Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru

Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high-altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geoderma Regional Ročník 43; s. e01026
Hlavní autoři: Carbajal, Carlos, Tumbalobos-Dextre, Merely, Condori-Ataupillco, Tatiana, Cuellar-Condori, Nestor, Gavilan, Carla
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2025
Témata:
ISSN:2352-0094, 2352-0094
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high-altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial heterogeneity of SOCS in mountainous terrain makes accurate quantification and mapping challenging. This study evaluated the performance of geospatial regression and machine learning (ML) approaches for predicting SOCS in two Peruvian Andean basins: Torobamba and Coata. We compared Geographically Weighted Regression (GWR), GWR with collinearity analysis (GWRC), their kriging-adjusted variants, and ML models (Random Forest, Gradient Boosting). Models were built using key SOCS covariates for each basin and validated through 5-fold cross-validation with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2). In Torobamba, GWRC markedly improved performance, reducing the RMSE by 79–90 % and achieving R2 up to 0.99. In contrast, Coata, showed only modest improvements (RMSE reductions of 7.8–9.8 %, R2 = 0.30–0.39). ML models performed poorly (negative R2), likely due to feature selection, parameter tuning, or limited sample size. Overall, locally weighted regression approaches (GWRK/GWRCK) outperformed conventional ML methods for SOCS prediction in complex mountain environments, particularly with small to medium sample sizes. These results highlight the importance of accounting for spatial non-stationarity in SOCS and provide methodological guidance for SOCS mapping in Andean ecosystems.
AbstractList Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high-altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial heterogeneity of SOCS in mountainous terrain makes accurate quantification and mapping challenging. This study evaluated the performance of geospatial regression and machine learning (ML) approaches for predicting SOCS in two Peruvian Andean basins: Torobamba and Coata. We compared Geographically Weighted Regression (GWR), GWR with collinearity analysis (GWRC), their kriging-adjusted variants, and ML models (Random Forest, Gradient Boosting). Models were built using key SOCS covariates for each basin and validated through 5-fold cross-validation with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2). In Torobamba, GWRC markedly improved performance, reducing the RMSE by 79–90 % and achieving R2 up to 0.99. In contrast, Coata, showed only modest improvements (RMSE reductions of 7.8–9.8 %, R2 = 0.30–0.39). ML models performed poorly (negative R2), likely due to feature selection, parameter tuning, or limited sample size. Overall, locally weighted regression approaches (GWRK/GWRCK) outperformed conventional ML methods for SOCS prediction in complex mountain environments, particularly with small to medium sample sizes. These results highlight the importance of accounting for spatial non-stationarity in SOCS and provide methodological guidance for SOCS mapping in Andean ecosystems.
ArticleNumber e01026
Author Cuellar-Condori, Nestor
Tumbalobos-Dextre, Merely
Condori-Ataupillco, Tatiana
Gavilan, Carla
Carbajal, Carlos
Author_xml – sequence: 1
  givenname: Carlos
  surname: Carbajal
  fullname: Carbajal, Carlos
  email: cmcarbajal@gmail.com
  organization: Dirección de Servicios Estratégicos Agrarios, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
– sequence: 2
  givenname: Merely
  surname: Tumbalobos-Dextre
  fullname: Tumbalobos-Dextre, Merely
  organization: Dirección de Servicios Estratégicos Agrarios, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
– sequence: 3
  givenname: Tatiana
  surname: Condori-Ataupillco
  fullname: Condori-Ataupillco, Tatiana
  organization: Dirección de Servicios Estratégicos Agrarios, Instituto Nacional de Innovación Agraria (INIA), Ayacucho 05002, Peru
– sequence: 4
  givenname: Nestor
  surname: Cuellar-Condori
  fullname: Cuellar-Condori, Nestor
  organization: Dirección de Servicios Estratégicos Agrarios, Instituto Nacional de Innovación Agraria (INIA), Puno 21001, Peru
– sequence: 5
  givenname: Carla
  surname: Gavilan
  fullname: Gavilan, Carla
  email: cg1141@envsci.rutgers.edu
  organization: Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA
BookMark eNp9kM9KAzEYxINUsNa-gYc8gLsm2c12cxFK8R8UFCx4DMmXb0tqTUqyCr69W9eDJ08zDMww_M7JJMSAhFxyVnLGm-tducXoUi4FE7JExploTshUVFIUjKl68sefkXnOO8aYULJaNGJKXl8OpvdmTw8JnYfex0BjR3P0exrT1gQPFEyyQ5z7CG-ZGkgxZwox9Mnk3octXQaHJlBrsg_5ij5j-rggp53ZZ5z_6oxs7m43q4di_XT_uFquC6hY1Re2Q9cpdJV0IEEhGokNgFVcLEQ3hK21XDFmZV1L17YCuRLKtcCNXSisZqQeZ39OJez0Ifl3k740Z_qIR-_0iEcf8egRz1C7GWs4XPv0mHQGjwEGBAmh1y76_we-AQAtdDg
Cites_doi 10.1068/a38325
10.1016/j.bdr.2017.07.003
10.1016/0034-4257(88)90106-X
10.1016/j.geomorph.2010.11.008
10.1016/j.still.2024.106021
10.4081/gh.2024.1271
10.1016/j.ecolind.2024.112495
10.1002/saj2.20189
10.1016/S0034-4257(96)00072-7
10.3390/w11050910
10.1016/S0034-4257(02)00096-2
10.3390/land12101841
10.1007/s10109-022-00387-5
10.1016/S0016-7061(03)00223-4
10.1016/j.catena.2023.107409
10.18041/entramado.2017v13n1.25112
10.1186/s13021-021-00195-2
10.1038/s41598-024-77050-0
10.1371/journal.pone.0153673
10.1016/j.catena.2019.104399
10.1016/j.envsoft.2010.06.011
10.1016/j.scitotenv.2019.02.420
10.1016/j.geoderma.2015.07.017
10.1186/s12942-017-0085-9
10.1016/0034-4257(91)90009-U
10.1007/s11769-017-0906-6
10.3832/ifor3705-014
10.3390/soilsystems6040092
10.1016/j.geoderma.2016.10.013
10.1186/s41610-019-0118-3
10.1016/B978-0-12-405942-9.00001-3
10.7717/peerj.5518
10.1186/s12302-024-00981-y
10.1590/S0103-90162011000500010
10.18637/jss.v063.i17
10.3390/rs12071095
10.5194/soil-10-619-2024
10.1007/s10021-024-00928-7
10.3389/fdata.2020.528441
10.3390/s25082373
10.1016/j.foreco.2014.01.003
10.1007/s10109-014-0199-6
10.2136/sssaj2009.0158
10.1007/s10342-023-01593-6
10.1177/1536867X20909688
10.3389/fenvs.2025.1573438
10.1016/0273-1177(89)90481-X
10.1016/j.geoderma.2016.01.034
10.1139/facets-2023-0040
10.1111/j.1538-4632.1996.tb00936.x
10.3390/rs14205078
10.1214/aos/1013203451
10.3389/fpls.2024.1410418
10.3390/rs12142234
10.1017/S0021859618000709
10.1186/s40323-024-00277-z
10.1016/j.scitotenv.2016.03.085
10.3390/agriculture15090910
10.5194/gmd-8-1991-2015
10.5194/soil-7-377-2021
10.3390/rs17061086
10.1017/eds.2024.6
10.24057/2071-9388-2019-154
10.1016/j.rse.2017.06.031
10.1016/j.agrformet.2023.109652
10.1016/j.apgeochem.2011.04.014
10.1016/j.geoderma.2012.05.022
10.1016/j.cageo.2008.10.011
10.1016/j.geoderma.2018.07.026
10.1371/journal.pone.0226224
10.3389/fenvs.2025.1580085
10.1038/srep04062
10.1080/13658816.2014.959522
10.2134/jeq2017.04.0178
10.3390/rs13234825
10.1023/A:1010933404324
10.1002/ecm.1614
10.3390/land13060796
10.1002/joc.5086
10.1016/j.geoderma.2021.114981
10.1016/j.ecolind.2017.02.010
10.1016/j.geoderma.2021.115567
10.1609/aaai.v38i10.28997
10.1016/S0034-4257(96)00067-3
10.1016/j.geoderma.2016.06.033
10.1016/j.ecolind.2022.109420
10.3390/rs16091510
10.9734/BJMCS/2014/6050
10.1109/TNNLS.2020.3009776
10.3390/f14101970
10.1068/a301905
10.2747/1548-1603.49.6.915
10.1016/j.jhazmat.2024.136285
10.1007/s11135-006-9018-6
10.1016/j.catena.2023.107225
10.1126/science.1097396
10.3390/land9120487
10.1016/j.ecoinf.2025.103057
10.1016/j.cageo.2005.12.009
10.3390/rs9121208
10.1016/j.geoderma.2024.116953
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.geodrs.2025.e01026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2025_e01026
S2352009425001117
GroupedDBID --M
0R~
4.4
457
4G.
6I.
7-5
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c303t-bfedf9ed35dc5c9eea5e6ccb91272f5dc8bb1900b5445d882e1929d8c1ab79e3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001618921900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-0094
IngestDate Thu Nov 27 01:03:37 EST 2025
Wed Dec 10 14:22:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Andes
Machine learning regression algorithms
Soil organic carbon stock
Digital soil mapping
Geographically weighted regression
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-bfedf9ed35dc5c9eea5e6ccb91272f5dc8bb1900b5445d882e1929d8c1ab79e3
OpenAccessLink https://dx.doi.org/10.1016/j.geodrs.2025.e01026
ParticipantIDs crossref_primary_10_1016_j_geodrs_2025_e01026
elsevier_sciencedirect_doi_10_1016_j_geodrs_2025_e01026
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Szakács, Cerri, Herpin, Bernoux (bb0515) 2011; 68
Wang, Abramowitz, Wang, Pitman, Viscarra Rossel (bb0560) 2024; 10
Zhang, Wan, Zhou, Wu, Liu (bb0625) 2022; 143
Imran, Stein, Zurita-Milla (bb0290) 2015; 29
Emamgholizadeh, Shahsavani, Eslami (bb0155) 2017; 27
Faisal, Pramoedyo, Astutik, Efendi (bb0165) 2025; 12
Czarnota, Wheeler, Gennings (bb0130) 2015; 14
Rikimaru, Roy, Miyatake (bb0465) 2002; 43
Peng, Chahal, Hooker, Van Eerd (bb0430) 2024; 238
Román-Sánchez, Vanwalleghem, Peña, Laguna, Giráldez (bb0470) 2018; 311
Belyadi, Haghighat (bb0050) 2021
Guo, Luo, Zhangyang, Zeng, Wang, Zhang (bb0230) 2018; 156
Carbajal, Ramírez, Turin, Schaeffer, Konkel, Ninanya, Rinza, De Mendiburu, Zorogastua, Villaorduña, Quiroz (bb0085) 2024
Wei, Shao, Gale, Li (bb0565) 2014; 4
Yigini, Panagos (bb0595) 2016; 557–558
IUSS Working Group (bb0295) 2007
Zhang, Tang, Xu, Kiely (bb0620) 2011; 26
Schwanghart, Jarmer (bb0500) 2011; 126
Tahmouresi, Niksokhan, Ehsani (bb0525) 2024; 14
Rouse, Haas, Schell, Deering (bb0480) 1974; vol. 1
Schonlau, Zou (bb0495) 2020; 20
Fick, Hijmans (bb0170) 2017; 37
Wang, Li, Zou, Wu, Xu, Hu, Li, Ding, Zhao, Li, Wu (bb0555) 2020; 187
Cao, Zhu, Luo, Wang, Tang, Zhang, Guo (bb0080) 2022; 14
Kumar, Moharana, Jena, Malyan, Sharma, Fagodiya, Shabnam, Jigyasu, Kumari, Doss (bb0325) 2023; 12
Chen, Wang, Zhu (bb0110) 2024; 12
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bb0425) 2011; 12
Kuang, Chen (bb0315) 2025; 13
Rasel, Groen, Hussin, Diti (bb0460) 2017; 59
Fisher, Rudin, Dominici (bb0175) 2019; 20
Ottoy, De Vos, Sindayihebura, Hermy, Van Orshoven (bb0415) 2017; 77
Baret, Guyot (bb0035) 1991; 35
Huete (bb0280) 1988; 25
Fotheringham, Charlton, Brunsdon (bb0180) 1998; 30
ISO (bib632) 2017
Munoz, Faz, Mermut (bb0400) 2015
Gao (bb0190) 1996; 58
Weku, Pramoedyo, Widodo, Fitriani (bb0570) 2022; 15
Minasny, McBratney Alex (bb0375) 2016; 264
Liu, Wang, Dong, Li, Wang, Shangguan, Qu, Deng (bb0355) 2023; 229
Bravo-Medina, Torres-Navarrete, Arteaga-Crespo, Garcia-Quintana, Reyes-Morán, Changoluisa-Vargas, Paguay-Sayay (bb0060) 2023; 142
Hounkpatin, Stendahl, Lundblad, Karltun (bb0275) 2021; 7
Mishra, Lal, Liu, Van Meirvenne (bb0385) 2010; 74
Sun, Ao, Jia, Chen, Xu (bb0510) 2021; 14
Hengl, Sorenson, Parente, Cornish, Battigelli, Bonannella, Gorzelak, Nichols (bb0255) 2023; 8
Pylianidis, Kallenberg, Athanasiadis (bb0450) 2024; 3
Bivand, Yu (bb0055) 2006
John, Abraham Isong, Michael Kebonye, Okon Ayito, Chapman Agyeman, Marcus Afu (bib633) 2020; 9
Vallejos-Torres, Gaona-Jimenez, Pichis-García, Ordoñez, García-Gonzales, Quinteros, Lozano, Saavedra-Ramírez, Tuesta-Hidalgo, Reategui, Macedo-Córdova, Baselly-Villanueva, Marín (bb0545) 2024; 15
Bárcena, Menéndez, Palacios, Tusell (bb0030) 2014; 16
Zhang, Ji, Li, Deng, Xu (bb0630) 2025; 17
Batjes (bb0040) 2016; 269
Kiani, Sartorius, Lau, Bergquist (bb0305) 2024; 19
Hollister, Shah, Nowosad, Robitaille, Beck, Johnson (bb0270) 2023
Thrift, Kitchin (bb0530) 2009
Ghaderpour, Mazzanti, Bozzano, Scarascia Mugnozza (bb0210) 2024; 13
Ayala Izurieta, Márquez, García, Jara Santillán, Sisti, Pasqualotto, Van Wittenberghe, Delegido (bb0025) 2021; 16
Li, Zhao, Miaomiao, Wang (bb0345) 2010; 25
Zhang, Jung (bb0615) 2021; 32
Devkota, Hatfield, Chintala (bb0140) 2014; 4
Leong, Yue (bb0340) 2017; 16
Cutting, Atzberger, Gholizadeh, Robinson, Mendoza-Ulloa, Marti-Cardona (bb0125) 2024; 16
Roudier (bb0475) 2012
Sartika, Suryani (bb0490) 2020
Triantakonstantis, Karakostas (bb0535) 2025; 15
Castañeda-Martín, Montes-Pulido (bb0090) 2017; 13
Tyralis, Papacharalampous, Langousis (bb0540) 2019; 11
Adhikari, Owens, Libohova, Miller, Wills, Nemecek (bb0010) 2019; 667
Brunsdon, Charlton, Harris (bb0075) 2012
Ließ, Schmidt, Glaser (bb0350) 2016; 11
Parastatidis, Mitraka, Chrysoulakis, Abrams (bb0420) 2017; 9
Zanaga, Van De Kerchove, Daems, De Keersmaecker, Brockmann, Kirches, Wevers, Cartus, Santoro, Fritz, Lesiv, Herold, Tsendbazar, Xu, Ramoino, Arino (bb0600) 2022
R Core Team (bb0455) 2023
Taghizadeh-Mehrjardi, Schmidt, Amirian-Chakan, Rentschler, Zeraatpisheh, Sarmadian, Valavi, Davatgar, Behrens, Scholten (bb0520) 2020; 12
Chamma, Thirion, Engemann (bb0095) 2024; 38
Minasny, McBratney (bb0370) 2006; 32
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bb0225) 2017; 202
Wang, Zhang, Li (bb0550) 2012; 49
Friedman (bb0185) 2001; 29
Breiman (bb0065) 2001; 45
Priyatikanto, Lu, Dash, Sheffield (bb0440) 2023; 341
Emadi, Taghizadeh-Mehrjardi, Cherati, Danesh, Mosavi, Scholten (bb0150) 2020; 12
Hijmans, Barbosa, Ghosh, Mandel (bb0265) 2021
Hengl, Nussbaum, Wright, Heuvelink, Gräler (bb0250) 2018; 6
Halder, Srivastava, Ghosh, Nabik, Pan, Chatterjee, Bisai, Pal, Zeng, Ewert, Gaiser, Pande, Islam, Alam, Islam (bb0240) 2024; 36
Lal (bb0330) 2004; 304
Song, Huang, Chen, Li, Mao, Huang, Zhao, Lv, Yu, Du (bb0505) 2024; 166
Gaspard, Kim, Chun (bb0200) 2019; 43
Jenny (bb0300) 1994
Lamsaf, Carrilho, Neves, Proença (bb0335) 2025; 25
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0285) 2002; 83
Hiemstra, Pebesma, Twenhöfel, Heuvelink (bb0260) 2009; 35
Marsett, Qi, Heilman, Society for Range Management (bb0360) 2006; 59
Dorji, Odeh, Field, Baillie (bb0145) 2014; 318
Genuer, Poggi, Tuleau-Malot, Villa-Vialaneix (bb0205) 2017; 9
Kumar, Lal, Liu (bb0320) 2012; 189–190
Wu, Jia, Wang, Sun, Zhao, Lu (bb0585) 2023; 14
Escadafal (bb0160) 1989; 9
García Lino, Pfanzelt, Domic, Hensen, Schittek, Meneses, Bader (bb0195) 2024; 94
ISO (bib631) 1996
Yang, Deng, Tang, Luo (bb0590) 2022; 25
O’Brien (bb0410) 2007; 41
Pouladi, Gholizadeh, Khosravi, Borůvka (bb0435) 2023; 232
Moura-Bueno, Dalmolin, Horst-Heinen, Grunwald, Ten Caten (bb0395) 2021; 393
Chen, Arrouays, Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Meersmans, Richer-de-Forges, Walter (bb0105) 2022; 409
Zeng, Yang, Zhu, Rossiter, Liu, Liu, Qin, Wang (bb0605) 2016; 281
Andrade, Segura, Canal-Daza (bb0020) 2022; 13
Beltrán-Dávalos, Ayala Izurieta, Echeverria Guadalupe, Van Wittenberghe, Delegido, Otero Pérez, Merino (bb0045) 2022; 6
McBratney, Mendonça Santos, Minasny (bb0365) 2003; 117
Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco, Wollschläger, Vogel, Kögel-Knabner (bb0580) 2019; 333
Adeniyi, Brenning, Maerker (bb0005) 2024; 448
Chen, Qu, Zhang, Xie, Zhao, Huang (bb0100) 2021; 85
Zeng, Shi, Liu, Yang, Zhang, Wang (bb0610) 2024; 480
Pulgar Vidal (bb0445) 2014
Kmoch, Harrison, Choi, Uuemaa (bb0310) 2025; 86
Anderson, Marengo, Villalba, Halloy, Young, Cordero, Gast, Jaimes, Ruiz Carrascal (bb0015) 2011
Han, Wu, Qi, Li, Chen, Wang, Zhu, Li (bb0245) 2025; 13
Gollini, Lu, Charlton, Brunsdon, Harris (bb0220) 2015; 63
Mishra, Gautam, Riley, Hoffman (bb0390) 2020; 3
Wheeler (bb0575) 2007; 39
Minasny, McBratney, Malone, Wheeler (bb0380) 2013
Gitelson, Kaufman, Merzlyak (bb0215) 1996; 58
Brunsdon, Fotheringham, Charlton (bb0070) 1996; 28
Conrad, Bechtel, Bock, Dietrich, Fischer, Gerlitz, Wehberg, Wichmann, Böhner (bb0115) 2015; 8
Deng, Zhu, Tang, Shangguan (bb0135) 2016; 5
Costa, de Tassinari, Pinheiro, Beutler, dos Anjos (bb0120) 2018; 47
Habib, Habib, Alibrahim (bb0235) 2024; 11
Naimi, Ayoubi, Zeraatpisheh, Dematte (bb0405) 2021; 13
Santos, Graw, Bonilla (bb0485) 2019; 14
Yigini (10.1016/j.geodrs.2025.e01026_bb0595) 2016; 557–558
Beltrán-Dávalos (10.1016/j.geodrs.2025.e01026_bb0045) 2022; 6
Han (10.1016/j.geodrs.2025.e01026_bb0245) 2025; 13
Kumar (10.1016/j.geodrs.2025.e01026_bb0325) 2023; 12
Moura-Bueno (10.1016/j.geodrs.2025.e01026_bb0395) 2021; 393
Fotheringham (10.1016/j.geodrs.2025.e01026_bb0180) 1998; 30
Roudier (10.1016/j.geodrs.2025.e01026_bb0475) 2012
Czarnota (10.1016/j.geodrs.2025.e01026_bb0130) 2015; 14
Sartika (10.1016/j.geodrs.2025.e01026_bb0490) 2020
Gitelson (10.1016/j.geodrs.2025.e01026_bb0215) 1996; 58
Kumar (10.1016/j.geodrs.2025.e01026_bb0320) 2012; 189–190
McBratney (10.1016/j.geodrs.2025.e01026_bb0365) 2003; 117
Baret (10.1016/j.geodrs.2025.e01026_bb0035) 1991; 35
Pylianidis (10.1016/j.geodrs.2025.e01026_bb0450) 2024; 3
Genuer (10.1016/j.geodrs.2025.e01026_bb0205) 2017; 9
Minasny (10.1016/j.geodrs.2025.e01026_bb0380) 2013
Wei (10.1016/j.geodrs.2025.e01026_bb0565) 2014; 4
Gaspard (10.1016/j.geodrs.2025.e01026_bb0200) 2019; 43
Ließ (10.1016/j.geodrs.2025.e01026_bb0350) 2016; 11
Cao (10.1016/j.geodrs.2025.e01026_bb0080) 2022; 14
Ottoy (10.1016/j.geodrs.2025.e01026_bb0415) 2017; 77
Chamma (10.1016/j.geodrs.2025.e01026_bb0095) 2024; 38
Szakács (10.1016/j.geodrs.2025.e01026_bb0515) 2011; 68
Kuang (10.1016/j.geodrs.2025.e01026_bb0315) 2025; 13
Wang (10.1016/j.geodrs.2025.e01026_bb0555) 2020; 187
Weku (10.1016/j.geodrs.2025.e01026_bb0570) 2022; 15
Hengl (10.1016/j.geodrs.2025.e01026_bb0250) 2018; 6
Brunsdon (10.1016/j.geodrs.2025.e01026_bb0070) 1996; 28
Minasny (10.1016/j.geodrs.2025.e01026_bb0370) 2006; 32
Priyatikanto (10.1016/j.geodrs.2025.e01026_bb0440) 2023; 341
Adhikari (10.1016/j.geodrs.2025.e01026_bb0010) 2019; 667
Marsett (10.1016/j.geodrs.2025.e01026_bb0360) 2006; 59
Liu (10.1016/j.geodrs.2025.e01026_bb0355) 2023; 229
Castañeda-Martín (10.1016/j.geodrs.2025.e01026_bb0090) 2017; 13
Emadi (10.1016/j.geodrs.2025.e01026_bb0150) 2020; 12
Huete (10.1016/j.geodrs.2025.e01026_bb0285) 2002; 83
Devkota (10.1016/j.geodrs.2025.e01026_bb0140) 2014; 4
Wang (10.1016/j.geodrs.2025.e01026_bb0550) 2012; 49
Bivand (10.1016/j.geodrs.2025.e01026_bb0055) 2006
Costa (10.1016/j.geodrs.2025.e01026_bb0120) 2018; 47
Tyralis (10.1016/j.geodrs.2025.e01026_bb0540) 2019; 11
Naimi (10.1016/j.geodrs.2025.e01026_bb0405) 2021; 13
Leong (10.1016/j.geodrs.2025.e01026_bb0340) 2017; 16
Faisal (10.1016/j.geodrs.2025.e01026_bb0165) 2025; 12
Imran (10.1016/j.geodrs.2025.e01026_bb0290) 2015; 29
Song (10.1016/j.geodrs.2025.e01026_bb0505) 2024; 166
Schonlau (10.1016/j.geodrs.2025.e01026_bb0495) 2020; 20
Bárcena (10.1016/j.geodrs.2025.e01026_bb0030) 2014; 16
Zhang (10.1016/j.geodrs.2025.e01026_bb0630) 2025; 17
Carbajal (10.1016/j.geodrs.2025.e01026_bb0085) 2024
Chen (10.1016/j.geodrs.2025.e01026_bb0105) 2022; 409
Tahmouresi (10.1016/j.geodrs.2025.e01026_bb0525) 2024; 14
Chen (10.1016/j.geodrs.2025.e01026_bb0110) 2024; 12
Chen (10.1016/j.geodrs.2025.e01026_bb0100) 2021; 85
Parastatidis (10.1016/j.geodrs.2025.e01026_bb0420) 2017; 9
Halder (10.1016/j.geodrs.2025.e01026_bb0240) 2024; 36
Zhang (10.1016/j.geodrs.2025.e01026_bb0625) 2022; 143
Gollini (10.1016/j.geodrs.2025.e01026_bb0220) 2015; 63
Emamgholizadeh (10.1016/j.geodrs.2025.e01026_bb0155) 2017; 27
Peng (10.1016/j.geodrs.2025.e01026_bb0430) 2024; 238
Wang (10.1016/j.geodrs.2025.e01026_bb0560) 2024; 10
Escadafal (10.1016/j.geodrs.2025.e01026_bb0160) 1989; 9
Hiemstra (10.1016/j.geodrs.2025.e01026_bb0260) 2009; 35
Hollister (10.1016/j.geodrs.2025.e01026_bb0270) 2023
Santos (10.1016/j.geodrs.2025.e01026_bb0485) 2019; 14
Pulgar Vidal (10.1016/j.geodrs.2025.e01026_bb0445) 2014
Yang (10.1016/j.geodrs.2025.e01026_bb0590) 2022; 25
ISO (10.1016/j.geodrs.2025.e01026_bib632) 2017
Zeng (10.1016/j.geodrs.2025.e01026_bb0610) 2024; 480
Fick (10.1016/j.geodrs.2025.e01026_bb0170) 2017; 37
ISO (10.1016/j.geodrs.2025.e01026_bib631) 1996
Zanaga (10.1016/j.geodrs.2025.e01026_bb0600) 2022
Wheeler (10.1016/j.geodrs.2025.e01026_bb0575) 2007; 39
IUSS Working Group (10.1016/j.geodrs.2025.e01026_bb0295) 2007
Pouladi (10.1016/j.geodrs.2025.e01026_bb0435) 2023; 232
Guo (10.1016/j.geodrs.2025.e01026_bb0230) 2018; 156
Batjes (10.1016/j.geodrs.2025.e01026_bb0040) 2016; 269
Kiani (10.1016/j.geodrs.2025.e01026_bb0305) 2024; 19
Adeniyi (10.1016/j.geodrs.2025.e01026_bb0005) 2024; 448
Hijmans (10.1016/j.geodrs.2025.e01026_bb0265) 2021
Zhang (10.1016/j.geodrs.2025.e01026_bb0615) 2021; 32
Gorelick (10.1016/j.geodrs.2025.e01026_bb0225) 2017; 202
John (10.1016/j.geodrs.2025.e01026_bib633) 2020; 9
Friedman (10.1016/j.geodrs.2025.e01026_bb0185) 2001; 29
Breiman (10.1016/j.geodrs.2025.e01026_bb0065) 2001; 45
Rasel (10.1016/j.geodrs.2025.e01026_bb0460) 2017; 59
Anderson (10.1016/j.geodrs.2025.e01026_bb0015) 2011
Huete (10.1016/j.geodrs.2025.e01026_bb0280) 1988; 25
Fisher (10.1016/j.geodrs.2025.e01026_bb0175) 2019; 20
Mishra (10.1016/j.geodrs.2025.e01026_bb0385) 2010; 74
Triantakonstantis (10.1016/j.geodrs.2025.e01026_bb0535) 2025; 15
Brunsdon (10.1016/j.geodrs.2025.e01026_bb0075) 2012
Wu (10.1016/j.geodrs.2025.e01026_bb0585) 2023; 14
Rouse (10.1016/j.geodrs.2025.e01026_bb0480) 1974; vol. 1
Hounkpatin (10.1016/j.geodrs.2025.e01026_bb0275) 2021; 7
Román-Sánchez (10.1016/j.geodrs.2025.e01026_bb0470) 2018; 311
Lal (10.1016/j.geodrs.2025.e01026_bb0330) 2004; 304
Lamsaf (10.1016/j.geodrs.2025.e01026_bb0335) 2025; 25
Andrade (10.1016/j.geodrs.2025.e01026_bb0020) 2022; 13
Gao (10.1016/j.geodrs.2025.e01026_bb0190) 1996; 58
Bravo-Medina (10.1016/j.geodrs.2025.e01026_bb0060) 2023; 142
Li (10.1016/j.geodrs.2025.e01026_bb0345) 2010; 25
Thrift (10.1016/j.geodrs.2025.e01026_bb0530) 2009
Wiesmeier (10.1016/j.geodrs.2025.e01026_bb0580) 2019; 333
Conrad (10.1016/j.geodrs.2025.e01026_bb0115) 2015; 8
Ghaderpour (10.1016/j.geodrs.2025.e01026_bb0210) 2024; 13
Rikimaru (10.1016/j.geodrs.2025.e01026_bb0465) 2002; 43
Kmoch (10.1016/j.geodrs.2025.e01026_bb0310) 2025; 86
Dorji (10.1016/j.geodrs.2025.e01026_bb0145) 2014; 318
Habib (10.1016/j.geodrs.2025.e01026_bb0235) 2024; 11
Cutting (10.1016/j.geodrs.2025.e01026_bb0125) 2024; 16
Sun (10.1016/j.geodrs.2025.e01026_bb0510) 2021; 14
Minasny (10.1016/j.geodrs.2025.e01026_bb0375) 2016; 264
García Lino (10.1016/j.geodrs.2025.e01026_bb0195) 2024; 94
Pedregosa (10.1016/j.geodrs.2025.e01026_bb0425) 2011; 12
Ayala Izurieta (10.1016/j.geodrs.2025.e01026_bb0025) 2021; 16
Deng (10.1016/j.geodrs.2025.e01026_bb0135) 2016; 5
Zeng (10.1016/j.geodrs.2025.e01026_bb0605) 2016; 281
Jenny (10.1016/j.geodrs.2025.e01026_bb0300) 1994
Schwanghart (10.1016/j.geodrs.2025.e01026_bb0500) 2011; 126
O’Brien (10.1016/j.geodrs.2025.e01026_bb0410) 2007; 41
Taghizadeh-Mehrjardi (10.1016/j.geodrs.2025.e01026_bb0520) 2020; 12
Munoz (10.1016/j.geodrs.2025.e01026_bb0400) 2015
Mishra (10.1016/j.geodrs.2025.e01026_bb0390) 2020; 3
Belyadi (10.1016/j.geodrs.2025.e01026_bb0050) 2021
R Core Team (10.1016/j.geodrs.2025.e01026_bb0455) 2023
Zhang (10.1016/j.geodrs.2025.e01026_bb0620) 2011; 26
Hengl (10.1016/j.geodrs.2025.e01026_bb0255) 2023; 8
Vallejos-Torres (10.1016/j.geodrs.2025.e01026_bb0545) 2024; 15
References_xml – start-page: 1
  year: 2013
  end-page: 47
  ident: bb0380
  article-title: Digital mapping of soil carbon
  publication-title: Advances in Agronomy
– volume: 187
  year: 2020
  ident: bb0555
  article-title: Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan plateau
  publication-title: CATENA
– volume: 15
  start-page: 84
  year: 2022
  end-page: 90
  ident: bb0570
  article-title: Optimal bandwidth for geographically weighted regression to model the spatial dependency of land prices in Manado, North Sulawesi Province
  publication-title: Indones. Geogr. Environ. Sustain.
– volume: 156
  start-page: 774
  year: 2018
  end-page: 784
  ident: bb0230
  article-title: Spatial modelling of soil organic carbon stocks with combined principal component analysis and geographically weighted regression
  publication-title: J. Agric. Sci.
– volume: 4
  start-page: 1
  year: 2014
  end-page: 21
  ident: bb0140
  article-title: Effect of sample size on the performance of ordinary least squares and geographically weighted regression
  publication-title: Br. J. Math. Comput. Sci.
– volume: 667
  start-page: 833
  year: 2019
  end-page: 845
  ident: bb0010
  article-title: Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 127
  year: 2016
  end-page: 138
  ident: bb0135
  article-title: Global patterns of the effects of land-use changes on soil carbon stocks
  publication-title: Glob. Ecol. Conserv.
– volume: 333
  start-page: 149
  year: 2019
  end-page: 162
  ident: bb0580
  article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales
  publication-title: Geoderma
– start-page: 1
  year: 2011
  end-page: 18
  ident: bb0015
  article-title: Consequences of climate change for ecosystems and ecosystem services in the tropical Andes
  publication-title: Climate Change and Biodiversity in the Tropical Andes
– volume: 41
  start-page: 673
  year: 2007
  end-page: 690
  ident: bb0410
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quant.
– volume: 16
  start-page: 1510
  year: 2024
  ident: bb0125
  article-title: Remote quantification of soil organic carbon: role of topography in the intra-field distribution
  publication-title: Remote Sens
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bb0280
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 32
  year: 2021
  ident: bb0025
  article-title: Multi-predictor mapping of soil organic carbon in the alpine tundra: a case study for the central Ecuadorian Páramo
  publication-title: Carbon Balance Manag.
– volume: 409
  year: 2022
  ident: bb0105
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review
  publication-title: Geoderma
– volume: 47
  start-page: 718
  year: 2018
  end-page: 725
  ident: bb0120
  article-title: Mapping soil organic carbon and organic matter fractions by geographically weighted regression
  publication-title: J. Environ. Qual.
– volume: 480
  year: 2024
  ident: bb0610
  article-title: A geographically weighted neural network model for digital soil mapping of heavy metal copper in coastal cities
  publication-title: J. Hazard. Mater.
– volume: 14
  year: 2023
  ident: bb0585
  article-title: Estimation of above-ground carbon storage and light saturation value in northeastern China’s natural forests using different spatial regression models
  publication-title: Forests
– volume: 14
  start-page: 353
  year: 2021
  end-page: 361
  ident: bb0510
  article-title: A geographically weighted deep neural network model for research on the spatial distribution of the down dead wood volume in Liangshui National Nature Reserve (China)
  publication-title: iForest
– volume: 63
  year: 2015
  ident: bb0220
  article-title: GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models
  publication-title: J. Stat. Softw.
– volume: 68
  start-page: 574
  year: 2011
  end-page: 581
  ident: bb0515
  article-title: Assessing soil carbon stocks under pastures through orbital remote sensing
  publication-title: Sci. Agric. (Piracicaba, Braz.)
– volume: 14
  start-page: 25454
  year: 2024
  ident: bb0525
  article-title: Enhancing spatial resolution of satellite soil moisture data through stacking ensemble learning techniques
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1
  year: 2023
  end-page: 17
  ident: bb0255
  article-title: Assessment of soil organic carbon stocks in Alberta using 2-scale sampling and 3D predictive soil mapping
  publication-title: FACETS
– volume: 6
  year: 2018
  ident: bb0250
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
– year: 2024
  ident: bb0085
  article-title: From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a peruvian andean highlands: a machine learning modeling approach
  publication-title: Ecosystems
– volume: vol. 1
  year: 1974
  ident: bb0480
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA. Goddard Space Flight Center 3d ERTS-1 Symp
– volume: 94
  year: 2024
  ident: bb0195
  article-title: Carbon dynamics in high-Andean tropical cushion peatlands: a review of geographic patterns and potential drivers
  publication-title: Ecol. Monogr.
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: bb0330
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 59
  start-page: 157
  year: 2017
  end-page: 166
  ident: bb0460
  article-title: Proxies for soil organic carbon derived from remote sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: bb0285
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 1991
  year: 2015
  end-page: 2007
  ident: bb0115
  article-title: System for automated geoscientific analyses (SAGA) v. 2.1.4
  publication-title: Geosci. Model Dev.
– year: 2007
  ident: bb0295
  article-title: World Reference Base for Soil Resources 2006, First Update 2007, World Soil Resources Reports no. 103. ed
– volume: 9
  start-page: 487
  year: 2020
  ident: bib633
  article-title: Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil
  publication-title: Land
– volume: 15
  start-page: 910
  year: 2025
  ident: bb0535
  article-title: Soil organic carbon monitoring and modelling via machine learning methods using soil and remote sensing data
  publication-title: Agriculture
– volume: 3
  year: 2024
  ident: bb0450
  article-title: Domain adaptation with transfer learning for pasture digital twins
  publication-title: Environ. Data Sci.
– volume: 43
  start-page: 39
  year: 2002
  end-page: 47
  ident: bb0465
  article-title: Tropical forest cover density mapping
  publication-title: Trop. Ecol.
– volume: 26
  start-page: 1239
  year: 2011
  end-page: 1248
  ident: bb0620
  article-title: Towards spatial geochemical modelling: use of geographically weighted regression for mapping soil organic carbon contents in Ireland
  publication-title: Appl. Geochem.
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  ident: bb0170
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– year: 2012
  ident: bb0475
  article-title: clhs: Conditioned Latin Hypercube Sampling
– volume: 166
  year: 2024
  ident: bb0505
  article-title: Multi-scale geographically weighted regression estimation of carbon storage on coniferous forests considering residual distribution using remote sensing data
  publication-title: Ecol. Indic.
– volume: 13
  year: 2025
  ident: bb0315
  article-title: Spatial heterogeneity of forest carbon stocks in the Xiangjiang river basin urban agglomeration: analysis and assessment based on the multiscale geographically weighted regression (MGWR) model
  publication-title: Front. Environ. Sci.
– volume: 318
  start-page: 91
  year: 2014
  end-page: 102
  ident: bb0145
  article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, eastern Himalayas
  publication-title: For. Ecol. Manag.
– year: 1994
  ident: bb0300
  article-title: Factors of Soil Formation: A System of Quantitative Pedology, Unabridged, Unaltered Republ., New Foreword. Ed, Dover Books on Earth Sciences
– volume: 11
  start-page: 26
  year: 2024
  ident: bb0235
  article-title: Prediction and parametric assessment of soil one-dimensional vertical free swelling potential using ensemble machine learning models
  publication-title: Adv. Model. Simul. Eng. Sci.
– start-page: 169
  year: 2021
  end-page: 295
  ident: bb0050
  article-title: Chapter 5 - supervised learning
  publication-title: Machine Learning Guide for Oil and Gas Using Python
– volume: 39
  start-page: 2464
  year: 2007
  end-page: 2481
  ident: bb0575
  article-title: Diagnostic tools and a remedial method for collinearity in geographically weighted regression
  publication-title: Environ. Plan. A
– volume: 6
  start-page: 92
  year: 2022
  ident: bb0045
  article-title: Evaluation of soil organic carbon storage of Atillo in the Ecuadorian Andean wetlands
  publication-title: Soil Syst.
– year: 2009
  ident: bb0530
  article-title: International Encyclopedia of Human Geography
– year: 2012
  ident: bb0075
  article-title: Living with Collinearity in Local Regression Models
– year: 2021
  ident: bb0265
  article-title: geodata: Download Geographic Data
– volume: 74
  start-page: 906
  year: 2010
  end-page: 914
  ident: bb0385
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
– volume: 12
  year: 2024
  ident: bb0110
  article-title: Soil organic carbon estimation using remote sensing data-driven machine learning
  publication-title: PeerJ
– volume: 85
  start-page: 879
  year: 2021
  end-page: 892
  ident: bb0100
  article-title: Improving the spatial prediction accuracy of soil alkaline hydrolyzable nitrogen using GWPCA-GWRK
  publication-title: Soil Sci. Soc. Am. J.
– volume: 11
  year: 2016
  ident: bb0350
  article-title: Improving the spatial prediction of soil organic carbon stocks in a complex Tropical Mountain landscape by methodological specifications in machine learning approaches
  publication-title: PLoS One
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0425
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– year: 2006
  ident: bb0055
  article-title: spgwr: Geographically Weighted Regression
– volume: 77
  start-page: 139
  year: 2017
  end-page: 150
  ident: bb0415
  article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation
  publication-title: Ecol. Indic.
– volume: 10
  start-page: 619
  year: 2024
  end-page: 636
  ident: bb0560
  article-title: An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
  publication-title: SOIL
– volume: 17
  start-page: 1086
  year: 2025
  ident: bb0630
  article-title: Integrating genetic algorithm and geographically weighted approaches into machine learning improves soil pH prediction in China
  publication-title: Remote Sens
– volume: 341
  year: 2023
  ident: bb0440
  article-title: Improving generalisability and transferability of machine-learning-based maize yield prediction model through domain adaptation
  publication-title: Agric. For. Meteorol.
– volume: 14
  year: 2019
  ident: bb0485
  article-title: A geographically weighted random forest approach for evaluate forest change drivers in the northern Ecuadorian Amazon
  publication-title: PLoS One
– volume: 14
  start-page: 117
  year: 2015
  end-page: 127
  ident: bb0130
  article-title: Evaluating geographically weighted regression models for environmental chemical risk analysis
  publication-title: Cancer Informat.
– volume: 229
  year: 2023
  ident: bb0355
  article-title: Dynamics of litter decomposition rate and soil organic carbon sequestration following vegetation succession on the loess plateau, China
  publication-title: CATENA
– year: 2017
  ident: bib632
  article-title: Soil quality - Determination of dry bulk density
– volume: 16
  start-page: 441
  year: 2014
  end-page: 466
  ident: bb0030
  article-title: Alleviating the effect of collinearity in geographically weighted regression
  publication-title: J. Geogr. Syst.
– volume: 28
  start-page: 281
  year: 1996
  end-page: 298
  ident: bb0070
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geogr. Anal.
– volume: 14
  start-page: 5078
  year: 2022
  ident: bb0080
  article-title: Spatially non-stationary relationships between changing environment and water yield Services in Watersheds of China’s climate transition zones
  publication-title: Remote Sens
– year: 2014
  ident: bb0445
  article-title: Las ocho regiones naturales del Perú
  publication-title: Terra Bras
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bb0225
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 1095
  year: 2020
  ident: bb0520
  article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space
  publication-title: Remote Sens
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: bb0370
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– volume: 126
  start-page: 252
  year: 2011
  end-page: 263
  ident: bb0500
  article-title: Linking spatial patterns of soil organic carbon to topography — a case study from South-Eastern Spain
  publication-title: Geomorphology
– volume: 13
  start-page: 1275
  year: 2022
  ident: bb0020
  article-title: Conservation of soil organic carbon in the National Park Santuario de Fauna y Flora Iguaque
  publication-title: Boyacá-Colombia For.
– volume: 58
  start-page: 289
  year: 1996
  end-page: 298
  ident: bb0215
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 81
  ident: bb0175
  article-title: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1208
  year: 2017
  ident: bb0420
  article-title: Online global land surface temperature estimation from Landsat
  publication-title: Remote Sens
– volume: 20
  start-page: 3
  year: 2020
  end-page: 29
  ident: bb0495
  article-title: The random forest algorithm for statistical learning
  publication-title: Stata J.
– volume: 59
  year: 2006
  ident: bb0360
  article-title: Remote sensing for grassland Management in the Arid Southwest
  publication-title: REM
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0065
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 16
  start-page: 11
  year: 2017
  ident: bb0340
  article-title: A modification to geographically weighted regression
  publication-title: Int. J. Health Geogr.
– volume: 9
  start-page: 28
  year: 2017
  end-page: 46
  ident: bb0205
  article-title: Random forests for big data
  publication-title: Big Data Res.
– volume: 49
  start-page: 915
  year: 2012
  end-page: 932
  ident: bb0550
  article-title: Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter
  publication-title: GISci. Remote Sens.
– volume: 27
  start-page: 747
  year: 2017
  end-page: 759
  ident: bb0155
  article-title: Comparison of artificial neural networks, geographically weighted regression and Cokriging methods for predicting the spatial distribution of soil macronutrients (N, P, and K)
  publication-title: Chin. Geogr. Sci.
– volume: 58
  start-page: 257
  year: 1996
  end-page: 266
  ident: bb0190
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 264
  start-page: 301
  year: 2016
  end-page: 311
  ident: bb0375
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
– volume: 15
  year: 2024
  ident: bb0545
  article-title: Carbon reserves in coffee agroforestry in the Peruvian Amazon
  publication-title: Front. Plant Sci.
– volume: 25
  start-page: 2373
  year: 2025
  ident: bb0335
  article-title: Causality, machine learning, and feature selection: a survey
  publication-title: Sensors
– start-page: 135
  year: 2015
  end-page: 153
  ident: bb0400
  article-title: Soil carbon reservoirs at high-altitude ecosystems in the Andean plateau
  publication-title: Climate Change Impacts on High-Altitude Ecosystems
– volume: 142
  start-page: 1325
  year: 2023
  end-page: 1339
  ident: bb0060
  article-title: Soil properties variation in a small-scale altitudinal gradient of an evergreen foothills forest, Ecuadorian Amazon region
  publication-title: Eur. J. For. Res.
– year: 2023
  ident: bb0455
  article-title: R: A Language and Environment for Statistical Computing (Manual)
– volume: 35
  start-page: 161
  year: 1991
  end-page: 173
  ident: bb0035
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sens. Environ.
– volume: 43
  start-page: 19
  year: 2019
  ident: bb0200
  article-title: Residual spatial autocorrelation in macroecological and biogeographical modeling: a review
  publication-title: J. Ecol. Environ.
– volume: 3
  year: 2020
  ident: bb0390
  article-title: Ensemble machine learning approach improves predicted spatial variation of surface soil organic carbon stocks in data-limited northern circumpolar region
  publication-title: Front. Big Data
– volume: 36
  start-page: 155
  year: 2024
  ident: bb0240
  article-title: Application of bagging and boosting ensemble machine learning techniques for groundwater potential mapping in a drought-prone agriculture region of eastern India
  publication-title: Environ. Sci. Eur.
– volume: 19
  year: 2024
  ident: bb0305
  article-title: Mastering geographically weighted regression: key considerations for building a robust model
  publication-title: Geospat. Health
– volume: 25
  start-page: 213
  year: 2022
  end-page: 236
  ident: bb0590
  article-title: Geographically weighted regression with the integration of machine learning for spatial prediction
  publication-title: J. Geogr. Syst.
– volume: 25
  start-page: 1789
  year: 2010
  end-page: 1800
  ident: bb0345
  article-title: Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression
  publication-title: Environ. Model Softw.
– volume: 13
  start-page: 796
  year: 2024
  ident: bb0210
  article-title: Trend analysis of MODIS land surface temperature and land cover in Central Italy
  publication-title: Land
– year: 2022
  ident: bb0600
  article-title: ESA WorldCover 10 m 2021 v200
– volume: 38
  start-page: 11195
  year: 2024
  end-page: 11203
  ident: bb0095
  article-title: Variable importance in high-dimensional settings requires grouping
  publication-title: AAAI
– volume: 281
  start-page: 69
  year: 2016
  end-page: 82
  ident: bb0605
  article-title: Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method
  publication-title: Geoderma
– volume: 13
  start-page: 210
  year: 2017
  end-page: 221
  ident: bb0090
  article-title: Carbono almacenado en páramo andino
  publication-title: Entramado
– volume: 393
  year: 2021
  ident: bb0395
  article-title: Environmental covariates improve the spectral predictions of organic carbon in subtropical soils in southern Brazil
  publication-title: Geoderma
– volume: 11
  start-page: 910
  year: 2019
  ident: bb0540
  article-title: A brief review of random forests for water scientists and practitioners and their recent history in water resources
  publication-title: Water
– volume: 12
  start-page: 1841
  year: 2023
  ident: bb0325
  article-title: Digital mapping of soil organic carbon using machine learning algorithms in the upper Brahmaputra Valley of northeastern India
  publication-title: Land
– start-page: 472
  year: 2020
  end-page: 478
  ident: bb0490
  article-title: Comparison of geographically weighted regression analysis and global regression on modeling the unemployment rate in west java
  publication-title: Proceedings of the International Seminar of Science and Applied Technology (ISSAT 2020)
– volume: 143
  year: 2022
  ident: bb0625
  article-title: Soil total and organic carbon mapping and uncertainty analysis using machine learning techniques
  publication-title: Ecol. Indic.
– volume: 29
  start-page: 234
  year: 2015
  end-page: 257
  ident: bb0290
  article-title: Using geographically weighted regression kriging for crop yield mapping in West Africa
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0365
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 7
  start-page: 377
  year: 2021
  end-page: 398
  ident: bb0275
  article-title: Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data
  publication-title: SOIL
– volume: 86
  year: 2025
  ident: bb0310
  article-title: Spatial autocorrelation in machine learning for modelling soil organic carbon
  publication-title: Ecol. Inform.
– volume: 238
  year: 2024
  ident: bb0430
  article-title: Comparison of equivalent soil mass approaches to estimate soil organic carbon stocks under long-term tillage
  publication-title: Soil Tillage Res.
– volume: 13
  start-page: 4825
  year: 2021
  ident: bb0405
  article-title: Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach
  publication-title: Remote Sens
– volume: 30
  start-page: 1905
  year: 1998
  end-page: 1927
  ident: bb0180
  article-title: Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis
  publication-title: Environ. Plan. A
– year: 2023
  ident: bb0270
  article-title: Elevatr: Access Elevation Data from Various Apis (Manual)
– volume: 311
  start-page: 159
  year: 2018
  end-page: 166
  ident: bb0470
  article-title: Controls on soil carbon storage from topography and vegetation in a rocky, semi-arid landscapes
  publication-title: Geoderma
– volume: 12
  start-page: 2234
  year: 2020
  ident: bb0150
  article-title: Predicting and mapping of soil organic carbon using machine learning algorithms in northern Iran
  publication-title: Remote Sens
– volume: 448
  year: 2024
  ident: bb0005
  article-title: Spatial prediction of soil organic carbon: combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)
  publication-title: Geoderma
– volume: 4
  start-page: 4062
  year: 2014
  ident: bb0565
  article-title: Global pattern of soil carbon losses due to the conversion of forests to agricultural land
  publication-title: Sci. Rep.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bb0185
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 189–190
  start-page: 627
  year: 2012
  end-page: 634
  ident: bb0320
  article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock
  publication-title: Geoderma
– volume: 12
  year: 2025
  ident: bb0165
  article-title: Bayesian geographically weighted regression with kriging for enhanced spatial prediction: a comparison of Jeffreys’ and conjugate priors
  publication-title: Math Model. Eng. Probl.
– volume: 35
  start-page: 1711
  year: 2009
  end-page: 1721
  ident: bb0260
  article-title: Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network
  publication-title: Comput. Geosci.
– year: 1996
  ident: bib631
  article-title: Soil quality - Determination of organic and total carbon after dry combustion
– volume: 269
  start-page: 61
  year: 2016
  end-page: 68
  ident: bb0040
  article-title: Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks
  publication-title: Geoderma
– volume: 13
  year: 2025
  ident: bb0245
  article-title: A soil organic carbon mapping method based on transfer learning without the use of exogenous data
  publication-title: Front. Environ. Sci.
– volume: 9
  start-page: 159
  year: 1989
  end-page: 163
  ident: bb0160
  article-title: Remote sensing of arid soil surface color with Landsat thematic mapper
  publication-title: Adv. Space Res.
– volume: 32
  start-page: 3156
  year: 2021
  end-page: 3167
  ident: bb0615
  article-title: GBDT-MO: gradient-boosted decision trees for multiple outputs
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 232
  year: 2023
  ident: bb0435
  article-title: Digital mapping of soil organic carbon using remote sensing data: a systematic review
  publication-title: CATENA
– volume: 557–558
  start-page: 838
  year: 2016
  end-page: 850
  ident: bb0595
  article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe
  publication-title: Sci. Total Environ.
– volume: 12
  year: 2025
  ident: 10.1016/j.geodrs.2025.e01026_bb0165
  article-title: Bayesian geographically weighted regression with kriging for enhanced spatial prediction: a comparison of Jeffreys’ and conjugate priors
  publication-title: Math Model. Eng. Probl.
– volume: 39
  start-page: 2464
  year: 2007
  ident: 10.1016/j.geodrs.2025.e01026_bb0575
  article-title: Diagnostic tools and a remedial method for collinearity in geographically weighted regression
  publication-title: Environ. Plan. A
  doi: 10.1068/a38325
– start-page: 169
  year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0050
  article-title: Chapter 5 - supervised learning
– volume: 9
  start-page: 28
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0205
  article-title: Random forests for big data
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2017.07.003
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.geodrs.2025.e01026_bb0280
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0455
– volume: 126
  start-page: 252
  year: 2011
  ident: 10.1016/j.geodrs.2025.e01026_bb0500
  article-title: Linking spatial patterns of soil organic carbon to topography — a case study from South-Eastern Spain
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.11.008
– volume: 238
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0430
  article-title: Comparison of equivalent soil mass approaches to estimate soil organic carbon stocks under long-term tillage
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2024.106021
– volume: 5
  start-page: 127
  year: 2016
  ident: 10.1016/j.geodrs.2025.e01026_bb0135
  article-title: Global patterns of the effects of land-use changes on soil carbon stocks
  publication-title: Glob. Ecol. Conserv.
– volume: 19
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0305
  article-title: Mastering geographically weighted regression: key considerations for building a robust model
  publication-title: Geospat. Health
  doi: 10.4081/gh.2024.1271
– volume: 14
  start-page: 117
  year: 2015
  ident: 10.1016/j.geodrs.2025.e01026_bb0130
  article-title: Evaluating geographically weighted regression models for environmental chemical risk analysis
  publication-title: Cancer Informat.
– volume: 166
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0505
  article-title: Multi-scale geographically weighted regression estimation of carbon storage on coniferous forests considering residual distribution using remote sensing data
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2024.112495
– volume: 85
  start-page: 879
  year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0100
  article-title: Improving the spatial prediction accuracy of soil alkaline hydrolyzable nitrogen using GWPCA-GWRK
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.1002/saj2.20189
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.geodrs.2025.e01026_bb0175
  article-title: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously
  publication-title: J. Mach. Learn. Res.
– start-page: 135
  year: 2015
  ident: 10.1016/j.geodrs.2025.e01026_bb0400
  article-title: Soil carbon reservoirs at high-altitude ecosystems in the Andean plateau
– volume: 58
  start-page: 289
  year: 1996
  ident: 10.1016/j.geodrs.2025.e01026_bb0215
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
– volume: 11
  start-page: 910
  year: 2019
  ident: 10.1016/j.geodrs.2025.e01026_bb0540
  article-title: A brief review of random forests for water scientists and practitioners and their recent history in water resources
  publication-title: Water
  doi: 10.3390/w11050910
– volume: 83
  start-page: 195
  year: 2002
  ident: 10.1016/j.geodrs.2025.e01026_bb0285
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 12
  start-page: 1841
  year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0325
  article-title: Digital mapping of soil organic carbon using machine learning algorithms in the upper Brahmaputra Valley of northeastern India
  publication-title: Land
  doi: 10.3390/land12101841
– volume: 25
  start-page: 213
  year: 2022
  ident: 10.1016/j.geodrs.2025.e01026_bb0590
  article-title: Geographically weighted regression with the integration of machine learning for spatial prediction
  publication-title: J. Geogr. Syst.
  doi: 10.1007/s10109-022-00387-5
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geodrs.2025.e01026_bb0365
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– year: 1994
  ident: 10.1016/j.geodrs.2025.e01026_bb0300
– volume: 232
  year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0435
  article-title: Digital mapping of soil organic carbon using remote sensing data: a systematic review
  publication-title: CATENA
  doi: 10.1016/j.catena.2023.107409
– volume: 13
  start-page: 210
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0090
  article-title: Carbono almacenado en páramo andino
  publication-title: Entramado
  doi: 10.18041/entramado.2017v13n1.25112
– volume: 16
  start-page: 32
  year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0025
  article-title: Multi-predictor mapping of soil organic carbon in the alpine tundra: a case study for the central Ecuadorian Páramo
  publication-title: Carbon Balance Manag.
  doi: 10.1186/s13021-021-00195-2
– volume: 14
  start-page: 25454
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0525
  article-title: Enhancing spatial resolution of satellite soil moisture data through stacking ensemble learning techniques
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-77050-0
– volume: 11
  year: 2016
  ident: 10.1016/j.geodrs.2025.e01026_bb0350
  article-title: Improving the spatial prediction of soil organic carbon stocks in a complex Tropical Mountain landscape by methodological specifications in machine learning approaches
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153673
– volume: 187
  year: 2020
  ident: 10.1016/j.geodrs.2025.e01026_bb0555
  article-title: Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan plateau
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104399
– volume: 25
  start-page: 1789
  year: 2010
  ident: 10.1016/j.geodrs.2025.e01026_bb0345
  article-title: Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2010.06.011
– volume: 667
  start-page: 833
  year: 2019
  ident: 10.1016/j.geodrs.2025.e01026_bb0010
  article-title: Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.420
– year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0265
– volume: 264
  start-page: 301
  year: 2016
  ident: 10.1016/j.geodrs.2025.e01026_bb0375
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 16
  start-page: 11
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0340
  article-title: A modification to geographically weighted regression
  publication-title: Int. J. Health Geogr.
  doi: 10.1186/s12942-017-0085-9
– volume: 59
  start-page: 157
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0460
  article-title: Proxies for soil organic carbon derived from remote sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 35
  start-page: 161
  year: 1991
  ident: 10.1016/j.geodrs.2025.e01026_bb0035
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90009-U
– year: 2006
  ident: 10.1016/j.geodrs.2025.e01026_bb0055
– volume: 27
  start-page: 747
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0155
  article-title: Comparison of artificial neural networks, geographically weighted regression and Cokriging methods for predicting the spatial distribution of soil macronutrients (N, P, and K)
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-017-0906-6
– volume: 14
  start-page: 353
  year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0510
  article-title: A geographically weighted deep neural network model for research on the spatial distribution of the down dead wood volume in Liangshui National Nature Reserve (China)
  publication-title: iForest
  doi: 10.3832/ifor3705-014
– volume: 6
  start-page: 92
  year: 2022
  ident: 10.1016/j.geodrs.2025.e01026_bb0045
  article-title: Evaluation of soil organic carbon storage of Atillo in the Ecuadorian Andean wetlands
  publication-title: Soil Syst.
  doi: 10.3390/soilsystems6040092
– volume: 311
  start-page: 159
  year: 2018
  ident: 10.1016/j.geodrs.2025.e01026_bb0470
  article-title: Controls on soil carbon storage from topography and vegetation in a rocky, semi-arid landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.10.013
– year: 2009
  ident: 10.1016/j.geodrs.2025.e01026_bb0530
– volume: 43
  start-page: 19
  year: 2019
  ident: 10.1016/j.geodrs.2025.e01026_bb0200
  article-title: Residual spatial autocorrelation in macroecological and biogeographical modeling: a review
  publication-title: J. Ecol. Environ.
  doi: 10.1186/s41610-019-0118-3
– start-page: 1
  year: 2013
  ident: 10.1016/j.geodrs.2025.e01026_bb0380
  article-title: Digital mapping of soil carbon
  doi: 10.1016/B978-0-12-405942-9.00001-3
– volume: 6
  year: 2018
  ident: 10.1016/j.geodrs.2025.e01026_bb0250
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
  doi: 10.7717/peerj.5518
– volume: 36
  start-page: 155
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0240
  article-title: Application of bagging and boosting ensemble machine learning techniques for groundwater potential mapping in a drought-prone agriculture region of eastern India
  publication-title: Environ. Sci. Eur.
  doi: 10.1186/s12302-024-00981-y
– start-page: 1
  year: 2011
  ident: 10.1016/j.geodrs.2025.e01026_bb0015
  article-title: Consequences of climate change for ecosystems and ecosystem services in the tropical Andes
– year: 2022
  ident: 10.1016/j.geodrs.2025.e01026_bb0600
– year: 2012
  ident: 10.1016/j.geodrs.2025.e01026_bb0475
– volume: 68
  start-page: 574
  year: 2011
  ident: 10.1016/j.geodrs.2025.e01026_bb0515
  article-title: Assessing soil carbon stocks under pastures through orbital remote sensing
  publication-title: Sci. Agric. (Piracicaba, Braz.)
  doi: 10.1590/S0103-90162011000500010
– volume: 63
  year: 2015
  ident: 10.1016/j.geodrs.2025.e01026_bb0220
  article-title: GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v063.i17
– volume: 12
  start-page: 1095
  year: 2020
  ident: 10.1016/j.geodrs.2025.e01026_bb0520
  article-title: Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space
  publication-title: Remote Sens
  doi: 10.3390/rs12071095
– volume: 10
  start-page: 619
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0560
  article-title: An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
  publication-title: SOIL
  doi: 10.5194/soil-10-619-2024
– volume: vol. 1
  year: 1974
  ident: 10.1016/j.geodrs.2025.e01026_bb0480
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
– year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0085
  article-title: From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a peruvian andean highlands: a machine learning modeling approach
  publication-title: Ecosystems
  doi: 10.1007/s10021-024-00928-7
– volume: 3
  year: 2020
  ident: 10.1016/j.geodrs.2025.e01026_bb0390
  article-title: Ensemble machine learning approach improves predicted spatial variation of surface soil organic carbon stocks in data-limited northern circumpolar region
  publication-title: Front. Big Data
  doi: 10.3389/fdata.2020.528441
– volume: 25
  start-page: 2373
  year: 2025
  ident: 10.1016/j.geodrs.2025.e01026_bb0335
  article-title: Causality, machine learning, and feature selection: a survey
  publication-title: Sensors
  doi: 10.3390/s25082373
– volume: 318
  start-page: 91
  year: 2014
  ident: 10.1016/j.geodrs.2025.e01026_bb0145
  article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, eastern Himalayas
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2014.01.003
– volume: 16
  start-page: 441
  year: 2014
  ident: 10.1016/j.geodrs.2025.e01026_bb0030
  article-title: Alleviating the effect of collinearity in geographically weighted regression
  publication-title: J. Geogr. Syst.
  doi: 10.1007/s10109-014-0199-6
– volume: 74
  start-page: 906
  year: 2010
  ident: 10.1016/j.geodrs.2025.e01026_bb0385
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0158
– volume: 142
  start-page: 1325
  year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0060
  article-title: Soil properties variation in a small-scale altitudinal gradient of an evergreen foothills forest, Ecuadorian Amazon region
  publication-title: Eur. J. For. Res.
  doi: 10.1007/s10342-023-01593-6
– volume: 20
  start-page: 3
  year: 2020
  ident: 10.1016/j.geodrs.2025.e01026_bb0495
  article-title: The random forest algorithm for statistical learning
  publication-title: Stata J.
  doi: 10.1177/1536867X20909688
– volume: 13
  year: 2025
  ident: 10.1016/j.geodrs.2025.e01026_bb0315
  article-title: Spatial heterogeneity of forest carbon stocks in the Xiangjiang river basin urban agglomeration: analysis and assessment based on the multiscale geographically weighted regression (MGWR) model
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2025.1573438
– volume: 9
  start-page: 159
  year: 1989
  ident: 10.1016/j.geodrs.2025.e01026_bb0160
  article-title: Remote sensing of arid soil surface color with Landsat thematic mapper
  publication-title: Adv. Space Res.
  doi: 10.1016/0273-1177(89)90481-X
– volume: 269
  start-page: 61
  year: 2016
  ident: 10.1016/j.geodrs.2025.e01026_bb0040
  article-title: Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.01.034
– volume: 43
  start-page: 39
  year: 2002
  ident: 10.1016/j.geodrs.2025.e01026_bb0465
  article-title: Tropical forest cover density mapping
  publication-title: Trop. Ecol.
– volume: 8
  start-page: 1
  year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0255
  article-title: Assessment of soil organic carbon stocks in Alberta using 2-scale sampling and 3D predictive soil mapping
  publication-title: FACETS
  doi: 10.1139/facets-2023-0040
– volume: 28
  start-page: 281
  year: 1996
  ident: 10.1016/j.geodrs.2025.e01026_bb0070
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.1996.tb00936.x
– volume: 12
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0110
  article-title: Soil organic carbon estimation using remote sensing data-driven machine learning
  publication-title: PeerJ
– volume: 14
  start-page: 5078
  year: 2022
  ident: 10.1016/j.geodrs.2025.e01026_bb0080
  article-title: Spatially non-stationary relationships between changing environment and water yield Services in Watersheds of China’s climate transition zones
  publication-title: Remote Sens
  doi: 10.3390/rs14205078
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10.1016/j.geodrs.2025.e01026_bb0185
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 15
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0545
  article-title: Carbon reserves in coffee agroforestry in the Peruvian Amazon
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2024.1410418
– volume: 12
  start-page: 2234
  year: 2020
  ident: 10.1016/j.geodrs.2025.e01026_bb0150
  article-title: Predicting and mapping of soil organic carbon using machine learning algorithms in northern Iran
  publication-title: Remote Sens
  doi: 10.3390/rs12142234
– volume: 156
  start-page: 774
  year: 2018
  ident: 10.1016/j.geodrs.2025.e01026_bb0230
  article-title: Spatial modelling of soil organic carbon stocks with combined principal component analysis and geographically weighted regression
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859618000709
– year: 1996
  ident: 10.1016/j.geodrs.2025.e01026_bib631
– volume: 11
  start-page: 26
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0235
  article-title: Prediction and parametric assessment of soil one-dimensional vertical free swelling potential using ensemble machine learning models
  publication-title: Adv. Model. Simul. Eng. Sci.
  doi: 10.1186/s40323-024-00277-z
– volume: 557–558
  start-page: 838
  year: 2016
  ident: 10.1016/j.geodrs.2025.e01026_bb0595
  article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.085
– volume: 13
  start-page: 1275
  year: 2022
  ident: 10.1016/j.geodrs.2025.e01026_bb0020
  article-title: Conservation of soil organic carbon in the National Park Santuario de Fauna y Flora Iguaque
  publication-title: Boyacá-Colombia For.
– volume: 15
  start-page: 910
  year: 2025
  ident: 10.1016/j.geodrs.2025.e01026_bb0535
  article-title: Soil organic carbon monitoring and modelling via machine learning methods using soil and remote sensing data
  publication-title: Agriculture
  doi: 10.3390/agriculture15090910
– volume: 8
  start-page: 1991
  year: 2015
  ident: 10.1016/j.geodrs.2025.e01026_bb0115
  article-title: System for automated geoscientific analyses (SAGA) v. 2.1.4
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-1991-2015
– volume: 7
  start-page: 377
  year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0275
  article-title: Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data
  publication-title: SOIL
  doi: 10.5194/soil-7-377-2021
– volume: 17
  start-page: 1086
  year: 2025
  ident: 10.1016/j.geodrs.2025.e01026_bb0630
  article-title: Integrating genetic algorithm and geographically weighted approaches into machine learning improves soil pH prediction in China
  publication-title: Remote Sens
  doi: 10.3390/rs17061086
– volume: 3
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0450
  article-title: Domain adaptation with transfer learning for pasture digital twins
  publication-title: Environ. Data Sci.
  doi: 10.1017/eds.2024.6
– volume: 15
  start-page: 84
  year: 2022
  ident: 10.1016/j.geodrs.2025.e01026_bb0570
  article-title: Optimal bandwidth for geographically weighted regression to model the spatial dependency of land prices in Manado, North Sulawesi Province
  publication-title: Indones. Geogr. Environ. Sustain.
  doi: 10.24057/2071-9388-2019-154
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0225
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 341
  year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0440
  article-title: Improving generalisability and transferability of machine-learning-based maize yield prediction model through domain adaptation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2023.109652
– volume: 26
  start-page: 1239
  year: 2011
  ident: 10.1016/j.geodrs.2025.e01026_bb0620
  article-title: Towards spatial geochemical modelling: use of geographically weighted regression for mapping soil organic carbon contents in Ireland
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2011.04.014
– volume: 189–190
  start-page: 627
  year: 2012
  ident: 10.1016/j.geodrs.2025.e01026_bb0320
  article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.022
– year: 2012
  ident: 10.1016/j.geodrs.2025.e01026_bb0075
– volume: 35
  start-page: 1711
  year: 2009
  ident: 10.1016/j.geodrs.2025.e01026_bb0260
  article-title: Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.10.011
– volume: 333
  start-page: 149
  year: 2019
  ident: 10.1016/j.geodrs.2025.e01026_bb0580
  article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.026
– volume: 14
  year: 2019
  ident: 10.1016/j.geodrs.2025.e01026_bb0485
  article-title: A geographically weighted random forest approach for evaluate forest change drivers in the northern Ecuadorian Amazon
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0226224
– volume: 13
  year: 2025
  ident: 10.1016/j.geodrs.2025.e01026_bb0245
  article-title: A soil organic carbon mapping method based on transfer learning without the use of exogenous data
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2025.1580085
– volume: 4
  start-page: 4062
  year: 2014
  ident: 10.1016/j.geodrs.2025.e01026_bb0565
  article-title: Global pattern of soil carbon losses due to the conversion of forests to agricultural land
  publication-title: Sci. Rep.
  doi: 10.1038/srep04062
– volume: 29
  start-page: 234
  year: 2015
  ident: 10.1016/j.geodrs.2025.e01026_bb0290
  article-title: Using geographically weighted regression kriging for crop yield mapping in West Africa
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2014.959522
– volume: 47
  start-page: 718
  year: 2018
  ident: 10.1016/j.geodrs.2025.e01026_bb0120
  article-title: Mapping soil organic carbon and organic matter fractions by geographically weighted regression
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.04.0178
– volume: 13
  start-page: 4825
  year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0405
  article-title: Ground observations and environmental covariates integration for mapping of soil salinity: a machine learning-based approach
  publication-title: Remote Sens
  doi: 10.3390/rs13234825
– start-page: 472
  year: 2020
  ident: 10.1016/j.geodrs.2025.e01026_bb0490
  article-title: Comparison of geographically weighted regression analysis and global regression on modeling the unemployment rate in west java
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geodrs.2025.e01026_bb0065
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 94
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0195
  article-title: Carbon dynamics in high-Andean tropical cushion peatlands: a review of geographic patterns and potential drivers
  publication-title: Ecol. Monogr.
  doi: 10.1002/ecm.1614
– volume: 13
  start-page: 796
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0210
  article-title: Trend analysis of MODIS land surface temperature and land cover in Central Italy
  publication-title: Land
  doi: 10.3390/land13060796
– volume: 37
  start-page: 4302
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0170
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.geodrs.2025.e01026_bb0425
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 393
  year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0395
  article-title: Environmental covariates improve the spectral predictions of organic carbon in subtropical soils in southern Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.114981
– volume: 77
  start-page: 139
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0415
  article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.02.010
– volume: 409
  year: 2022
  ident: 10.1016/j.geodrs.2025.e01026_bb0105
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115567
– year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0270
– volume: 38
  start-page: 11195
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0095
  article-title: Variable importance in high-dimensional settings requires grouping
  publication-title: AAAI
  doi: 10.1609/aaai.v38i10.28997
– volume: 59
  year: 2006
  ident: 10.1016/j.geodrs.2025.e01026_bb0360
  article-title: Remote sensing for grassland Management in the Arid Southwest
  publication-title: REM
– volume: 58
  start-page: 257
  year: 1996
  ident: 10.1016/j.geodrs.2025.e01026_bb0190
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 281
  start-page: 69
  year: 2016
  ident: 10.1016/j.geodrs.2025.e01026_bb0605
  article-title: Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.06.033
– year: 2014
  ident: 10.1016/j.geodrs.2025.e01026_bb0445
  article-title: Las ocho regiones naturales del Perú
  publication-title: Terra Bras
– year: 2007
  ident: 10.1016/j.geodrs.2025.e01026_bb0295
– volume: 143
  year: 2022
  ident: 10.1016/j.geodrs.2025.e01026_bb0625
  article-title: Soil total and organic carbon mapping and uncertainty analysis using machine learning techniques
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2022.109420
– volume: 16
  start-page: 1510
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0125
  article-title: Remote quantification of soil organic carbon: role of topography in the intra-field distribution
  publication-title: Remote Sens
  doi: 10.3390/rs16091510
– volume: 4
  start-page: 1
  year: 2014
  ident: 10.1016/j.geodrs.2025.e01026_bb0140
  article-title: Effect of sample size on the performance of ordinary least squares and geographically weighted regression
  publication-title: Br. J. Math. Comput. Sci.
  doi: 10.9734/BJMCS/2014/6050
– volume: 32
  start-page: 3156
  year: 2021
  ident: 10.1016/j.geodrs.2025.e01026_bb0615
  article-title: GBDT-MO: gradient-boosted decision trees for multiple outputs
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3009776
– volume: 14
  year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0585
  article-title: Estimation of above-ground carbon storage and light saturation value in northeastern China’s natural forests using different spatial regression models
  publication-title: Forests
  doi: 10.3390/f14101970
– volume: 30
  start-page: 1905
  year: 1998
  ident: 10.1016/j.geodrs.2025.e01026_bb0180
  article-title: Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis
  publication-title: Environ. Plan. A
  doi: 10.1068/a301905
– volume: 49
  start-page: 915
  year: 2012
  ident: 10.1016/j.geodrs.2025.e01026_bb0550
  article-title: Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter
  publication-title: GISci. Remote Sens.
  doi: 10.2747/1548-1603.49.6.915
– volume: 480
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0610
  article-title: A geographically weighted neural network model for digital soil mapping of heavy metal copper in coastal cities
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2024.136285
– year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bib632
– volume: 41
  start-page: 673
  year: 2007
  ident: 10.1016/j.geodrs.2025.e01026_bb0410
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quant.
  doi: 10.1007/s11135-006-9018-6
– volume: 229
  year: 2023
  ident: 10.1016/j.geodrs.2025.e01026_bb0355
  article-title: Dynamics of litter decomposition rate and soil organic carbon sequestration following vegetation succession on the loess plateau, China
  publication-title: CATENA
  doi: 10.1016/j.catena.2023.107225
– volume: 304
  start-page: 1623
  year: 2004
  ident: 10.1016/j.geodrs.2025.e01026_bb0330
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 9
  start-page: 487
  year: 2020
  ident: 10.1016/j.geodrs.2025.e01026_bib633
  article-title: Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil
  publication-title: Land
  doi: 10.3390/land9120487
– volume: 86
  year: 2025
  ident: 10.1016/j.geodrs.2025.e01026_bb0310
  article-title: Spatial autocorrelation in machine learning for modelling soil organic carbon
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2025.103057
– volume: 32
  start-page: 1378
  year: 2006
  ident: 10.1016/j.geodrs.2025.e01026_bb0370
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 9
  start-page: 1208
  year: 2017
  ident: 10.1016/j.geodrs.2025.e01026_bb0420
  article-title: Online global land surface temperature estimation from Landsat
  publication-title: Remote Sens
  doi: 10.3390/rs9121208
– volume: 448
  year: 2024
  ident: 10.1016/j.geodrs.2025.e01026_bb0005
  article-title: Spatial prediction of soil organic carbon: combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2024.116953
SSID ssj0002953762
Score 2.3289812
Snippet Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage e01026
SubjectTerms Andes
Digital soil mapping
Geographically weighted regression
Machine learning regression algorithms
Soil organic carbon stock
Title Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
URI https://dx.doi.org/10.1016/j.geodrs.2025.e01026
Volume 43
WOSCitedRecordID wos001618921900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-0094
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002953762
  issn: 2352-0094
  databaseCode: AIEXJ
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMXBAJEy0N74AaLEtvr9R6jUl6HqgdL5GbtyyjBtSMnrvqj-JHMPvwAoooeuFjWylk7nk8z346_nUHojaYLnQCPJSazqZuEJiTTSpKUxkCA2VyLcu6aTbCLi2y14pez2c9-L8x1xeo6u7nh2_9qahgDY9uts3cw9zApDMA5GB2OYHY4_pPhbZNhmwbftvYbTE8Id826Ci2clC1HLWEYeJ_6sXsrXKT0onWxczLoZa1thh5CXEhHX5q2m_LYT8b2ULsSYJ7vLpk4fstopdi4LgJWTFI1A2fPuyspqkY2O_IBIkJIiZvWjILSM9tbpF2T5V5023VVKZfHze3_qUdFUWcFWy0JFzs4m1A0eUhgRHQiBnF-LgIOSKzC0YekA2PBUSfxxNMaWwwvPRgEfD5iA4ZodGtLskf0_Xj57zW3_4iFg0KxF79tCj9LYWcp_Cz30HHEKAeverz8cr76OuT0Im6L40Sun2F4_n63ppMU_v1Ah9nQhOHkj9DDsDTBSw-px2hm6ifoW4ATHuGEmxJbOOEAJ-zhhD2csIcTnsAJezhhD6d32ILpKco_nudnn0loxkEUsJw9kaXRJTc6plpRxY0R1KRKSb6IWFTCYCYlkMu5tNWdNKzbDKwduM7UQkjGTfwMHdVNbZ4jHEeMgz-INZ-bxJSlpDQViS5ZymJTxvwEkf6dFFtfcqW4zRwniPUvrgi00dPBAgBx6y9P73inF-jBCOCX6GjfduYVuq-u9-td-zqg4Rc8gJTm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+soil+organic+carbon+stocks+across+contrasting+Andean+basins%2C+Peru&rft.jtitle=Geoderma+Regional&rft.au=Carbajal%2C+Carlos&rft.au=Tumbalobos-Dextre%2C+Merely&rft.au=Condori-Ataupillco%2C+Tatiana&rft.au=Cuellar-Condori%2C+Nestor&rft.date=2025-12-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=43&rft.spage=e01026&rft_id=info:doi/10.1016%2Fj.geodrs.2025.e01026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geodrs_2025_e01026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon