A local search-based many-objective five-element cycle optimization algorithm

The conception of memetic algorithms (MAs) has provided a new perspective in algorithmic design through hybridizing and combining of local search techniques and population-based search. Previous research has proven that the performance of some multi-objective evolutionary algorithms (MOEAs) could be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Swarm and evolutionary computation Ročník 68; s. 101009
Hlavní autoři: Mao, Zhengyan, Liu, Mandan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2022
Témata:
ISSN:2210-6502
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The conception of memetic algorithms (MAs) has provided a new perspective in algorithmic design through hybridizing and combining of local search techniques and population-based search. Previous research has proven that the performance of some multi-objective evolutionary algorithms (MOEAs) could be improved by hybridization with local search strategy. However, when designing many-objective evolutionary optimization algorithms, if the ranking scheme relies on the Pareto dominance relation, it is quite challenging to evaluate solutions with several objective values and distinguish the most effective solutions from a population full of “the first rank” solutions. In this study, a new many-objective five-element cycle optimization algorithm based on a gradient-based local search method (termed LSMaOFECO) is proposed. In the evolutionary search part of LSMaOFECO, within the five-element cycle model, the forces exerted on every individual on different objective dimensions are summed up as an evaluating criterion to decide whether a solution should be accepted directly or updated. In the selection phase, this evaluation method is used to choose the next generation from the parents and the offspring when the dominance relation ranking loses effectiveness. In the local search part, three search tactics are proposed, among which the worst-objective-search tactic outperforms the other two in the experiment and is subsequently used in the updating phase of LSMaOFECO. The performance of the proposed algorithm is compared with six state-of-the-art multi- and many-objective algorithms by solving a set of many-objective test problems. The results obtained verify the utility of the LSMaOFECO in solving many-objective optimization problems (MaOPs).
AbstractList The conception of memetic algorithms (MAs) has provided a new perspective in algorithmic design through hybridizing and combining of local search techniques and population-based search. Previous research has proven that the performance of some multi-objective evolutionary algorithms (MOEAs) could be improved by hybridization with local search strategy. However, when designing many-objective evolutionary optimization algorithms, if the ranking scheme relies on the Pareto dominance relation, it is quite challenging to evaluate solutions with several objective values and distinguish the most effective solutions from a population full of “the first rank” solutions. In this study, a new many-objective five-element cycle optimization algorithm based on a gradient-based local search method (termed LSMaOFECO) is proposed. In the evolutionary search part of LSMaOFECO, within the five-element cycle model, the forces exerted on every individual on different objective dimensions are summed up as an evaluating criterion to decide whether a solution should be accepted directly or updated. In the selection phase, this evaluation method is used to choose the next generation from the parents and the offspring when the dominance relation ranking loses effectiveness. In the local search part, three search tactics are proposed, among which the worst-objective-search tactic outperforms the other two in the experiment and is subsequently used in the updating phase of LSMaOFECO. The performance of the proposed algorithm is compared with six state-of-the-art multi- and many-objective algorithms by solving a set of many-objective test problems. The results obtained verify the utility of the LSMaOFECO in solving many-objective optimization problems (MaOPs).
ArticleNumber 101009
Author Mao, Zhengyan
Liu, Mandan
Author_xml – sequence: 1
  givenname: Zhengyan
  surname: Mao
  fullname: Mao, Zhengyan
  email: 020130072@mail.ecust.edu.cn
  organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 2
  givenname: Mandan
  orcidid: 0000-0002-5928-4656
  surname: Liu
  fullname: Liu, Mandan
  email: liumandan@ecust.edu.cn
  organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
BookMark eNqFkD1PwzAQhj0UiQL9BSz-Ay7-IHEzMFQVX1IRC8yWfblQR0lc2VZR-fWkLRMD3HCnO-k56X0uyGQIAxJyLfhccFHetPP0ibswl1yKw4XzakKmUgrOyoLLczJLqeVjlVwWRTUlL0vaBbAdTWgjbJizCWva22HPgmsRst8hbcbGsMMeh0xhDx3SsM2-9182-zBQ232E6POmvyJnje0Szn7mJXl_uH9bPbH16-PzarlmoLjKzKkChCq4BSVBa6Gk007cClELcGXZcO2qQmtcNKihtgsodQPSjZuq7fhBXRJ1-gsxpBSxMdvoexv3RnBzEGFacxRhDiLMScRIVb8o8PmYIEfru3_YuxOLY6ydx2gSeBwAax9HS6YO_k_-G9rVf84
CitedBy_id crossref_primary_10_1016_j_swevo_2022_101180
crossref_primary_10_3390_app14177468
crossref_primary_10_3390_sym16091153
crossref_primary_10_1016_j_swevo_2022_101185
crossref_primary_10_1016_j_rineng_2025_106935
crossref_primary_10_1016_j_swevo_2024_101667
crossref_primary_10_1002_cpe_7374
crossref_primary_10_1007_s12293_025_00460_8
Cites_doi 10.1109/TNNLS.2018.2806481
10.1109/MCI.2017.2742868
10.1016/j.artint.2015.06.007
10.1109/4235.996017
10.1109/TEVC.2017.2776226
10.1109/TEVC.2013.2281535
10.1016/S0377-2217(01)00104-7
10.1109/TEVC.2013.2281534
10.1109/TEVC.2003.810752
10.1109/5326.704576
10.1023/B:ANOR.0000039516.50069.5b
10.1109/TNNLS.2019.2957105
10.1109/TEVC.2002.802873
10.1145/2792984
10.1016/j.swevo.2011.02.002
10.1007/s40747-017-0039-7
10.1109/TEVC.2003.810758
10.3390/a12110244
10.1109/TEVC.2014.2301794
10.1162/evco_a_00226
10.1080/10556789808805699
10.1109/TEVC.2014.2373386
10.1109/TEVC.2020.2964705
10.1109/TEVC.2015.2443001
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2021.101009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2021_101009
S2210650221001711
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-b35c1350ac32c77132b7b1411d1cb66f07b9577e8fe7cda8c67fc2bfe73da3033
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Wed Nov 05 20:39:36 EST 2025
Tue Nov 18 21:30:18 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Local search
Many-objective evolutionary optimization
Five-elements cycle model
Multi-objective memetic algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-b35c1350ac32c77132b7b1411d1cb66f07b9577e8fe7cda8c67fc2bfe73da3033
ORCID 0000-0002-5928-4656
ParticipantIDs crossref_primary_10_1016_j_swevo_2021_101009
crossref_citationtrail_10_1016_j_swevo_2021_101009
elsevier_sciencedirect_doi_10_1016_j_swevo_2021_101009
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ishibuchi, Murata (bib0020) 1996
Li, Li, Tang, Yao (bib0028) 2015; 48
Goh, Ong, Tan (bib0013) 2008; volume 171
Tian, Cheng, Zhang, Jin (bib0040) 2017; 12
Li, Yang, Liu (bib0030) 2015; 228
Singh, Isaacs, Ray (bib0038) 2014
Moscato, Cotta (bib0033) 2010
Purshouse, Fleming (bib0036) 2003; volume 3
Knowles, Corne (bib0027) 2000; volume 1
Dhiman, Soni, Pandey, Slowik, Kaur (bib0012) 2020
Ye, Mao, Liu (bib0041) 2019; 12
Leung, Wang (bib46) 2020; 32
Soliman, Bui, Abbass (bib0039) 2009
Chen, Ding, Tan, Chen (bib0003) 2021
Zitzler, Thiele (bib0044) 1998
Derrac, García, Molina, Herrera (bib0011) 2011; 1
Ishibuchi, Masuda, Nojima (bib0018) 2015
Deb (bib0008) 2001; volume 16
Hughes (bib0015) 2005; volume 1
Ishibuchi, Imada, Setoguchi, Nojima (bib0016) 2018; 26
Liu (bib0032) 2017
Ishibuchi, Yoshida, Murata (bib0022) 2003; 7
Jaszkiewicz (bib0025) 2002; 6
Ishibuchi, Masuda, Tanigaki, Nojima (bib0019) 2015
Leung, Wang (bib47) 2018; 29
Shang, Ishibuchi (bib0037) 2020; 24
Deb, Pratap, Agarwal, Meyarivan (bib0010) 2002; 6
Li, Deb, Zhang, Kwong (bib0029) 2014; 19
Okabe, Jin, Sendhoff (bib0035) 2009
Hernández Gómez, Coello Coello (bib0014) 2015
Zitzler, Thiele, Laumanns, Fonseca, Da Fonseca (bib0045) 2003; 7
Yuan, Xu, Wang, Zhang, Yao (bib0042) 2015; 20
Jaszkiewicz (bib0024) 2002; 137
Liu (bib0031) 2017
Cheng, Li, Tian, Zhang, Yang, Jin, Yao (bib0005) 2017; 3
Cheng, Li, Tian, Xiang, Zhang, Yang, Jin, Yao (bib0004) 2018
Ishibuchi, Murata (bib0021) 1998; 28
Wang, Zhen, Deng, Zhang, Li, Yuan, Zeng (bib48) 2021
Deb, Jain (bib0009) 2014; 18
Moscato (bib0034) 1989; 826
Caponio, Neri (bib0001) 2009
Coello, Sierra (bib0006) 2004
Coleman, Branch, Grace (bib0007) 1999
Chen, Zeng, Lin, Zhang (bib0002) 2014; 19
Zhang (bib0043) 1998; 10
Ishibuchi, Imada, Setoguchi, Nojima (bib0017) 2018; 22
Jain, Deb (bib0023) 2014; 18
Jaszkiewicz (bib0026) 2004; 131
Coleman (10.1016/j.swevo.2021.101009_bib0007) 1999
Hernández Gómez (10.1016/j.swevo.2021.101009_bib0014) 2015
Ishibuchi (10.1016/j.swevo.2021.101009_bib0019) 2015
Liu (10.1016/j.swevo.2021.101009_bib0031) 2017
Zitzler (10.1016/j.swevo.2021.101009_bib0044) 1998
Leung (10.1016/j.swevo.2021.101009_bib47) 2018; 29
Li (10.1016/j.swevo.2021.101009_bib0029) 2014; 19
Moscato (10.1016/j.swevo.2021.101009_bib0033) 2010
Hughes (10.1016/j.swevo.2021.101009_bib0015) 2005; volume 1
Singh (10.1016/j.swevo.2021.101009_bib0038) 2014
Ishibuchi (10.1016/j.swevo.2021.101009_bib0016) 2018; 26
Jaszkiewicz (10.1016/j.swevo.2021.101009_bib0026) 2004; 131
Zitzler (10.1016/j.swevo.2021.101009_bib0045) 2003; 7
Li (10.1016/j.swevo.2021.101009_bib0030) 2015; 228
Leung (10.1016/j.swevo.2021.101009_bib46) 2020; 32
Jaszkiewicz (10.1016/j.swevo.2021.101009_bib0024) 2002; 137
Liu (10.1016/j.swevo.2021.101009_bib0032) 2017
Jaszkiewicz (10.1016/j.swevo.2021.101009_bib0025) 2002; 6
Shang (10.1016/j.swevo.2021.101009_bib0037) 2020; 24
Goh (10.1016/j.swevo.2021.101009_bib0013) 2008; volume 171
Li (10.1016/j.swevo.2021.101009_bib0028) 2015; 48
Zhang (10.1016/j.swevo.2021.101009_bib0043) 1998; 10
Soliman (10.1016/j.swevo.2021.101009_bib0039) 2009
Ishibuchi (10.1016/j.swevo.2021.101009_bib0018) 2015
Deb (10.1016/j.swevo.2021.101009_bib0009) 2014; 18
Cheng (10.1016/j.swevo.2021.101009_bib0005) 2017; 3
Cheng (10.1016/j.swevo.2021.101009_bib0004) 2018
Ye (10.1016/j.swevo.2021.101009_bib0041) 2019; 12
Wang (10.1016/j.swevo.2021.101009_bib48) 2021
Knowles (10.1016/j.swevo.2021.101009_bib0027) 2000; volume 1
Ishibuchi (10.1016/j.swevo.2021.101009_bib0017) 2018; 22
Ishibuchi (10.1016/j.swevo.2021.101009_bib0020) 1996
Yuan (10.1016/j.swevo.2021.101009_bib0042) 2015; 20
Deb (10.1016/j.swevo.2021.101009_bib0008) 2001; volume 16
Derrac (10.1016/j.swevo.2021.101009_bib0011) 2011; 1
Dhiman (10.1016/j.swevo.2021.101009_bib0012) 2020
Coello (10.1016/j.swevo.2021.101009_bib0006) 2004
Chen (10.1016/j.swevo.2021.101009_bib0002) 2014; 19
Purshouse (10.1016/j.swevo.2021.101009_bib0036) 2003; volume 3
Caponio (10.1016/j.swevo.2021.101009_bib0001) 2009
Chen (10.1016/j.swevo.2021.101009_bib0003) 2021
Moscato (10.1016/j.swevo.2021.101009_bib0034) 1989; 826
Ishibuchi (10.1016/j.swevo.2021.101009_bib0022) 2003; 7
Jain (10.1016/j.swevo.2021.101009_bib0023) 2014; 18
Deb (10.1016/j.swevo.2021.101009_bib0010) 2002; 6
Okabe (10.1016/j.swevo.2021.101009_bib0035) 2009
Ishibuchi (10.1016/j.swevo.2021.101009_bib0021) 1998; 28
Tian (10.1016/j.swevo.2021.101009_bib0040) 2017; 12
References_xml – volume: volume 3
  start-page: 2066
  year: 2003
  end-page: 2073
  ident: bib0036
  article-title: Evolutionary many-objective optimisation: An exploratory analysis
  publication-title: The 2003 Congress on Evolutionary Computation, 2003. CEC’03.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0009
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 137
  start-page: 50
  year: 2002
  end-page: 71
  ident: bib0024
  article-title: Genetic local search for multi-objective combinatorial optimization
  publication-title: Eur J Oper Res
– volume: 131
  start-page: 135
  year: 2004
  end-page: 158
  ident: bib0026
  article-title: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the pareto memetic algorithm
  publication-title: Ann Oper Res
– start-page: 1069
  year: 2014
  end-page: 1075
  ident: bib0038
  article-title: A hybrid surrogate based algorithm (hsba) to solve computationally expensive optimization problems
  publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
– start-page: 688
  year: 2004
  end-page: 697
  ident: bib0006
  article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm
  publication-title: Mexican International Conference on Artificial Intelligence
– year: 2021
  ident: bib48
  article-title: Multiobjective optimization-aided decision-making system for large-scale manufacturing planning
  publication-title: IEEE Transactions on Cybernetics
– start-page: 325
  year: 2009
  end-page: 351
  ident: bib0001
  article-title: Integrating cross-dominance adaptation in multi-objective Memetic Algorithms
  publication-title: Multi-objective memetic algorithms
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: bib0023
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 75
  year: 2017
  end-page: 79
  ident: bib0031
  article-title: Five-elements cycle optimization algorithm for solving continuous optimization problems
  publication-title: 2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI)
– start-page: 1
  year: 2021
  end-page: 20
  ident: bib0003
  article-title: A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
  publication-title: Memetic Computing
– volume: 32
  year: 2020
  ident: bib46
  article-title: Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization
  publication-title: IEEE transactions on neural networks and learning systems
– start-page: 110
  year: 2015
  end-page: 125
  ident: bib0019
  article-title: Modified distance calculation in generational distance and inverted generational distance
  publication-title: International Conference on Evolutionary Multi-criterion Optimization
– start-page: 119
  year: 1996
  end-page: 124
  ident: bib0020
  article-title: Multi-objective genetic local search algorithm
  publication-title: Proceedings of IEEE International Conference on Evolutionary Computation
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib0045
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 244
  year: 2019
  ident: bib0041
  article-title: A novel multi-objective five-elements cycle optimization algorithm
  publication-title: Algorithms
– volume: volume 16
  year: 2001
  ident: bib0008
  article-title: Multi-objective Optimization Using Evolutionary Algorithms
– year: 1999
  ident: bib0007
  article-title: Optimization toolbox
  publication-title: For Use with MATLAB. User’s Guide for MATLAB 5, Version 2, Relaese II
– start-page: 695
  year: 2015
  end-page: 702
  ident: bib0018
  article-title: A study on performance evaluation ability of a modified inverted generational distance indicator
  publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
– volume: volume 171
  year: 2008
  ident: bib0013
  article-title: Multi-objective memetic algorithms
– volume: 20
  start-page: 180
  year: 2015
  end-page: 198
  ident: bib0042
  article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 402
  year: 2002
  end-page: 412
  ident: bib0025
  article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 411
  year: 2018
  end-page: 440
  ident: bib0016
  article-title: How to specify a reference point in hypervolume calculation for fair performance comparison
  publication-title: Evol Comput
– volume: 228
  start-page: 45
  year: 2015
  end-page: 65
  ident: bib0030
  article-title: Bi-goal evolution for many-objective optimization problems
  publication-title: Artif Intell
– volume: volume 1
  start-page: 222
  year: 2005
  end-page: 227
  ident: bib0015
  article-title: Evolutionary many-objective optimisation: many once or one many?
  publication-title: 2005 IEEE congress on evolutionary computation
– year: 2018
  ident: bib0004
  article-title: Benchmark functions for the cec’2018 competition on many-objective optimization
  publication-title: Technical Report
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0011
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
– start-page: 595
  year: 2017
  end-page: 601
  ident: bib0032
  article-title: Five-elements cycle optimization algorithm for the travelling salesman problem
  publication-title: 2017 18th International Conference on Advanced Robotics (ICAR)
– start-page: 369
  year: 2009
  end-page: 388
  ident: bib0039
  article-title: A memetic coevolutionary multi-objective differential evolution algorithm
  publication-title: Multi-Objective Memetic Algorithms
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0010
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 292
  year: 1998
  end-page: 301
  ident: bib0044
  article-title: Multiobjective optimization using evolutionary algorithms’a comparative case study
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 19
  start-page: 694
  year: 2014
  end-page: 716
  ident: bib0029
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2020
  end-page: 19
  ident: bib0012
  article-title: A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization
  publication-title: Eng Comput
– volume: 7
  start-page: 204
  year: 2003
  end-page: 223
  ident: bib0022
  article-title: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 679
  year: 2015
  end-page: 686
  ident: bib0014
  article-title: Improved metaheuristic based on the r2 indicator for many-objective optimization
  publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
– volume: 22
  start-page: 961
  year: 2018
  end-page: 975
  ident: bib0017
  article-title: Reference point specification in inverted generational distance for triangular linear pareto front
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 141
  year: 2010
  end-page: 183
  ident: bib0033
  article-title: A modern introduction to memetic algorithms
  publication-title: Handbook of metaheuristics
– volume: 10
  start-page: 1
  year: 1998
  end-page: 31
  ident: bib0043
  article-title: Solving large-scale linear programs by interior-point methods under the matlab environment
  publication-title: Optimization Methods and Software
– volume: 29
  year: 2018
  ident: bib47
  article-title: A collaborative neurodynamic approach to multiobjective optimization
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 48
  start-page: 1
  year: 2015
  end-page: 35
  ident: bib0028
  article-title: Many-objective evolutionary algorithms: a survey
  publication-title: ACM Computing Surveys (CSUR)
– volume: 24
  start-page: 839
  year: 2020
  end-page: 852
  ident: bib0037
  article-title: A new hypervolume-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 67
  year: 2017
  end-page: 81
  ident: bib0005
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex & Intelligent Systems
– volume: 28
  start-page: 392
  year: 1998
  end-page: 403
  ident: bib0021
  article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling
  publication-title: IEEE transactions on systems, man, and cybernetics, part C (applications and reviews)
– start-page: 281
  year: 2009
  end-page: 307
  ident: bib0035
  article-title: Combination of genetic algorithms and evolution strategies with self-adaptive switching
  publication-title: Multi-Objective Memetic Algorithms
– volume: 19
  start-page: 50
  year: 2014
  end-page: 73
  ident: bib0002
  article-title: A new local search-based multiobjective optimization algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: volume 1
  start-page: 325
  year: 2000
  end-page: 332
  ident: bib0027
  article-title: M-paes: A memetic algorithm for multiobjective optimization
  publication-title: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512)
– volume: 826
  start-page: 1989
  year: 1989
  ident: bib0034
  article-title: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms
  publication-title: Caltech concurrent computation program, C3P Report
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: bib0040
  article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput Intell Mag
– start-page: 688
  year: 2004
  ident: 10.1016/j.swevo.2021.101009_bib0006
  article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm
– start-page: 695
  year: 2015
  ident: 10.1016/j.swevo.2021.101009_bib0018
  article-title: A study on performance evaluation ability of a modified inverted generational distance indicator
– start-page: 679
  year: 2015
  ident: 10.1016/j.swevo.2021.101009_bib0014
  article-title: Improved metaheuristic based on the r2 indicator for many-objective optimization
– start-page: 369
  year: 2009
  ident: 10.1016/j.swevo.2021.101009_bib0039
  article-title: A memetic coevolutionary multi-objective differential evolution algorithm
– volume: 29
  issue: 11
  year: 2018
  ident: 10.1016/j.swevo.2021.101009_bib47
  article-title: A collaborative neurodynamic approach to multiobjective optimization
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2018.2806481
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.swevo.2021.101009_bib0040
  article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2017.2742868
– year: 2018
  ident: 10.1016/j.swevo.2021.101009_bib0004
  article-title: Benchmark functions for the cec’2018 competition on many-objective optimization
– volume: 228
  start-page: 45
  year: 2015
  ident: 10.1016/j.swevo.2021.101009_bib0030
  article-title: Bi-goal evolution for many-objective optimization problems
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2015.06.007
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2021.101009_bib0010
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– start-page: 292
  year: 1998
  ident: 10.1016/j.swevo.2021.101009_bib0044
  article-title: Multiobjective optimization using evolutionary algorithms’a comparative case study
– volume: 22
  start-page: 961
  issue: 6
  year: 2018
  ident: 10.1016/j.swevo.2021.101009_bib0017
  article-title: Reference point specification in inverted generational distance for triangular linear pareto front
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2776226
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2021.101009_bib0009
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 137
  start-page: 50
  issue: 1
  year: 2002
  ident: 10.1016/j.swevo.2021.101009_bib0024
  article-title: Genetic local search for multi-objective combinatorial optimization
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(01)00104-7
– start-page: 281
  year: 2009
  ident: 10.1016/j.swevo.2021.101009_bib0035
  article-title: Combination of genetic algorithms and evolution strategies with self-adaptive switching
