A note on the group extension problem to semi-universal deformation
The aim of this note is twofold. Firstly, we explain in detail Remark 4.1 in Doan (2020) by showing that the action of the automorphism group of the second Hirzebruch surface F2 on itself extends to its formal semi-universal deformation only up to the first order. Secondly, we show that for reductiv...
Uloženo v:
| Vydáno v: | Indagationes mathematicae Ročník 35; číslo 2; s. 240 - 246 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.2024
|
| Témata: | |
| ISSN: | 0019-3577, 1872-6100 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The aim of this note is twofold. Firstly, we explain in detail Remark 4.1 in Doan (2020) by showing that the action of the automorphism group of the second Hirzebruch surface F2 on itself extends to its formal semi-universal deformation only up to the first order. Secondly, we show that for reductive group actions, the locality of the extended actions on the Kuranishi space constructed in Doan (2021) is the best one could expect in general. |
|---|---|
| ISSN: | 0019-3577 1872-6100 |
| DOI: | 10.1016/j.indag.2023.11.003 |