prism /ZnO/Au/BlueP-MoS2/Sensing medium) based on angular...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 167618
SubjectTerms Biosensor
Heterostructure
Limit of detection
Sensitivity
TM field
Zinc oxide
Title Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure
URI https://dx.doi.org/10.1016/j.ijleo.2021.167618
Volume 244
WOSCitedRecordID wos000693419000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: AIEXJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqDSReEFcxbvIDbyWlid3EeZxgY4AYkzqkvkWxk6wJJa6aZFT8CX4F_5Pj-LLA0ARIPDSqnDiJcr4cf8c55zNCz8CQPCQE3rQghQAFKISXElZ4uS8KSiJg_YXoF5uIjo_ZYhGfjEbfbS3M-Sqqa7bdxuv_ampoA2Or0tm_MLc7KTTAfzA6bMHssP1Tw7vSxHQgOdKoVHWzVkReL5W1bSJA022KFF7wNVBpuM8xhOCy7msJeClVP7nRE7Zfy1qM5bbM9EcHvuqg01I28Nt0gIjD93IeAPkEY0mtTGsESyz__QAe6pNitfO2a9uzVBUMuamIOQyjSz1NrTI8XXOvrq2zL7tq_G7ikojkUqf6nkhZueHl1Rdw4Jmun5-Yg820RuC7BDkz12brbV5_5kdDB06mKuQ16tnaZ4c-BMJE66hYpx5oVclLA4Seq6gmZbXqaz8Df-KHUWjGgJ-Vt-f9d2O4WKBE0AI10u8G0SwG57m7_-Zg8dYN-VGk6_Lt3Vl5qz6R8NKlfk-BBrTm9Ba6aeIRvK9xdBuN8voOut7nBYvmLvo2QBO2aMKywAM04QGa-l0aTdigCTs0YYcmrNCEFZpwjyY4dYYVmvAFml4oLOFfsHQPfTw8OH155Jk1PDwB5Kj1xDQSLPQFywktOHh7GucFUFSmdABTOiVpOKNiRgmD0CGjdJr6jIfAySn3Y8EZuY92alnnDxDmHLwIRMcMQgaa5jHP1BdEyjI_LUgU0D0U2MeaCCNwr9ZZWSU2k7FKelskyhaJtsUeeu46rbW-y9WHh9ZeiaGomnomALCrOj78146P0I2L1-Mx2oHnnT9B18R5WzabpwaIPwCchbqP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+analysis+of+sensitivity+enhancement+of+surface+plasmon+resonance+biosensor+with+zinc+oxide+and+blue+phosphorus%2FMoS2+heterostructure&rft.jtitle=Optik+%28Stuttgart%29&rft.au=Singh%2C+Sachin&rft.au=Sharma%2C+Anuj+K.&rft.au=Lohia%2C+Pooja&rft.au=Dwivedi%2C+D.K.&rft.date=2021-10-01&rft.pub=Elsevier+GmbH&rft.issn=0030-4026&rft.eissn=1618-1336&rft.volume=244&rft_id=info:doi/10.1016%2Fj.ijleo.2021.167618&rft.externalDocID=S0030402621012262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4026&client=summon