– start-page: 595
  year: 2017
  ident: 10.1016/j.swevo.2021.101009_bib0032
  article-title: Five-elements cycle optimization algorithm for the travelling salesman problem
– year: 2021
  ident: 10.1016/j.swevo.2021.101009_bib48
  article-title: Multiobjective optimization-aided decision-making system for large-scale manufacturing planning
  publication-title: IEEE Transactions on Cybernetics
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2021.101009_bib0023
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– start-page: 1069
  year: 2014
  ident: 10.1016/j.swevo.2021.101009_bib0038
  article-title: A hybrid surrogate based algorithm (hsba) to solve computationally expensive optimization problems
– volume: 7
  start-page: 204
  issue: 2
  year: 2003
  ident: 10.1016/j.swevo.2021.101009_bib0022
  article-title: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810752
– volume: 28
  start-page: 392
  issue: 3
  year: 1998
  ident: 10.1016/j.swevo.2021.101009_bib0021
  article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling
  publication-title: IEEE transactions on systems, man, and cybernetics, part C (applications and reviews)
  doi: 10.1109/5326.704576
– start-page: 141
  year: 2010
  ident: 10.1016/j.swevo.2021.101009_bib0033
  article-title: A modern introduction to memetic algorithms
– volume: 131
  start-page: 135
  issue: 1
  year: 2004
  ident: 10.1016/j.swevo.2021.101009_bib0026
  article-title: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the pareto memetic algorithm
  publication-title: Ann Oper Res
  doi: 10.1023/B:ANOR.0000039516.50069.5b
– volume: 32
  issue: 7
  year: 2020
  ident: 10.1016/j.swevo.2021.101009_bib46
  article-title: Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2019.2957105
– volume: volume 1
  start-page: 325
  year: 2000
  ident: 10.1016/j.swevo.2021.101009_bib0027
  article-title: M-paes: A memetic algorithm for multiobjective optimization
– volume: 6
  start-page: 402
  issue: 4
  year: 2002
  ident: 10.1016/j.swevo.2021.101009_bib0025
  article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.802873
– volume: 48
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.swevo.2021.101009_bib0028
  article-title: Many-objective evolutionary algorithms: a survey
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/2792984
– volume: volume 16
  year: 2001
  ident: 10.1016/j.swevo.2021.101009_bib0008
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2021.101009_bib0011
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– volume: volume 3
  start-page: 2066
  year: 2003
  ident: 10.1016/j.swevo.2021.101009_bib0036
  article-title: Evolutionary many-objective optimisation: An exploratory analysis
– year: 1999
  ident: 10.1016/j.swevo.2021.101009_bib0007
  article-title: Optimization toolbox
  publication-title: For Use with MATLAB. User’s Guide for MATLAB 5, Version 2, Relaese II
– start-page: 325
  year: 2009
  ident: 10.1016/j.swevo.2021.101009_bib0001
  article-title: Integrating cross-dominance adaptation in multi-objective Memetic Algorithms
– start-page: 75
  year: 2017
  ident: 10.1016/j.swevo.2021.101009_bib0031
  article-title: Five-elements cycle optimization algorithm for solving continuous optimization problems
– volume: 826
  start-page: 1989
  year: 1989
  ident: 10.1016/j.swevo.2021.101009_bib0034
  article-title: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms
  publication-title: Caltech concurrent computation program, C3P Report
– volume: volume 1
  start-page: 222
  year: 2005
  ident: 10.1016/j.swevo.2021.101009_bib0015
  article-title: Evolutionary many-objective optimisation: many once or one many?
– start-page: 1
  year: 2021
  ident: 10.1016/j.swevo.2021.101009_bib0003
  article-title: A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
  publication-title: Memetic Computing
– start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2021.101009_bib0012
  article-title: A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization
  publication-title: Eng Comput
– volume: 3
  start-page: 67
  issue: 1
  year: 2017
  ident: 10.1016/j.swevo.2021.101009_bib0005
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-017-0039-7
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.swevo.2021.101009_bib0045
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– volume: 12
  start-page: 244
  issue: 11
  year: 2019
  ident: 10.1016/j.swevo.2021.101009_bib0041
  article-title: A novel multi-objective five-elements cycle optimization algorithm
  publication-title: Algorithms
  doi: 10.3390/a12110244
– volume: 19
  start-page: 50
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2021.101009_bib0002
  article-title: A new local search-based multiobjective optimization algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2301794
– volume: volume 171
  year: 2008
  ident: 10.1016/j.swevo.2021.101009_bib0013
– volume: 26
  start-page: 411
  issue: 3
  year: 2018
  ident: 10.1016/j.swevo.2021.101009_bib0016
  article-title: How to specify a reference point in hypervolume calculation for fair performance comparison
  publication-title: Evol Comput
  doi: 10.1162/evco_a_00226
– start-page: 110
  year: 2015
  ident: 10.1016/j.swevo.2021.101009_bib0019
  article-title: Modified distance calculation in generational distance and inverted generational distance
– start-page: 119
  year: 1996
  ident: 10.1016/j.swevo.2021.101009_bib0020
  article-title: Multi-objective genetic local search algorithm
– volume: 10
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.swevo.2021.101009_bib0043
  article-title: Solving large-scale linear programs by interior-point methods under the matlab environment
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556789808805699
– volume: 19
  start-page: 694
  issue: 5
  year: 2014
  ident: 10.1016/j.swevo.2021.101009_bib0029
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 24
  start-page: 839
  issue: 5
  year: 2020
  ident: 10.1016/j.swevo.2021.101009_bib0037
  article-title: A new hypervolume-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2964705
– volume: 20
  start-page: 180
  issue: 2
  year: 2015
  ident: 10.1016/j.swevo.2021.101009_bib0042
  article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2443001
SSID ssj0000602559
Score 2.3014028
Snippet The conception of memetic algorithms (MAs) has provided a new perspective in algorithmic design through hybridizing and combining of local search techniques...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101009
SubjectTerms Five-elements cycle model
Local search
Many-objective evolutionary optimization
Multi-objective memetic algorithms
Title A local search-based many-objective five-element cycle optimization algorithm
URI https://dx.doi.org/10.1016/j.swevo.2021.101009
Volume 68
WOSCitedRecordID wos000744237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYq6KGXPqBVaWnlA7fUKLETOzmuEFVbFVQJilZcovgR2BVk0e7y2H_f8SMhq60QRerFSqzYceazxjPOeD6EdnSaFjrVnNjUHgT8L0Eqym0mTJ7KTGspXSamk5_i8DAfDotfgSF75ugERNPkd3fF1X-FGuoAbHt09h_g7jqFCrgG0KEE2KF8FPCDyK1Pkf8wYpcpbYNUF2Qix169RTUUxPjI8UgtlI0wBN1xGQ5lRtXF2WQ6mp9f9m3Xo9tq6gk1zE34AhtypxwvxNIP_YPKbcCenpvmbNEL-hld--NBjQ6VYbsBPNV4KXRj9RyMVVUUHEcCtt6SXvV0OSsq2u8WjHdntzBYcNBpYuviuLhfkbo4wSPbse2XJi6xD7i561RkBaiv9cH3_eGPbjst5s45slSC7VjaHFMumm_lbX-3Q3q2xfFr9DI4BXjgwXyDnplmA71qCTdw0L-b6GCAHba4jy1exhb3scUOW9zHFnfYvkW_v-4f730jgQ-DKDA05kSyTCUsiyvFqBIiYVQKmaRJohMlOa9jIYtMCJPXRihd5YqLWlEJd0xX0AN7h9aaSWPeI8wU40KnmUoLk5qaVYwzBeZikec61kZtIdpKp1QhWbzlLLko26jAcelEWlqRll6kW-hL1-jK50p5-HHeir0M5p4340qYKg81_PDUhh_Ri_spvY3W5tNr8wk9Vzfz0Wz6OUypP0ADfCk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+local+search-based+many-objective+five-element+cycle+optimization+algorithm&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Mao%2C+Zhengyan&rft.au=Liu%2C+Mandan&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=68&rft_id=info:doi/10.1016%2Fj.swevo.2021.101009&rft.externalDocID=S2210650221001711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon