A local search-based many-objective five-element cycle optimization algorithm
The conception of memetic algorithms (MAs) has provided a new perspective in algorithmic design through hybridizing and combining of local search techniques and population-based search. Previous research has proven that the performance of some multi-objective evolutionary algorithms (MOEAs) could be...
Uloženo v:
| Vydáno v: | Swarm and evolutionary computation Ročník 68; s. 101009 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2022
|
| Témata: | |
| ISSN: | 2210-6502 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The conception of memetic algorithms (MAs) has provided a new perspective in algorithmic design through hybridizing and combining of local search techniques and population-based search. Previous research has proven that the performance of some multi-objective evolutionary algorithms (MOEAs) could be improved by hybridization with local search strategy. However, when designing many-objective evolutionary optimization algorithms, if the ranking scheme relies on the Pareto dominance relation, it is quite challenging to evaluate solutions with several objective values and distinguish the most effective solutions from a population full of “the first rank” solutions. In this study, a new many-objective five-element cycle optimization algorithm based on a gradient-based local search method (termed LSMaOFECO) is proposed. In the evolutionary search part of LSMaOFECO, within the five-element cycle model, the forces exerted on every individual on different objective dimensions are summed up as an evaluating criterion to decide whether a solution should be accepted directly or updated. In the selection phase, this evaluation method is used to choose the next generation from the parents and the offspring when the dominance relation ranking loses effectiveness. In the local search part, three search tactics are proposed, among which the worst-objective-search tactic outperforms the other two in the experiment and is subsequently used in the updating phase of LSMaOFECO. The performance of the proposed algorithm is compared with six state-of-the-art multi- and many-objective algorithms by solving a set of many-objective test problems. The results obtained verify the utility of the LSMaOFECO in solving many-objective optimization problems (MaOPs). |
|---|---|
| AbstractList | The conception of memetic algorithms (MAs) has provided a new perspective in algorithmic design through hybridizing and combining of local search techniques and population-based search. Previous research has proven that the performance of some multi-objective evolutionary algorithms (MOEAs) could be improved by hybridization with local search strategy. However, when designing many-objective evolutionary optimization algorithms, if the ranking scheme relies on the Pareto dominance relation, it is quite challenging to evaluate solutions with several objective values and distinguish the most effective solutions from a population full of “the first rank” solutions. In this study, a new many-objective five-element cycle optimization algorithm based on a gradient-based local search method (termed LSMaOFECO) is proposed. In the evolutionary search part of LSMaOFECO, within the five-element cycle model, the forces exerted on every individual on different objective dimensions are summed up as an evaluating criterion to decide whether a solution should be accepted directly or updated. In the selection phase, this evaluation method is used to choose the next generation from the parents and the offspring when the dominance relation ranking loses effectiveness. In the local search part, three search tactics are proposed, among which the worst-objective-search tactic outperforms the other two in the experiment and is subsequently used in the updating phase of LSMaOFECO. The performance of the proposed algorithm is compared with six state-of-the-art multi- and many-objective algorithms by solving a set of many-objective test problems. The results obtained verify the utility of the LSMaOFECO in solving many-objective optimization problems (MaOPs). |
| ArticleNumber | 101009 |
| Author | Mao, Zhengyan Liu, Mandan |
| Author_xml | – sequence: 1 givenname: Zhengyan surname: Mao fullname: Mao, Zhengyan email: 020130072@mail.ecust.edu.cn organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China – sequence: 2 givenname: Mandan orcidid: 0000-0002-5928-4656 surname: Liu fullname: Liu, Mandan email: liumandan@ecust.edu.cn organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China |
| BookMark | eNqFkD1PwzAQhj0UiQL9BSz-Ay7-IHEzMFQVX1IRC8yWfblQR0lc2VZR-fWkLRMD3HCnO-k56X0uyGQIAxJyLfhccFHetPP0ibswl1yKw4XzakKmUgrOyoLLczJLqeVjlVwWRTUlL0vaBbAdTWgjbJizCWva22HPgmsRst8hbcbGsMMeh0xhDx3SsM2-9182-zBQ232E6POmvyJnje0Szn7mJXl_uH9bPbH16-PzarlmoLjKzKkChCq4BSVBa6Gk007cClELcGXZcO2qQmtcNKihtgsodQPSjZuq7fhBXRJ1-gsxpBSxMdvoexv3RnBzEGFacxRhDiLMScRIVb8o8PmYIEfru3_YuxOLY6ydx2gSeBwAax9HS6YO_k_-G9rVf84 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2022_101180 crossref_primary_10_3390_app14177468 crossref_primary_10_3390_sym16091153 crossref_primary_10_1016_j_swevo_2022_101185 crossref_primary_10_1016_j_rineng_2025_106935 crossref_primary_10_1016_j_swevo_2024_101667 crossref_primary_10_1002_cpe_7374 crossref_primary_10_1007_s12293_025_00460_8 |
| Cites_doi | 10.1109/TNNLS.2018.2806481 10.1109/MCI.2017.2742868 10.1016/j.artint.2015.06.007 10.1109/4235.996017 10.1109/TEVC.2017.2776226 10.1109/TEVC.2013.2281535 10.1016/S0377-2217(01)00104-7 10.1109/TEVC.2013.2281534 10.1109/TEVC.2003.810752 10.1109/5326.704576 10.1023/B:ANOR.0000039516.50069.5b 10.1109/TNNLS.2019.2957105 10.1109/TEVC.2002.802873 10.1145/2792984 10.1016/j.swevo.2011.02.002 10.1007/s40747-017-0039-7 10.1109/TEVC.2003.810758 10.3390/a12110244 10.1109/TEVC.2014.2301794 10.1162/evco_a_00226 10.1080/10556789808805699 10.1109/TEVC.2014.2373386 10.1109/TEVC.2020.2964705 10.1109/TEVC.2015.2443001 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2021.101009 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2021_101009 S2210650221001711 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-b35c1350ac32c77132b7b1411d1cb66f07b9577e8fe7cda8c67fc2bfe73da3033 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Wed Nov 05 20:39:36 EST 2025 Tue Nov 18 21:30:18 EST 2025 Fri Feb 23 02:40:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Local search Many-objective evolutionary optimization Five-elements cycle model Multi-objective memetic algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-b35c1350ac32c77132b7b1411d1cb66f07b9577e8fe7cda8c67fc2bfe73da3033 |
| ORCID | 0000-0002-5928-4656 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2021_101009 crossref_citationtrail_10_1016_j_swevo_2021_101009 elsevier_sciencedirect_doi_10_1016_j_swevo_2021_101009 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ishibuchi, Murata (bib0020) 1996 Li, Li, Tang, Yao (bib0028) 2015; 48 Goh, Ong, Tan (bib0013) 2008; volume 171 Tian, Cheng, Zhang, Jin (bib0040) 2017; 12 Li, Yang, Liu (bib0030) 2015; 228 Singh, Isaacs, Ray (bib0038) 2014 Moscato, Cotta (bib0033) 2010 Purshouse, Fleming (bib0036) 2003; volume 3 Knowles, Corne (bib0027) 2000; volume 1 Dhiman, Soni, Pandey, Slowik, Kaur (bib0012) 2020 Ye, Mao, Liu (bib0041) 2019; 12 Leung, Wang (bib46) 2020; 32 Soliman, Bui, Abbass (bib0039) 2009 Chen, Ding, Tan, Chen (bib0003) 2021 Zitzler, Thiele (bib0044) 1998 Derrac, García, Molina, Herrera (bib0011) 2011; 1 Ishibuchi, Masuda, Nojima (bib0018) 2015 Deb (bib0008) 2001; volume 16 Hughes (bib0015) 2005; volume 1 Ishibuchi, Imada, Setoguchi, Nojima (bib0016) 2018; 26 Liu (bib0032) 2017 Ishibuchi, Yoshida, Murata (bib0022) 2003; 7 Jaszkiewicz (bib0025) 2002; 6 Ishibuchi, Masuda, Tanigaki, Nojima (bib0019) 2015 Leung, Wang (bib47) 2018; 29 Shang, Ishibuchi (bib0037) 2020; 24 Deb, Pratap, Agarwal, Meyarivan (bib0010) 2002; 6 Li, Deb, Zhang, Kwong (bib0029) 2014; 19 Okabe, Jin, Sendhoff (bib0035) 2009 Hernández Gómez, Coello Coello (bib0014) 2015 Zitzler, Thiele, Laumanns, Fonseca, Da Fonseca (bib0045) 2003; 7 Yuan, Xu, Wang, Zhang, Yao (bib0042) 2015; 20 Jaszkiewicz (bib0024) 2002; 137 Liu (bib0031) 2017 Cheng, Li, Tian, Zhang, Yang, Jin, Yao (bib0005) 2017; 3 Cheng, Li, Tian, Xiang, Zhang, Yang, Jin, Yao (bib0004) 2018 Ishibuchi, Murata (bib0021) 1998; 28 Wang, Zhen, Deng, Zhang, Li, Yuan, Zeng (bib48) 2021 Deb, Jain (bib0009) 2014; 18 Moscato (bib0034) 1989; 826 Caponio, Neri (bib0001) 2009 Coello, Sierra (bib0006) 2004 Coleman, Branch, Grace (bib0007) 1999 Chen, Zeng, Lin, Zhang (bib0002) 2014; 19 Zhang (bib0043) 1998; 10 Ishibuchi, Imada, Setoguchi, Nojima (bib0017) 2018; 22 Jain, Deb (bib0023) 2014; 18 Jaszkiewicz (bib0026) 2004; 131 Coleman (10.1016/j.swevo.2021.101009_bib0007) 1999 Hernández Gómez (10.1016/j.swevo.2021.101009_bib0014) 2015 Ishibuchi (10.1016/j.swevo.2021.101009_bib0019) 2015 Liu (10.1016/j.swevo.2021.101009_bib0031) 2017 Zitzler (10.1016/j.swevo.2021.101009_bib0044) 1998 Leung (10.1016/j.swevo.2021.101009_bib47) 2018; 29 Li (10.1016/j.swevo.2021.101009_bib0029) 2014; 19 Moscato (10.1016/j.swevo.2021.101009_bib0033) 2010 Hughes (10.1016/j.swevo.2021.101009_bib0015) 2005; volume 1 Singh (10.1016/j.swevo.2021.101009_bib0038) 2014 Ishibuchi (10.1016/j.swevo.2021.101009_bib0016) 2018; 26 Jaszkiewicz (10.1016/j.swevo.2021.101009_bib0026) 2004; 131 Zitzler (10.1016/j.swevo.2021.101009_bib0045) 2003; 7 Li (10.1016/j.swevo.2021.101009_bib0030) 2015; 228 Leung (10.1016/j.swevo.2021.101009_bib46) 2020; 32 Jaszkiewicz (10.1016/j.swevo.2021.101009_bib0024) 2002; 137 Liu (10.1016/j.swevo.2021.101009_bib0032) 2017 Jaszkiewicz (10.1016/j.swevo.2021.101009_bib0025) 2002; 6 Shang (10.1016/j.swevo.2021.101009_bib0037) 2020; 24 Goh (10.1016/j.swevo.2021.101009_bib0013) 2008; volume 171 Li (10.1016/j.swevo.2021.101009_bib0028) 2015; 48 Zhang (10.1016/j.swevo.2021.101009_bib0043) 1998; 10 Soliman (10.1016/j.swevo.2021.101009_bib0039) 2009 Ishibuchi (10.1016/j.swevo.2021.101009_bib0018) 2015 Deb (10.1016/j.swevo.2021.101009_bib0009) 2014; 18 Cheng (10.1016/j.swevo.2021.101009_bib0005) 2017; 3 Cheng (10.1016/j.swevo.2021.101009_bib0004) 2018 Ye (10.1016/j.swevo.2021.101009_bib0041) 2019; 12 Wang (10.1016/j.swevo.2021.101009_bib48) 2021 Knowles (10.1016/j.swevo.2021.101009_bib0027) 2000; volume 1 Ishibuchi (10.1016/j.swevo.2021.101009_bib0017) 2018; 22 Ishibuchi (10.1016/j.swevo.2021.101009_bib0020) 1996 Yuan (10.1016/j.swevo.2021.101009_bib0042) 2015; 20 Deb (10.1016/j.swevo.2021.101009_bib0008) 2001; volume 16 Derrac (10.1016/j.swevo.2021.101009_bib0011) 2011; 1 Dhiman (10.1016/j.swevo.2021.101009_bib0012) 2020 Coello (10.1016/j.swevo.2021.101009_bib0006) 2004 Chen (10.1016/j.swevo.2021.101009_bib0002) 2014; 19 Purshouse (10.1016/j.swevo.2021.101009_bib0036) 2003; volume 3 Caponio (10.1016/j.swevo.2021.101009_bib0001) 2009 Chen (10.1016/j.swevo.2021.101009_bib0003) 2021 Moscato (10.1016/j.swevo.2021.101009_bib0034) 1989; 826 Ishibuchi (10.1016/j.swevo.2021.101009_bib0022) 2003; 7 Jain (10.1016/j.swevo.2021.101009_bib0023) 2014; 18 Deb (10.1016/j.swevo.2021.101009_bib0010) 2002; 6 Okabe (10.1016/j.swevo.2021.101009_bib0035) 2009 Ishibuchi (10.1016/j.swevo.2021.101009_bib0021) 1998; 28 Tian (10.1016/j.swevo.2021.101009_bib0040) 2017; 12 |
| References_xml | – volume: volume 3 start-page: 2066 year: 2003 end-page: 2073 ident: bib0036 article-title: Evolutionary many-objective optimisation: An exploratory analysis publication-title: The 2003 Congress on Evolutionary Computation, 2003. CEC’03. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib0009 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 137 start-page: 50 year: 2002 end-page: 71 ident: bib0024 article-title: Genetic local search for multi-objective combinatorial optimization publication-title: Eur J Oper Res – volume: 131 start-page: 135 year: 2004 end-page: 158 ident: bib0026 article-title: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the pareto memetic algorithm publication-title: Ann Oper Res – start-page: 1069 year: 2014 end-page: 1075 ident: bib0038 article-title: A hybrid surrogate based algorithm (hsba) to solve computationally expensive optimization problems publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC) – start-page: 688 year: 2004 end-page: 697 ident: bib0006 article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm publication-title: Mexican International Conference on Artificial Intelligence – year: 2021 ident: bib48 article-title: Multiobjective optimization-aided decision-making system for large-scale manufacturing planning publication-title: IEEE Transactions on Cybernetics – start-page: 325 year: 2009 end-page: 351 ident: bib0001 article-title: Integrating cross-dominance adaptation in multi-objective Memetic Algorithms publication-title: Multi-objective memetic algorithms – volume: 18 start-page: 602 year: 2014 end-page: 622 ident: bib0023 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. – start-page: 75 year: 2017 end-page: 79 ident: bib0031 article-title: Five-elements cycle optimization algorithm for solving continuous optimization problems publication-title: 2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI) – start-page: 1 year: 2021 end-page: 20 ident: bib0003 article-title: A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization publication-title: Memetic Computing – volume: 32 year: 2020 ident: bib46 article-title: Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization publication-title: IEEE transactions on neural networks and learning systems – start-page: 110 year: 2015 end-page: 125 ident: bib0019 article-title: Modified distance calculation in generational distance and inverted generational distance publication-title: International Conference on Evolutionary Multi-criterion Optimization – start-page: 119 year: 1996 end-page: 124 ident: bib0020 article-title: Multi-objective genetic local search algorithm publication-title: Proceedings of IEEE International Conference on Evolutionary Computation – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: bib0045 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE Trans. Evol. Comput. – volume: 12 start-page: 244 year: 2019 ident: bib0041 article-title: A novel multi-objective five-elements cycle optimization algorithm publication-title: Algorithms – volume: volume 16 year: 2001 ident: bib0008 article-title: Multi-objective Optimization Using Evolutionary Algorithms – year: 1999 ident: bib0007 article-title: Optimization toolbox publication-title: For Use with MATLAB. User’s Guide for MATLAB 5, Version 2, Relaese II – start-page: 695 year: 2015 end-page: 702 ident: bib0018 article-title: A study on performance evaluation ability of a modified inverted generational distance indicator publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation – volume: volume 171 year: 2008 ident: bib0013 article-title: Multi-objective memetic algorithms – volume: 20 start-page: 180 year: 2015 end-page: 198 ident: bib0042 article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 402 year: 2002 end-page: 412 ident: bib0025 article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment publication-title: IEEE Trans. Evol. Comput. – volume: 26 start-page: 411 year: 2018 end-page: 440 ident: bib0016 article-title: How to specify a reference point in hypervolume calculation for fair performance comparison publication-title: Evol Comput – volume: 228 start-page: 45 year: 2015 end-page: 65 ident: bib0030 article-title: Bi-goal evolution for many-objective optimization problems publication-title: Artif Intell – volume: volume 1 start-page: 222 year: 2005 end-page: 227 ident: bib0015 article-title: Evolutionary many-objective optimisation: many once or one many? publication-title: 2005 IEEE congress on evolutionary computation – year: 2018 ident: bib0004 article-title: Benchmark functions for the cec’2018 competition on many-objective optimization publication-title: Technical Report – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0011 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput – start-page: 595 year: 2017 end-page: 601 ident: bib0032 article-title: Five-elements cycle optimization algorithm for the travelling salesman problem publication-title: 2017 18th International Conference on Advanced Robotics (ICAR) – start-page: 369 year: 2009 end-page: 388 ident: bib0039 article-title: A memetic coevolutionary multi-objective differential evolution algorithm publication-title: Multi-Objective Memetic Algorithms – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0010 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – start-page: 292 year: 1998 end-page: 301 ident: bib0044 article-title: Multiobjective optimization using evolutionary algorithms’a comparative case study publication-title: International Conference on Parallel Problem Solving from Nature – volume: 19 start-page: 694 year: 2014 end-page: 716 ident: bib0029 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2020 end-page: 19 ident: bib0012 article-title: A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization publication-title: Eng Comput – volume: 7 start-page: 204 year: 2003 end-page: 223 ident: bib0022 article-title: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling publication-title: IEEE Trans. Evol. Comput. – start-page: 679 year: 2015 end-page: 686 ident: bib0014 article-title: Improved metaheuristic based on the r2 indicator for many-objective optimization publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation – volume: 22 start-page: 961 year: 2018 end-page: 975 ident: bib0017 article-title: Reference point specification in inverted generational distance for triangular linear pareto front publication-title: IEEE Trans. Evol. Comput. – start-page: 141 year: 2010 end-page: 183 ident: bib0033 article-title: A modern introduction to memetic algorithms publication-title: Handbook of metaheuristics – volume: 10 start-page: 1 year: 1998 end-page: 31 ident: bib0043 article-title: Solving large-scale linear programs by interior-point methods under the matlab environment publication-title: Optimization Methods and Software – volume: 29 year: 2018 ident: bib47 article-title: A collaborative neurodynamic approach to multiobjective optimization publication-title: IEEE transactions on neural networks and learning systems – volume: 48 start-page: 1 year: 2015 end-page: 35 ident: bib0028 article-title: Many-objective evolutionary algorithms: a survey publication-title: ACM Computing Surveys (CSUR) – volume: 24 start-page: 839 year: 2020 end-page: 852 ident: bib0037 article-title: A new hypervolume-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 3 start-page: 67 year: 2017 end-page: 81 ident: bib0005 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex & Intelligent Systems – volume: 28 start-page: 392 year: 1998 end-page: 403 ident: bib0021 article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling publication-title: IEEE transactions on systems, man, and cybernetics, part C (applications and reviews) – start-page: 281 year: 2009 end-page: 307 ident: bib0035 article-title: Combination of genetic algorithms and evolution strategies with self-adaptive switching publication-title: Multi-Objective Memetic Algorithms – volume: 19 start-page: 50 year: 2014 end-page: 73 ident: bib0002 article-title: A new local search-based multiobjective optimization algorithm publication-title: IEEE Trans. Evol. Comput. – volume: volume 1 start-page: 325 year: 2000 end-page: 332 ident: bib0027 article-title: M-paes: A memetic algorithm for multiobjective optimization publication-title: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512) – volume: 826 start-page: 1989 year: 1989 ident: bib0034 article-title: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms publication-title: Caltech concurrent computation program, C3P Report – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: bib0040 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput Intell Mag – start-page: 688 year: 2004 ident: 10.1016/j.swevo.2021.101009_bib0006 article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm – start-page: 695 year: 2015 ident: 10.1016/j.swevo.2021.101009_bib0018 article-title: A study on performance evaluation ability of a modified inverted generational distance indicator – start-page: 679 year: 2015 ident: 10.1016/j.swevo.2021.101009_bib0014 article-title: Improved metaheuristic based on the r2 indicator for many-objective optimization – start-page: 369 year: 2009 ident: 10.1016/j.swevo.2021.101009_bib0039 article-title: A memetic coevolutionary multi-objective differential evolution algorithm – volume: 29 issue: 11 year: 2018 ident: 10.1016/j.swevo.2021.101009_bib47 article-title: A collaborative neurodynamic approach to multiobjective optimization publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2018.2806481 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.swevo.2021.101009_bib0040 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – year: 2018 ident: 10.1016/j.swevo.2021.101009_bib0004 article-title: Benchmark functions for the cec’2018 competition on many-objective optimization – volume: 228 start-page: 45 year: 2015 ident: 10.1016/j.swevo.2021.101009_bib0030 article-title: Bi-goal evolution for many-objective optimization problems publication-title: Artif Intell doi: 10.1016/j.artint.2015.06.007 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.swevo.2021.101009_bib0010 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – start-page: 292 year: 1998 ident: 10.1016/j.swevo.2021.101009_bib0044 article-title: Multiobjective optimization using evolutionary algorithms’a comparative case study – volume: 22 start-page: 961 issue: 6 year: 2018 ident: 10.1016/j.swevo.2021.101009_bib0017 article-title: Reference point specification in inverted generational distance for triangular linear pareto front publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2776226 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.swevo.2021.101009_bib0009 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 137 start-page: 50 issue: 1 year: 2002 ident: 10.1016/j.swevo.2021.101009_bib0024 article-title: Genetic local search for multi-objective combinatorial optimization publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(01)00104-7 – start-page: 281 year: 2009 ident: 10.1016/j.swevo.2021.101009_bib0035 article-title: Combination of genetic algorithms and evolution strategies with self-adaptive switching – start-page: 595 year: 2017 ident: 10.1016/j.swevo.2021.101009_bib0032 article-title: Five-elements cycle optimization algorithm for the travelling salesman problem – year: 2021 ident: 10.1016/j.swevo.2021.101009_bib48 article-title: Multiobjective optimization-aided decision-making system for large-scale manufacturing planning publication-title: IEEE Transactions on Cybernetics – volume: 18 start-page: 602 issue: 4 year: 2014 ident: 10.1016/j.swevo.2021.101009_bib0023 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281534 – start-page: 1069 year: 2014 ident: 10.1016/j.swevo.2021.101009_bib0038 article-title: A hybrid surrogate based algorithm (hsba) to solve computationally expensive optimization problems – volume: 7 start-page: 204 issue: 2 year: 2003 ident: 10.1016/j.swevo.2021.101009_bib0022 article-title: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810752 – volume: 28 start-page: 392 issue: 3 year: 1998 ident: 10.1016/j.swevo.2021.101009_bib0021 article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling publication-title: IEEE transactions on systems, man, and cybernetics, part C (applications and reviews) doi: 10.1109/5326.704576 – start-page: 141 year: 2010 ident: 10.1016/j.swevo.2021.101009_bib0033 article-title: A modern introduction to memetic algorithms – volume: 131 start-page: 135 issue: 1 year: 2004 ident: 10.1016/j.swevo.2021.101009_bib0026 article-title: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the pareto memetic algorithm publication-title: Ann Oper Res doi: 10.1023/B:ANOR.0000039516.50069.5b – volume: 32 issue: 7 year: 2020 ident: 10.1016/j.swevo.2021.101009_bib46 article-title: Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2019.2957105 – volume: volume 1 start-page: 325 year: 2000 ident: 10.1016/j.swevo.2021.101009_bib0027 article-title: M-paes: A memetic algorithm for multiobjective optimization – volume: 6 start-page: 402 issue: 4 year: 2002 ident: 10.1016/j.swevo.2021.101009_bib0025 article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.802873 – volume: 48 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.swevo.2021.101009_bib0028 article-title: Many-objective evolutionary algorithms: a survey publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/2792984 – volume: volume 16 year: 2001 ident: 10.1016/j.swevo.2021.101009_bib0008 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.swevo.2021.101009_bib0011 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – volume: volume 3 start-page: 2066 year: 2003 ident: 10.1016/j.swevo.2021.101009_bib0036 article-title: Evolutionary many-objective optimisation: An exploratory analysis – year: 1999 ident: 10.1016/j.swevo.2021.101009_bib0007 article-title: Optimization toolbox publication-title: For Use with MATLAB. User’s Guide for MATLAB 5, Version 2, Relaese II – start-page: 325 year: 2009 ident: 10.1016/j.swevo.2021.101009_bib0001 article-title: Integrating cross-dominance adaptation in multi-objective Memetic Algorithms – start-page: 75 year: 2017 ident: 10.1016/j.swevo.2021.101009_bib0031 article-title: Five-elements cycle optimization algorithm for solving continuous optimization problems – volume: 826 start-page: 1989 year: 1989 ident: 10.1016/j.swevo.2021.101009_bib0034 article-title: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms publication-title: Caltech concurrent computation program, C3P Report – volume: volume 1 start-page: 222 year: 2005 ident: 10.1016/j.swevo.2021.101009_bib0015 article-title: Evolutionary many-objective optimisation: many once or one many? – start-page: 1 year: 2021 ident: 10.1016/j.swevo.2021.101009_bib0003 article-title: A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization publication-title: Memetic Computing – start-page: 1 year: 2020 ident: 10.1016/j.swevo.2021.101009_bib0012 article-title: A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization publication-title: Eng Comput – volume: 3 start-page: 67 issue: 1 year: 2017 ident: 10.1016/j.swevo.2021.101009_bib0005 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-017-0039-7 – volume: 7 start-page: 117 issue: 2 year: 2003 ident: 10.1016/j.swevo.2021.101009_bib0045 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810758 – volume: 12 start-page: 244 issue: 11 year: 2019 ident: 10.1016/j.swevo.2021.101009_bib0041 article-title: A novel multi-objective five-elements cycle optimization algorithm publication-title: Algorithms doi: 10.3390/a12110244 – volume: 19 start-page: 50 issue: 1 year: 2014 ident: 10.1016/j.swevo.2021.101009_bib0002 article-title: A new local search-based multiobjective optimization algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2301794 – volume: volume 171 year: 2008 ident: 10.1016/j.swevo.2021.101009_bib0013 – volume: 26 start-page: 411 issue: 3 year: 2018 ident: 10.1016/j.swevo.2021.101009_bib0016 article-title: How to specify a reference point in hypervolume calculation for fair performance comparison publication-title: Evol Comput doi: 10.1162/evco_a_00226 – start-page: 110 year: 2015 ident: 10.1016/j.swevo.2021.101009_bib0019 article-title: Modified distance calculation in generational distance and inverted generational distance – start-page: 119 year: 1996 ident: 10.1016/j.swevo.2021.101009_bib0020 article-title: Multi-objective genetic local search algorithm – volume: 10 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.swevo.2021.101009_bib0043 article-title: Solving large-scale linear programs by interior-point methods under the matlab environment publication-title: Optimization Methods and Software doi: 10.1080/10556789808805699 – volume: 19 start-page: 694 issue: 5 year: 2014 ident: 10.1016/j.swevo.2021.101009_bib0029 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – volume: 24 start-page: 839 issue: 5 year: 2020 ident: 10.1016/j.swevo.2021.101009_bib0037 article-title: A new hypervolume-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2964705 – volume: 20 start-page: 180 issue: 2 year: 2015 ident: 10.1016/j.swevo.2021.101009_bib0042 article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2443001 |
| SSID | ssj0000602559 |
| Score | 2.3014028 |
| Snippet | The conception of memetic algorithms (MAs) has provided a new perspective in algorithmic design through hybridizing and combining of local search techniques... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101009 |
| SubjectTerms | Five-elements cycle model Local search Many-objective evolutionary optimization Multi-objective memetic algorithms |
| Title | A local search-based many-objective five-element cycle optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.swevo.2021.101009 |
| Volume | 68 |
| WOSCitedRecordID | wos000744237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYq6KGXPqBVaWnlA7fUKLETOzmuEFVbFVQJilZcovgR2BVk0e7y2H_f8SMhq60QRerFSqzYceazxjPOeD6EdnSaFjrVnNjUHgT8L0Eqym0mTJ7KTGspXSamk5_i8DAfDotfgSF75ugERNPkd3fF1X-FGuoAbHt09h_g7jqFCrgG0KEE2KF8FPCDyK1Pkf8wYpcpbYNUF2Qix169RTUUxPjI8UgtlI0wBN1xGQ5lRtXF2WQ6mp9f9m3Xo9tq6gk1zE34AhtypxwvxNIP_YPKbcCenpvmbNEL-hld--NBjQ6VYbsBPNV4KXRj9RyMVVUUHEcCtt6SXvV0OSsq2u8WjHdntzBYcNBpYuviuLhfkbo4wSPbse2XJi6xD7i561RkBaiv9cH3_eGPbjst5s45slSC7VjaHFMumm_lbX-3Q3q2xfFr9DI4BXjgwXyDnplmA71qCTdw0L-b6GCAHba4jy1exhb3scUOW9zHFnfYvkW_v-4f730jgQ-DKDA05kSyTCUsiyvFqBIiYVQKmaRJohMlOa9jIYtMCJPXRihd5YqLWlEJd0xX0AN7h9aaSWPeI8wU40KnmUoLk5qaVYwzBeZikec61kZtIdpKp1QhWbzlLLko26jAcelEWlqRll6kW-hL1-jK50p5-HHeir0M5p4340qYKg81_PDUhh_Ri_spvY3W5tNr8wk9Vzfz0Wz6OUypP0ADfCk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+local+search-based+many-objective+five-element+cycle+optimization+algorithm&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Mao%2C+Zhengyan&rft.au=Liu%2C+Mandan&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=68&rft_id=info:doi/10.1016%2Fj.swevo.2021.101009&rft.externalDocID=S2210650221001711 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |