HAPTR2: Improved Haptic Transformer for legged robots’ terrain classification

The haptic terrain classification is an essential component of a mobile walking robot control system, ensuring proper gait adaptation to the changing environmental conditions. In practice, such components are a part of an autonomous system and thus have to be lightweight, provide fast inference time...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Robotics and autonomous systems Ročník 158; s. 104236
Hlavní autoři: Bednarek, Michał, Nowicki, Michał R., Walas, Krzysztof
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2022
Témata:
ISSN:0921-8890, 1872-793X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The haptic terrain classification is an essential component of a mobile walking robot control system, ensuring proper gait adaptation to the changing environmental conditions. In practice, such components are a part of an autonomous system and thus have to be lightweight, provide fast inference time, and guarantee robustness to minor changes in recorded sensory data. We propose transformer-based HAPTR and HAPTR2 terrain classification methods that use force and torque measurements from feet to meet these requirements. For reliable comparison of the proposed solutions, we adapt two classical machine learning algorithms (DTW-KNN and ROCKET), one temporal convolution network (TCN), and use the state-of-the-art CNN-RNN. The experiments are performed on publicly available PUTany and QCAT datasets. We show that the proposed HAPTR and HAPTR2 methods achieve accuracy on par or better than state-of-the-art approaches with a lower number of parameters, faster inference time, and improved robustness to input signal distortions. These features make HAPTR and HAPTR2 excel in terrain recognition tasks when considering real-world requirements. •Fast and lightweight transformer-based approach for the terrain classification.•Modality Attention Layer improves the system’s robustness in real-world scenarios.•Autonomy requirements inspired our evaluation of terrain classification algorithms.•The benchmark on two open source datasets creates a baseline for further research.
AbstractList The haptic terrain classification is an essential component of a mobile walking robot control system, ensuring proper gait adaptation to the changing environmental conditions. In practice, such components are a part of an autonomous system and thus have to be lightweight, provide fast inference time, and guarantee robustness to minor changes in recorded sensory data. We propose transformer-based HAPTR and HAPTR2 terrain classification methods that use force and torque measurements from feet to meet these requirements. For reliable comparison of the proposed solutions, we adapt two classical machine learning algorithms (DTW-KNN and ROCKET), one temporal convolution network (TCN), and use the state-of-the-art CNN-RNN. The experiments are performed on publicly available PUTany and QCAT datasets. We show that the proposed HAPTR and HAPTR2 methods achieve accuracy on par or better than state-of-the-art approaches with a lower number of parameters, faster inference time, and improved robustness to input signal distortions. These features make HAPTR and HAPTR2 excel in terrain recognition tasks when considering real-world requirements. •Fast and lightweight transformer-based approach for the terrain classification.•Modality Attention Layer improves the system’s robustness in real-world scenarios.•Autonomy requirements inspired our evaluation of terrain classification algorithms.•The benchmark on two open source datasets creates a baseline for further research.
ArticleNumber 104236
Author Nowicki, Michał R.
Bednarek, Michał
Walas, Krzysztof
Author_xml – sequence: 1
  givenname: Michał
  orcidid: 0000-0002-0525-3141
  surname: Bednarek
  fullname: Bednarek, Michał
  email: michalbednarek.e@gmail.com
– sequence: 2
  givenname: Michał R.
  surname: Nowicki
  fullname: Nowicki, Michał R.
– sequence: 3
  givenname: Krzysztof
  surname: Walas
  fullname: Walas, Krzysztof
BookMark eNqFkM1KAzEUhYNUsK0-gZu8wNT8TCczgotS1CkUKjILdyG5zZSU6aQkoeDO1_D1fBLT1pULXR24l-_ec84IDXrXG4RuKZlQQou77cQ77eKEEcbSJGe8uEBDWgqWiYq_DdCQVIxmZVmRKzQKYUsI4VPBh2hVz16aV3aPF7u9dwezxrXaRwu48aoPrfM743ES3JnNJm1Pf8LXxyeOxntlewydCsG2FlS0rr9Gl63qgrn50TFqnh6beZ0tV8-L-WyZASc8ZnoKVcWUhiJXU00FAVHwMhclI6rNVXIOybxmSghQjGjBKTBdCKoEA5LzMeLns-BdCN60cu_tTvl3SYk8ViK38mRVHiuR50oSVf2iwMaT7ZiidP-wD2fWpFQHa7wMYE0PZm29gSjXzv7JfwOW0YD3
CitedBy_id crossref_primary_10_3390_rs17142477
crossref_primary_10_1093_ijlct_ctae125
crossref_primary_10_1109_TOH_2023_3346956
crossref_primary_10_1016_j_robot_2023_104380
crossref_primary_10_1109_LRA_2025_3541432
crossref_primary_10_1016_j_ifacol_2023_12_077
Cites_doi 10.1109/ICRA.2017.7989368
10.1109/HUMANOIDS.2016.7803330
10.1109/TRO.2019.2954670
10.1126/science.1172490
10.1109/LSENS.2021.3049954
10.1007/s10514-021-10013-w
10.1109/ICRA.2019.8793663
10.5772/59888
10.1109/ROBOSOFT.2019.8722819
10.1016/j.icarus.2021.114701
10.1126/science.1138353
10.1109/LRA.2016.2524073
10.1007/s10618-020-00710-y
10.1109/LRA.2021.3060437
10.1007/s10618-019-00619-1
10.1109/LRA.2020.2969160
10.1109/ICRA40945.2020.9197154
10.1007/s10846-018-0865-x
10.1007/s10846-014-0067-0
10.1007/s10618-020-00701-z
10.1109/ICRA.2019.8794478
10.1109/LRA.2019.2896732
10.1007/s10618-014-0361-2
10.1109/TASSP.1978.1163055
10.1109/IROS.2014.6943257
10.1109/IROS.2016.7758092
10.1109/IROS45743.2020.9341361
10.1109/LRA.2019.2895390
10.1109/ECMR50962.2021.9568808
10.1109/TRO.2019.2935336
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2022.104236
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-793X
ExternalDocumentID 10_1016_j_robot_2022_104236
S0921889022001373
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-b5c992abc64a5b170c763847820af4a187c872b2a77ca20b731c2b671a72c043
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000869528600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-8890
IngestDate Sat Nov 29 07:12:21 EST 2025
Tue Nov 18 21:50:23 EST 2025
Fri Feb 23 02:39:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data sets for robot learning
Legged robots
Deep learning methods
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-b5c992abc64a5b170c763847820af4a187c872b2a77ca20b731c2b671a72c043
ORCID 0000-0002-0525-3141
ParticipantIDs crossref_primary_10_1016_j_robot_2022_104236
crossref_citationtrail_10_1016_j_robot_2022_104236
elsevier_sciencedirect_doi_10_1016_j_robot_2022_104236
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Robotics and autonomous systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brown (b36) 2020
Dosovitskiy (b37) 2020
J. Bednarek, M. Bednarek, L. Wellhausen, M. Hutter, K. Walas, What am I touching? Learning to classify terrain via haptic sensing, in: IEEE International Conference on Robotics and Automation, ICRA, 2019, pp. 7187–7193.
Christie, Kottege (b25) 2016
Fahmi, Fink, Semini (b18) 2021; 5
Arevalo, Sanz-Merodio, Cestari, Garcia (b20) 2015; 12
M. Bednarek, M. Łysakowski, J. Bednarek, M.R. Nowicki, K. Walas, Fast Haptic Terrain Classification for Legged Robots Using Transformer, in: 2021 European Conference on Mobile Robots, ECMR, 2021, pp. 1–7.
Szegedy, Ioffe, Vanhoucke, Alemi (b32) 2017
Wu, Huh, Sabin, Suresh, Cutkosky (b15) 2020; 36
Ismail Fawaz, Forestier, Weber, Idoumghar, Muller (b28) 2019; 33
Ahmadi, Nygaard, Kottege, Howard, Hudson (b43) 2020
Walas (b26) 2015; 78
X. Li, W. Wang, J. Yi, Ground substrate classification for adaptive quadruped locomotion, in: Proceedings - IEEE International Conference on Robotics and Automation, ISBN: 9781509046331, 2017, pp. 3237–3243.
Barrett, Balme, Woods, Karachalios, Petrocelli, Joudrier, Sefton-Nash (b23) 2022; 371
Hoepflinger (b11) 2010
A. Roennau, G. Heppner, M. Nowicki, J. Zoellner, R. Dillmann, Reactive posture behaviors for stable legged locomotion over steep inclines and large obstacles, in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4888–4894.
J. Bednarek, M. Bednarek, P. Kicki, K. Walas, Robotic Touch: Classification of Materials for Manipulation and Walking, in: IEEE International Conference on Soft Robotics, RoboSoft, 2019, pp. 527–533.
Freund, Schapire (b12) 1996
Lines, Bagnall (b29) 2015; 29
Kolvenbach, Bärtschi, Wellhausen, Grandia, Hutter (b5) 2019; 4
Sakoe, Chiba (b30) 1978; 26
Bosworth, Whitney, Kim, Hogan (b17) 2016
Loshchilov, Hutter (b41) 2017
Ijspeert, Crespi, Ryczko, Cabelguen (b21) 2007; 315
Bai, Kolter, Koltun (b34) 2018
Tan, Le (b45) 2021; vol. 139
Ismail Fawaz (b31) 2020; 34
Dempster, Petitjean, Webb (b33) 2020; 34
Carion (b38) 2020
Valsecchi, Grandia, Hutter (b42) 2020; 5
M. Hutter, et al., ANYmal - a highly mobile and dynamic quadrupedal robot, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2016, pp. 38–44.
Filitchkin, Byl (b24) 2012
Wellhausen, Dosovitskiy, Ranftl, Walas, Cadena, Hutter (b27) 2019; 4
Belter, Wietrzykowski, Skrzypczyński (b10) 2019; 93
Löning (b40) 2019
Maladen, Ding, Li, Goldman (b22) 2009; 325
A. Bouman, et al., Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion, in: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2020, pp. 2518–2525.
T.F. Nygaard, C.P. Martin, J. Torresen, K. Glette, Self-Modifying Morphology Experiments with DyRET: Dynamic Robot for Embodied Testing, in: 2019 International Conference on Robotics and Automation, ICRA, 2019, pp. 9446–9452.
D. Bellicoso, et al., Perception-less terrain adaptation through whole body control and hierarchical optimization, in: IEEE-RAS International Conference on Humanoid Robots, ISBN: 9781509047185, 2016, pp. 558–564.
E. Tennakoon, T. Peynot, J. Roberts, N. Kottege, Probe-before-step walking strategy for multi-legged robots on terrain with risk of collapse, in: Proceedings - IEEE International Conference on Robotics and Automation, ISBN: 9781728173955, 2020, pp. 5530–5536.
Fahmi, Focchi, Radulescu, Fink, Barasuol, Semini (b19) 2020; 36
Wu, Huh, Mukherjee, Cutkosky (b13) 2016; 1
Vaswani (b35) 2017
Buchanan, Bednarek, Camurri, Nowicki, Walas, Fallon (b9) 2021; 45
Ahmadi, Nygaard, Kottege, Howard, Hudson (b6) 2021; 6
Kolvenbach (10.1016/j.robot.2022.104236_b5) 2019; 4
Tan (10.1016/j.robot.2022.104236_b45) 2021; vol. 139
Filitchkin (10.1016/j.robot.2022.104236_b24) 2012
10.1016/j.robot.2022.104236_b44
Szegedy (10.1016/j.robot.2022.104236_b32) 2017
Wu (10.1016/j.robot.2022.104236_b15) 2020; 36
Christie (10.1016/j.robot.2022.104236_b25) 2016
Ahmadi (10.1016/j.robot.2022.104236_b43) 2020
Löning (10.1016/j.robot.2022.104236_b40) 2019
Carion (10.1016/j.robot.2022.104236_b38) 2020
Hoepflinger (10.1016/j.robot.2022.104236_b11) 2010
Lines (10.1016/j.robot.2022.104236_b29) 2015; 29
Dosovitskiy (10.1016/j.robot.2022.104236_b37) 2020
Ismail Fawaz (10.1016/j.robot.2022.104236_b28) 2019; 33
Valsecchi (10.1016/j.robot.2022.104236_b42) 2020; 5
Ismail Fawaz (10.1016/j.robot.2022.104236_b31) 2020; 34
Dempster (10.1016/j.robot.2022.104236_b33) 2020; 34
Loshchilov (10.1016/j.robot.2022.104236_b41) 2017
Ahmadi (10.1016/j.robot.2022.104236_b6) 2021; 6
Sakoe (10.1016/j.robot.2022.104236_b30) 1978; 26
Walas (10.1016/j.robot.2022.104236_b26) 2015; 78
Wellhausen (10.1016/j.robot.2022.104236_b27) 2019; 4
Vaswani (10.1016/j.robot.2022.104236_b35) 2017
Wu (10.1016/j.robot.2022.104236_b13) 2016; 1
Ijspeert (10.1016/j.robot.2022.104236_b21) 2007; 315
Bosworth (10.1016/j.robot.2022.104236_b17) 2016
Barrett (10.1016/j.robot.2022.104236_b23) 2022; 371
Bai (10.1016/j.robot.2022.104236_b34) 2018
Maladen (10.1016/j.robot.2022.104236_b22) 2009; 325
Buchanan (10.1016/j.robot.2022.104236_b9) 2021; 45
Fahmi (10.1016/j.robot.2022.104236_b19) 2020; 36
10.1016/j.robot.2022.104236_b7
Belter (10.1016/j.robot.2022.104236_b10) 2019; 93
10.1016/j.robot.2022.104236_b8
Freund (10.1016/j.robot.2022.104236_b12) 1996
10.1016/j.robot.2022.104236_b14
Arevalo (10.1016/j.robot.2022.104236_b20) 2015; 12
10.1016/j.robot.2022.104236_b3
Brown (10.1016/j.robot.2022.104236_b36) 2020
10.1016/j.robot.2022.104236_b4
Fahmi (10.1016/j.robot.2022.104236_b18) 2021; 5
10.1016/j.robot.2022.104236_b1
10.1016/j.robot.2022.104236_b2
10.1016/j.robot.2022.104236_b39
10.1016/j.robot.2022.104236_b16
References_xml – year: 2019
  ident: b40
  article-title: Sktime: A unified interface for machine learning with time series
– volume: 4
  start-page: 1509
  year: 2019
  end-page: 1516
  ident: b27
  article-title: Where should i walk(predicting terrain properties from images via self-supervised learning
  publication-title: IEEE Robot. Autom. Lett.
– reference: J. Bednarek, M. Bednarek, P. Kicki, K. Walas, Robotic Touch: Classification of Materials for Manipulation and Walking, in: IEEE International Conference on Soft Robotics, RoboSoft, 2019, pp. 527–533.
– volume: vol. 139
  start-page: 10096
  year: 2021
  end-page: 10106
  ident: b45
  article-title: EfficientNetV2: Smaller models and faster training
  publication-title: Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event
– volume: 6
  start-page: 1848
  year: 2021
  end-page: 1855
  ident: b6
  article-title: Semi-supervised gated recurrent neural networks for robotic terrain classification
  publication-title: IEEE Robot. Autom. Lett.
– volume: 33
  start-page: 917
  year: 2019
  end-page: 963
  ident: b28
  article-title: Deep learning for time series classification: a review
  publication-title: Data Min. Knowl. Discov.
– volume: 5
  start-page: 1
  year: 2021
  end-page: 4
  ident: b18
  article-title: On state estimation for legged locomotion over soft terrain
  publication-title: IEEE Sens. Lett.
– start-page: 3596
  year: 2016
  end-page: 3603
  ident: b25
  article-title: Acoustics based terrain classification for legged robots
  publication-title: Proceedings - IEEE International Conference on Robotics and Automation, 2016-June
– start-page: 148
  year: 1996
  end-page: 156
  ident: b12
  article-title: Experiments with a new boosting algorithm
  publication-title: Proc. of the 13th International Conference on Machine Learning
– year: 2020
  ident: b43
  article-title: QCAT legged robot terrain classification dataset
– reference: D. Bellicoso, et al., Perception-less terrain adaptation through whole body control and hierarchical optimization, in: IEEE-RAS International Conference on Humanoid Robots, ISBN: 9781509047185, 2016, pp. 558–564.
– volume: 93
  year: 2019
  ident: b10
  article-title: Employing natural terrain semantics in motion planning for a multi-legged robot
  publication-title: J. Intell. Robot. Syst.
– volume: 29
  start-page: 565
  year: 2015
  end-page: 592
  ident: b29
  article-title: Time series classification with ensembles of elastic distance measures
  publication-title: Data Min. Knowl. Discov.
– year: 2020
  ident: b37
  article-title: An image is worth 16
– start-page: 1387
  year: 2012
  end-page: 1392
  ident: b24
  article-title: Feature-based terrain classification for LittleDog
  publication-title: IEEE International Conference on Intelligent Robots and Systems
– volume: 1
  start-page: 1125
  year: 2016
  end-page: 1132
  ident: b13
  article-title: Integrated ground reaction force sensing and terrain classification for small legged robots
  publication-title: IEEE Robot. Autom. Lett.
– reference: X. Li, W. Wang, J. Yi, Ground substrate classification for adaptive quadruped locomotion, in: Proceedings - IEEE International Conference on Robotics and Automation, ISBN: 9781509046331, 2017, pp. 3237–3243.
– reference: M. Bednarek, M. Łysakowski, J. Bednarek, M.R. Nowicki, K. Walas, Fast Haptic Terrain Classification for Legged Robots Using Transformer, in: 2021 European Conference on Mobile Robots, ECMR, 2021, pp. 1–7.
– reference: T.F. Nygaard, C.P. Martin, J. Torresen, K. Glette, Self-Modifying Morphology Experiments with DyRET: Dynamic Robot for Embodied Testing, in: 2019 International Conference on Robotics and Automation, ICRA, 2019, pp. 9446–9452.
– reference: J. Bednarek, M. Bednarek, L. Wellhausen, M. Hutter, K. Walas, What am I touching? Learning to classify terrain via haptic sensing, in: IEEE International Conference on Robotics and Automation, ICRA, 2019, pp. 7187–7193.
– reference: A. Bouman, et al., Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion, in: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2020, pp. 2518–2525.
– start-page: 213
  year: 2020
  end-page: 229
  ident: b38
  article-title: End-to-end object detection with transformers
  publication-title: Computer Vision – ECCV 2020
– volume: 78
  start-page: 401
  year: 2015
  end-page: 423
  ident: b26
  article-title: Terrain classification and negotiation with a walking robot
  publication-title: J. Intell. Robot. Syst.
– start-page: 3582
  year: 2016
  end-page: 3589
  ident: b17
  article-title: Robot locomotion on hard and soft ground: Measuring stability and ground properties in-situ
  publication-title: Proceedings - IEEE International Conference on Robotics and Automation, 2016-June
– year: 2020
  ident: b36
  article-title: Language models are few-shot learners
– year: 2017
  ident: b41
  article-title: SGDR: Stochastic gradient descent with warm restarts
– volume: 315
  start-page: 1416
  year: 2007
  end-page: 1420
  ident: b21
  article-title: From swimming to walking with a salamander robot driven by a spinal cord model
  publication-title: Science
– volume: 34
  start-page: 1936
  year: 2020
  end-page: 1962
  ident: b31
  article-title: InceptionTime: Finding AlexNet for time series classification
  publication-title: Data Min. Knowl. Discov.
– volume: 12
  start-page: 1
  year: 2015
  ident: b20
  article-title: Identifying ground-robot impedance to improve terrain adaptability in running robots
  publication-title: Int. J. Adv. Robot. Syst.
– reference: A. Roennau, G. Heppner, M. Nowicki, J. Zoellner, R. Dillmann, Reactive posture behaviors for stable legged locomotion over steep inclines and large obstacles, in: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4888–4894.
– reference: E. Tennakoon, T. Peynot, J. Roberts, N. Kottege, Probe-before-step walking strategy for multi-legged robots on terrain with risk of collapse, in: Proceedings - IEEE International Conference on Robotics and Automation, ISBN: 9781728173955, 2020, pp. 5530–5536.
– reference: M. Hutter, et al., ANYmal - a highly mobile and dynamic quadrupedal robot, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2016, pp. 38–44.
– start-page: 785
  year: 2010
  end-page: 792
  ident: b11
  article-title: Haptic terrain classification on natural terrains for legged robots
  publication-title: Proc. of the 13th International Conference on Climbing and Walking Robots
– volume: 325
  start-page: 314
  year: 2009
  end-page: 318
  ident: b22
  article-title: Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard
  publication-title: Science
– volume: 45
  start-page: 843
  year: 2021
  end-page: 857
  ident: b9
  article-title: Navigating by touch: Haptic Monte Carlo localization via geometric sensing and terrain classification
  publication-title: Auton. Robots
– year: 2018
  ident: b34
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– volume: 36
  start-page: 15
  year: 2020
  end-page: 27
  ident: b15
  article-title: Tactile sensing and terrain-based gait control for small legged robots
  publication-title: IEEE Trans. Robot.
– volume: 26
  start-page: 43
  year: 1978
  end-page: 49
  ident: b30
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 34
  start-page: 1454
  year: 2020
  end-page: 1495
  ident: b33
  article-title: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels
  publication-title: Data Min. Knowl. Discov.
– volume: 4
  start-page: 1626
  year: 2019
  end-page: 1632
  ident: b5
  article-title: Haptic inspection of planetary soils with legged robots
  publication-title: IEEE Robot. Autom. Lett.
– volume: 371
  year: 2022
  ident: b23
  article-title: NOAH-H, a deep-learning, terrain classification system for mars: Results for the ExoMars rover candidate landing sites
  publication-title: Icarus
– volume: 36
  start-page: 443
  year: 2020
  end-page: 457
  ident: b19
  article-title: STANCE: Locomotion adaptation over soft terrain
  publication-title: IEEE Trans. Robot.
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: b32
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
– volume: 5
  start-page: 1548
  year: 2020
  end-page: 1555
  ident: b42
  article-title: Quadrupedal locomotion on uneven terrain with sensorized feet
  publication-title: IEEE Robot. Autom. Lett.
– year: 2017
  ident: b35
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems, Vol. 30
– ident: 10.1016/j.robot.2022.104236_b14
  doi: 10.1109/ICRA.2017.7989368
– start-page: 3582
  year: 2016
  ident: 10.1016/j.robot.2022.104236_b17
  article-title: Robot locomotion on hard and soft ground: Measuring stability and ground properties in-situ
– year: 2017
  ident: 10.1016/j.robot.2022.104236_b41
– ident: 10.1016/j.robot.2022.104236_b4
  doi: 10.1109/HUMANOIDS.2016.7803330
– volume: 36
  start-page: 443
  issue: 2
  year: 2020
  ident: 10.1016/j.robot.2022.104236_b19
  article-title: STANCE: Locomotion adaptation over soft terrain
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2019.2954670
– volume: 325
  start-page: 314
  issue: 5938
  year: 2009
  ident: 10.1016/j.robot.2022.104236_b22
  article-title: Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard
  publication-title: Science
  doi: 10.1126/science.1172490
– year: 2018
  ident: 10.1016/j.robot.2022.104236_b34
– year: 2019
  ident: 10.1016/j.robot.2022.104236_b40
– volume: 5
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.robot.2022.104236_b18
  article-title: On state estimation for legged locomotion over soft terrain
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2021.3049954
– volume: 45
  start-page: 843
  year: 2021
  ident: 10.1016/j.robot.2022.104236_b9
  article-title: Navigating by touch: Haptic Monte Carlo localization via geometric sensing and terrain classification
  publication-title: Auton. Robots
  doi: 10.1007/s10514-021-10013-w
– year: 2020
  ident: 10.1016/j.robot.2022.104236_b43
– ident: 10.1016/j.robot.2022.104236_b44
  doi: 10.1109/ICRA.2019.8793663
– volume: 12
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.robot.2022.104236_b20
  article-title: Identifying ground-robot impedance to improve terrain adaptability in running robots
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/59888
– start-page: 785
  year: 2010
  ident: 10.1016/j.robot.2022.104236_b11
  article-title: Haptic terrain classification on natural terrains for legged robots
– start-page: 213
  year: 2020
  ident: 10.1016/j.robot.2022.104236_b38
  article-title: End-to-end object detection with transformers
– ident: 10.1016/j.robot.2022.104236_b8
  doi: 10.1109/ROBOSOFT.2019.8722819
– volume: 371
  year: 2022
  ident: 10.1016/j.robot.2022.104236_b23
  article-title: NOAH-H, a deep-learning, terrain classification system for mars: Results for the ExoMars rover candidate landing sites
  publication-title: Icarus
  doi: 10.1016/j.icarus.2021.114701
– start-page: 1387
  year: 2012
  ident: 10.1016/j.robot.2022.104236_b24
  article-title: Feature-based terrain classification for LittleDog
– volume: 315
  start-page: 1416
  issue: 5817
  year: 2007
  ident: 10.1016/j.robot.2022.104236_b21
  article-title: From swimming to walking with a salamander robot driven by a spinal cord model
  publication-title: Science
  doi: 10.1126/science.1138353
– volume: 1
  start-page: 1125
  issue: 2
  year: 2016
  ident: 10.1016/j.robot.2022.104236_b13
  article-title: Integrated ground reaction force sensing and terrain classification for small legged robots
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2016.2524073
– volume: 34
  start-page: 1936
  issue: 6
  year: 2020
  ident: 10.1016/j.robot.2022.104236_b31
  article-title: InceptionTime: Finding AlexNet for time series classification
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-020-00710-y
– volume: 6
  start-page: 1848
  issue: 2
  year: 2021
  ident: 10.1016/j.robot.2022.104236_b6
  article-title: Semi-supervised gated recurrent neural networks for robotic terrain classification
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3060437
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 10.1016/j.robot.2022.104236_b28
  article-title: Deep learning for time series classification: a review
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00619-1
– start-page: 3596
  year: 2016
  ident: 10.1016/j.robot.2022.104236_b25
  article-title: Acoustics based terrain classification for legged robots
– volume: 5
  start-page: 1548
  issue: 2
  year: 2020
  ident: 10.1016/j.robot.2022.104236_b42
  article-title: Quadrupedal locomotion on uneven terrain with sensorized feet
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2969160
– volume: vol. 139
  start-page: 10096
  year: 2021
  ident: 10.1016/j.robot.2022.104236_b45
  article-title: EfficientNetV2: Smaller models and faster training
– ident: 10.1016/j.robot.2022.104236_b16
  doi: 10.1109/ICRA40945.2020.9197154
– year: 2020
  ident: 10.1016/j.robot.2022.104236_b37
– volume: 93
  year: 2019
  ident: 10.1016/j.robot.2022.104236_b10
  article-title: Employing natural terrain semantics in motion planning for a multi-legged robot
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-018-0865-x
– start-page: 148
  year: 1996
  ident: 10.1016/j.robot.2022.104236_b12
  article-title: Experiments with a new boosting algorithm
– volume: 78
  start-page: 401
  issue: 3–4
  year: 2015
  ident: 10.1016/j.robot.2022.104236_b26
  article-title: Terrain classification and negotiation with a walking robot
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-014-0067-0
– volume: 34
  start-page: 1454
  issue: 5
  year: 2020
  ident: 10.1016/j.robot.2022.104236_b33
  article-title: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-020-00701-z
– ident: 10.1016/j.robot.2022.104236_b7
  doi: 10.1109/ICRA.2019.8794478
– volume: 4
  start-page: 1626
  issue: 2
  year: 2019
  ident: 10.1016/j.robot.2022.104236_b5
  article-title: Haptic inspection of planetary soils with legged robots
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2896732
– volume: 29
  start-page: 565
  issue: 3
  year: 2015
  ident: 10.1016/j.robot.2022.104236_b29
  article-title: Time series classification with ensembles of elastic distance measures
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-014-0361-2
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: 10.1016/j.robot.2022.104236_b30
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1978.1163055
– ident: 10.1016/j.robot.2022.104236_b3
  doi: 10.1109/IROS.2014.6943257
– year: 2020
  ident: 10.1016/j.robot.2022.104236_b36
– ident: 10.1016/j.robot.2022.104236_b1
  doi: 10.1109/IROS.2016.7758092
– ident: 10.1016/j.robot.2022.104236_b2
  doi: 10.1109/IROS45743.2020.9341361
– volume: 4
  start-page: 1509
  issue: 2
  year: 2019
  ident: 10.1016/j.robot.2022.104236_b27
  article-title: Where should i walk(predicting terrain properties from images via self-supervised learning
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2895390
– year: 2017
  ident: 10.1016/j.robot.2022.104236_b35
  article-title: Attention is all you need
– ident: 10.1016/j.robot.2022.104236_b39
  doi: 10.1109/ECMR50962.2021.9568808
– start-page: 4278
  year: 2017
  ident: 10.1016/j.robot.2022.104236_b32
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
– volume: 36
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.robot.2022.104236_b15
  article-title: Tactile sensing and terrain-based gait control for small legged robots
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2019.2935336
SSID ssj0003573
Score 2.428613
Snippet The haptic terrain classification is an essential component of a mobile walking robot control system, ensuring proper gait adaptation to the changing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104236
SubjectTerms Data sets for robot learning
Deep learning methods
Legged robots
Title HAPTR2: Improved Haptic Transformer for legged robots’ terrain classification
URI https://dx.doi.org/10.1016/j.robot.2022.104236
Volume 158
WOSCitedRecordID wos000869528600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg4wEeEFcxLpMf2FNJFTsXx7xV06YOUJlGhPoWOZ4zbUxJlWRo7Im_wd_jl3Bsx2nWogmQeEmrpK6Tc77an0-Pv4PQ6zD2pV8EyiuI1KLaUegJ4LEe_LhgOoWFMzNyDJ8_sNksmc_5YRfMaUw5AVaWyeUlX_xXV8M5cLbeOvsX7u6_FE7Ae3A6HMHtcPwjx08nh-kR1St9GzAARjkVC63LmjqSqmqTXXiuTk7gal3lVdu4rAc-AkvruhEjqYm1ziRaOq9X8oYWTt5ZXLR6Y4ROpW0G8udm789xKWr1pU_P39mNdpI-nXlW6TLupytXR0fjQZDfbjd7X199a67aqhjGKChdyfdY3zxjI5CUeEliq4WOlR1_EwaEn5sSwcsB2oq7rw32Nu5wNjZmGut-9T_WNFiR1jaT9Sfdm-6MUiOlGtxGm5RFHAbCzcnB3vxdP30HkU1LcHfnpKpMUuBaV7-nMwOKkj5A97u1BZ5YTDxEt1T5CN0bKE4-Rh8tOt5ihw1ssYEH2MDwgi02sMXGz-8_cIcKfB0VT1C6v5fuTr2upoYngay0Xh5JzqnIZRyKKCfMlzDBAEMBIiiKUID9Jbggp4IxKaifs4BImseMCEalHwZP0UZZleoZwpKQggtf5DocnSglmFCMhJGIj2NSxHwLUWeZTHZ687rsyXnmEgvPMvMQmTZnZs25hd70jRZWbuXmj8fO5FnHGC0TzAAjNzV8_q8NX6C7S4C_RBttfaFeoTvya3va1Nsdln4BJ_ONyQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HAPTR2%3A+Improved+Haptic+Transformer+for+legged+robots%E2%80%99+terrain+classification&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Bednarek%2C+Micha%C5%82&rft.au=Nowicki%2C+Micha%C5%82+R.&rft.au=Walas%2C+Krzysztof&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.eissn=1872-793X&rft.volume=158&rft_id=info:doi/10.1016%2Fj.robot.2022.104236&rft.externalDocID=S0921889022001373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon