New fractal–fractional parametric inequalities with applications

In the present paper, we first establish a general parameterized identity for local fractional twice differentiable functions involving extended fractal–fractional integral operators. Thus by employing generalized convexity on differentiable mappings along with Yang’s Power-mean, Hölder’s and improv...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chaos, solitons and fractals Ročník 172; s. 113529
Hlavní autori: Butt, Saad Ihsan, Khan, Ahmad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2023
Predmet:
ISSN:0960-0779
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the present paper, we first establish a general parameterized identity for local fractional twice differentiable functions involving extended fractal–fractional integral operators. Thus by employing generalized convexity on differentiable mappings along with Yang’s Power-mean, Hölder’s and improved fractal integral inequalities lead us to develop variety of new fractal–fractional parameterized inequalities. Several examples are provided with graphical illustrations to prove the validity of new results. We give error analysis of improved bounds numerically and also by 2D, 3D graphical representations. Finally, we show that our main results recapture fractal variants of trapezoid, midpoint, Simpson and Bullen-type inequalities. Some related applications to the fractal means, moment of random variables and wave equations are given as well. •Contain interesting results linking fractal–fractional analysis on fractal sets and inequality theory.•New Fractal Parameterized inequalities are introduced by utilizing extended fractional integral operators.•New approaches are used to obtain improve bounds.•Error analysis on bounds and its graphical analysis is provided to show the validity of obtain results.•Some related applications to the fractal means, moment of random variables and wave equations are given as well.
AbstractList In the present paper, we first establish a general parameterized identity for local fractional twice differentiable functions involving extended fractal–fractional integral operators. Thus by employing generalized convexity on differentiable mappings along with Yang’s Power-mean, Hölder’s and improved fractal integral inequalities lead us to develop variety of new fractal–fractional parameterized inequalities. Several examples are provided with graphical illustrations to prove the validity of new results. We give error analysis of improved bounds numerically and also by 2D, 3D graphical representations. Finally, we show that our main results recapture fractal variants of trapezoid, midpoint, Simpson and Bullen-type inequalities. Some related applications to the fractal means, moment of random variables and wave equations are given as well. •Contain interesting results linking fractal–fractional analysis on fractal sets and inequality theory.•New Fractal Parameterized inequalities are introduced by utilizing extended fractional integral operators.•New approaches are used to obtain improve bounds.•Error analysis on bounds and its graphical analysis is provided to show the validity of obtain results.•Some related applications to the fractal means, moment of random variables and wave equations are given as well.
ArticleNumber 113529
Author Khan, Ahmad
Butt, Saad Ihsan
Author_xml – sequence: 1
  givenname: Saad Ihsan
  orcidid: 0000-0001-7192-8269
  surname: Butt
  fullname: Butt, Saad Ihsan
  email: saadihsanbutt@gmail.com
– sequence: 2
  givenname: Ahmad
  surname: Khan
  fullname: Khan, Ahmad
  email: itsahmadkhaan@gmail.com
BookMark eNqFkDtSwzAQhlWEGZLACWh8ARtZsqyooIAMr5kMNFBr1vJ6shnHNpIgQ8cduCEnIQ8qCqh2i__7Z_ebsFHXd8jYWc6znOfl-SpzS-hDJriQWZ5LJcyIjbkpecq1NsdsEsKKc57zUozZ1QNuksaDi9B-fXzuN-o7aJMBPKwxenIJdfjyCi1FwpBsKC4TGIaWHOyi4YQdNdAGPP2ZU_Z8c_00v0sXj7f388tF6iSXMa2kKoFjVQtXFKJUBRSyVsJpXbsZVqoWCnRllK6gMGabKhFNofSscahmlZJTZg69zvcheGyso7g_IXqg1ubc7gTYld0LsDsB9iBgy8pf7OBpDf79H-riQOH2rTdCb4Mj7BzW5NFFW_f0J_8N0QF8eg
CitedBy_id crossref_primary_10_1016_j_kjs_2024_100205
crossref_primary_10_1142_S0218348X24501299
crossref_primary_10_2298_FIL2509191V
crossref_primary_10_1016_j_cam_2025_116970
crossref_primary_10_1016_j_chaos_2025_116087
crossref_primary_10_1142_S0218348X25500331
crossref_primary_10_1186_s13661_025_02061_3
crossref_primary_10_3934_math_2025788
crossref_primary_10_1016_j_chaos_2025_116772
crossref_primary_10_3390_fractalfract9080494
crossref_primary_10_2298_FIL2431137B
crossref_primary_10_1016_j_nonrwa_2024_104296
crossref_primary_10_1016_j_chaos_2024_115748
crossref_primary_10_3390_fractalfract9010025
crossref_primary_10_3390_math12243886
Cites_doi 10.1002/mma.7081
10.1142/S0218348X21501267
10.1016/j.mcm.2011.05.026
10.1142/S0218348X22500852
10.1016/j.chaos.2019.109547
10.1016/j.cam.2014.01.002
10.1002/mma.5975
10.1142/S0218348X21500985
10.1016/j.aej.2020.10.038
10.1016/j.chaos.2020.110554
10.2989/16073606.2018.1509242
10.1016/j.chaos.2022.112602
10.1002/mma.6319
10.1002/mma.3808
10.1142/S0218348X22400084
10.1142/S0218348X22400552
10.1016/j.cam.2020.112740
10.1016/j.chaos.2021.111025
10.1016/j.chaos.2022.112661
10.18514/MMN.2018.2441
10.3390/sym13122249
10.1016/S0034-4877(17)30059-9
10.2298/FIL2312737B
10.1016/j.aej.2021.10.033
10.1142/S0218348X21500067
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2023.113529
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2023_113529
S0960077923004307
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-b356a0ebd2c442654a43d52c77dc8eb5d25a7b957ba499d2c6ee94578fce58b53
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072383400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 07:07:02 EST 2025
Tue Nov 18 21:42:05 EST 2025
Tue Dec 03 03:45:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quadrature inequalities
Fractal theory
Generalized convex functions
Generalized fractional integral operators
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-b356a0ebd2c442654a43d52c77dc8eb5d25a7b957ba499d2c6ee94578fce58b53
ORCID 0000-0001-7192-8269
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2023_113529
crossref_primary_10_1016_j_chaos_2023_113529
elsevier_sciencedirect_doi_10_1016_j_chaos_2023_113529
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xu, Butt, Yousaf, Aslam, Zia (b27) 2022; 61
Butt, Yousaf, Ahmad, Nofal (b29) 2022; 30
Sun (b22) 2021; 29
Yang, Yang, Li (b37) 2013
Set, Butt, Akdemir, Karaoglan, Abdeljawad (b10) 2021; 143
Du, Liu, Yu (b23) 2022; 161
Mohammed, Sarikaya (b34) 2020; 372
Abdeljawad, Baleanu (b5) 2017; 80
Guo, Zhao, Zhou, Xiao, Yang (b14) 2017; 40
Budak, Kara, Hezenci, Sarikaya (b33) 2023; 37
Sarikaya, Ertugral (b9) 2020; 47
Butt, Yousaf, Akdemir, Dokuyucu (b11) 2021; 148
Khalil, Al Horani, Yousef, Sababheh (b6) 2014; 264
Mo, Sui (b19) 2014; 28
Khan, Rashid, Ashraf, Baleanu, Chu (b26) 2020; 657
Ali, Kara, Tariboon, Asawasamrit, Budak, Hezenci (b35) 2021; 25
Sarikaya, Aktan (b36) 2011; 54
Valdés, Raboosi, Samaniego (b3) 2020; 5
Jassim (b13) 2020; 43
Yang (b16) 2012
Yu, Zhou, Du (b32) 2022; 164
Baleanu, Agarwal (b8) 2021
Agarwal, Dragomir, Jleli, Samet (b2) 2018
Rasheed, Butt, Pečarić, Pečarić (b4) 2022; 163
Luo, Yu, Du (b17) 2021; 29
Guzman, Langton, Lugo, Medina, Valdés (b7) 2018; 9
Sun (b20) 2019; 42
Luo, Wang, Du (b24) 2020; 131
Sun, Liu (b21) 2020; 43
Inc, Korpinar, Almohsen, Chu (b15) 2021; 60
Kunt, Işcan, Turhan, Karapinar (b12) 2018; 19
Dragomir, Pearce (b1) 2000
Yu, Mohammad, Tingsong Du (b18) 2022; 30
Sun (b28) 2021; 29
Butt, Yousaf, Younas, Ahmad, Yao (b30) 2022; 30
Butt, Agarwal, Yousaf, Guirao (b25) 2022; 1
Sun (b31) 2021; 44
Luo (10.1016/j.chaos.2023.113529_b17) 2021; 29
Butt (10.1016/j.chaos.2023.113529_b25) 2022; 1
Khalil (10.1016/j.chaos.2023.113529_b6) 2014; 264
Jassim (10.1016/j.chaos.2023.113529_b13) 2020; 43
Inc (10.1016/j.chaos.2023.113529_b15) 2021; 60
Luo (10.1016/j.chaos.2023.113529_b24) 2020; 131
Sun (10.1016/j.chaos.2023.113529_b22) 2021; 29
Rasheed (10.1016/j.chaos.2023.113529_b4) 2022; 163
Sun (10.1016/j.chaos.2023.113529_b31) 2021; 44
Yang (10.1016/j.chaos.2023.113529_b16) 2012
Guzman (10.1016/j.chaos.2023.113529_b7) 2018; 9
Xu (10.1016/j.chaos.2023.113529_b27) 2022; 61
Valdés (10.1016/j.chaos.2023.113529_b3) 2020; 5
Yu (10.1016/j.chaos.2023.113529_b32) 2022; 164
Budak (10.1016/j.chaos.2023.113529_b33) 2023; 37
Guo (10.1016/j.chaos.2023.113529_b14) 2017; 40
Baleanu (10.1016/j.chaos.2023.113529_b8) 2021
Sarikaya (10.1016/j.chaos.2023.113529_b9) 2020; 47
Khan (10.1016/j.chaos.2023.113529_b26) 2020; 657
Mohammed (10.1016/j.chaos.2023.113529_b34) 2020; 372
Yu (10.1016/j.chaos.2023.113529_b18) 2022; 30
Mo (10.1016/j.chaos.2023.113529_b19) 2014; 28
Sun (10.1016/j.chaos.2023.113529_b21) 2020; 43
Du (10.1016/j.chaos.2023.113529_b23) 2022; 161
Sun (10.1016/j.chaos.2023.113529_b28) 2021; 29
Yang (10.1016/j.chaos.2023.113529_b37) 2013
Ali (10.1016/j.chaos.2023.113529_b35) 2021; 25
Butt (10.1016/j.chaos.2023.113529_b30) 2022; 30
Agarwal (10.1016/j.chaos.2023.113529_b2) 2018
Abdeljawad (10.1016/j.chaos.2023.113529_b5) 2017; 80
Sarikaya (10.1016/j.chaos.2023.113529_b36) 2011; 54
Set (10.1016/j.chaos.2023.113529_b10) 2021; 143
Butt (10.1016/j.chaos.2023.113529_b11) 2021; 148
Kunt (10.1016/j.chaos.2023.113529_b12) 2018; 19
Sun (10.1016/j.chaos.2023.113529_b20) 2019; 42
Dragomir (10.1016/j.chaos.2023.113529_b1) 2000
Butt (10.1016/j.chaos.2023.113529_b29) 2022; 30
References_xml – start-page: 2021
  year: 2021
  end-page: 2117
  ident: b8
  article-title: Fractional calculus in the sky
– volume: 5
  start-page: 176
  year: 2020
  end-page: 191
  ident: b3
  article-title: Convex functions: Ariadne’s thread or charlotte’s spiderweb
  publication-title: Adv Math Models Appl
– volume: 372
  year: 2020
  ident: b34
  article-title: On generalized fractional integral inequalities for twice differentiable convex functions
  publication-title: J Comput Appl Math
– volume: 80
  start-page: 11
  year: 2017
  end-page: 27
  ident: b5
  article-title: On fractional derivatives with exponential kernel and their discrete versions
  publication-title: Rep Math Phys
– year: 2018
  ident: b2
  article-title: Advances in mathematical inequalities and applications
– volume: 1
  start-page: 1
  year: 2022
  end-page: 18
  ident: b25
  article-title: Generalized fractal jensen and Jensen-Mercer inequalities for harmonic convex function with applications
  publication-title: J Inequ Appl
– volume: 61
  start-page: 4837
  year: 2022
  end-page: 4846
  ident: b27
  article-title: Generalized fractal Jensen–Mercer and Hermite-Mercer type inequalities via h-convex functions involving Mittag-Leffler kernel
  publication-title: Alex Eng J
– volume: 164
  year: 2022
  ident: b32
  article-title: Certain midpoint-type integral inequalitie involving twice differentiable generalized convex mappings and applications in fractal domain
  publication-title: Chaos Solitons Fractals
– volume: 19
  start-page: 1007
  year: 2018
  end-page: 1017
  ident: b12
  article-title: Improvement of frational Hermite–Hadamard type inequality for convex functions
  publication-title: iskolc Math Notes
– volume: 163
  year: 2022
  ident: b4
  article-title: Generalized cyclic jensen and information inequalities
  publication-title: Chaos Solitons Fractals
– volume: 43
  start-page: 939
  year: 2020
  end-page: 947
  ident: b13
  article-title: Analytical approximate solutions for local fractional wave equations
  publication-title: Math Methods Appl Sci
– volume: 43
  start-page: 5776
  year: 2020
  end-page: 5787
  ident: b21
  article-title: Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications
  publication-title: Math Methods Appl Sci
– volume: 161
  year: 2022
  ident: b23
  article-title: Certain error bounds on the parametrized integral inequalitiues in the sense of fractal sets
  publication-title: Chaos Solitons Fractals
– volume: 30
  year: 2022
  ident: b29
  article-title: Jensen–Mercer inequality and related results in the fractal sense with applications
  publication-title: Fractals
– volume: 25
  start-page: 2249
  year: 2021
  ident: b35
  article-title: Some new Simpson’s formula type inequalities for twice differentiable convex functions via generalized fractional operators
  publication-title: Symmetry
– volume: 28
  start-page: 225
  year: 2014
  end-page: 232
  ident: b19
  article-title: Generalized-convex functions on fractal sets
  publication-title: Abstr Appl Anal
– volume: 54
  start-page: 2175
  year: 2011
  end-page: 2182
  ident: b36
  article-title: On the generalization of some integral inequalities and their applications
  publication-title: Math Comput Modelling
– volume: 30
  start-page: 1
  year: 2022
  end-page: 23
  ident: b18
  article-title: An improvement of power-mean integral inequality in frame of fractal space and certain related midpoint-type integral inequalities
  publication-title: Fractals
– volume: 47
  start-page: 193
  year: 2020
  end-page: 213
  ident: b9
  article-title: On the generalized Hermite–Hadamard inequalities
  publication-title: An Univ Craiova Ser Mat comput Sci
– volume: 131
  year: 2020
  ident: b24
  article-title: Fejér–Hermite–Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications
  publication-title: Chaos Solitons Fractals
– volume: 37
  year: 2023
  ident: b33
  article-title: New parameterized inequalities for twice differentiable functions
  publication-title: Filomat
– volume: 42
  start-page: 1159
  year: 2019
  end-page: 1183
  ident: b20
  article-title: On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals
  publication-title: Quaest Math
– volume: 143
  year: 2021
  ident: b10
  article-title: New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators
  publication-title: Chaos Solitons Fractals
– volume: 44
  start-page: 4985
  year: 2021
  end-page: 4998
  ident: b31
  article-title: Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag–Leffler kernel
  publication-title: Math Methods Appl Sci
– volume: 60
  start-page: 1147
  year: 2021
  end-page: 1153
  ident: b15
  article-title: Some numerical solutions of local fractional tricomi equation in fractal transonic flow
  publication-title: Alex Eng J
– volume: 29
  year: 2021
  ident: b22
  article-title: Hermite–Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization
  publication-title: Fractals
– year: 2012
  ident: b16
  article-title: Advanced local fractional calculus and its applications
– volume: 29
  year: 2021
  ident: b17
  article-title: An improvement of holder integral inequality on fractal sets and some related simpson-like inequalites
  publication-title: Fractals
– volume: 657
  year: 2020
  ident: b26
  article-title: Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property
  publication-title: Adv Difference Equ
– year: 2000
  ident: b1
  publication-title: selected topics on hermite–hadamard inequalities and applications
– volume: 264
  start-page: 65
  year: 2014
  end-page: 70
  ident: b6
  article-title: A new definition of fractional derivative
  publication-title: J Comput Appl Math
– volume: 40
  start-page: 6127
  year: 2017
  end-page: 6132
  ident: b14
  article-title: On the local fractional LWR model in fractal traffic flows in the entropy condition
  publication-title: Math Methods Appl Sci
– volume: 29
  year: 2021
  ident: b28
  article-title: Local fractional Ostrowski type inequalities involving generalized h-convex functions and some applications for generalized moments
  publication-title: Fractals
– volume: 9
  start-page: 88
  year: 2018
  end-page: 98
  ident: b7
  article-title: A new definition of a fractional derivative of local type
  publication-title: J Math Anal
– volume: 30
  year: 2022
  ident: b30
  article-title: Fractal Hadamard–Mercer-type inequalities with applications
  publication-title: Fractals
– volume: 148
  year: 2021
  ident: b11
  article-title: New Hadamard-type integral inequalities via a general form of fractional integral operators
  publication-title: Chaos Solitons Fractals
– year: 2013
  ident: b37
  article-title: Local fractional series expansion method for solving wave and diffusion equations on cantor sets
  publication-title: Abstract and Applied Analysis
– volume: 44
  start-page: 4985
  issue: 6
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b31
  article-title: Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag–Leffler kernel
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.7081
– volume: 29
  issue: 5
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b17
  article-title: An improvement of holder integral inequality on fractal sets and some related simpson-like inequalites
  publication-title: Fractals
  doi: 10.1142/S0218348X21501267
– year: 2012
  ident: 10.1016/j.chaos.2023.113529_b16
– volume: 54
  start-page: 2175
  year: 2011
  ident: 10.1016/j.chaos.2023.113529_b36
  article-title: On the generalization of some integral inequalities and their applications
  publication-title: Math Comput Modelling
  doi: 10.1016/j.mcm.2011.05.026
– volume: 161
  year: 2022
  ident: 10.1016/j.chaos.2023.113529_b23
  article-title: Certain error bounds on the parametrized integral inequalitiues in the sense of fractal sets
  publication-title: Chaos Solitons Fractals
– volume: 30
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.chaos.2023.113529_b18
  article-title: An improvement of power-mean integral inequality in frame of fractal space and certain related midpoint-type integral inequalities
  publication-title: Fractals
  doi: 10.1142/S0218348X22500852
– volume: 131
  year: 2020
  ident: 10.1016/j.chaos.2023.113529_b24
  article-title: Fejér–Hermite–Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109547
– volume: 264
  start-page: 65
  year: 2014
  ident: 10.1016/j.chaos.2023.113529_b6
  article-title: A new definition of fractional derivative
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2014.01.002
– volume: 43
  start-page: 939
  issue: 2
  year: 2020
  ident: 10.1016/j.chaos.2023.113529_b13
  article-title: Analytical approximate solutions for local fractional wave equations
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.5975
– volume: 9
  start-page: 88
  issue: 2
  year: 2018
  ident: 10.1016/j.chaos.2023.113529_b7
  article-title: A new definition of a fractional derivative of local type
  publication-title: J Math Anal
– volume: 29
  issue: 04
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b22
  article-title: Hermite–Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization
  publication-title: Fractals
  doi: 10.1142/S0218348X21500985
– volume: 60
  start-page: 1147
  issue: 1
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b15
  article-title: Some numerical solutions of local fractional tricomi equation in fractal transonic flow
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2020.10.038
– volume: 143
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b10
  article-title: New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110554
– year: 2013
  ident: 10.1016/j.chaos.2023.113529_b37
  article-title: Local fractional series expansion method for solving wave and diffusion equations on cantor sets
– volume: 1
  start-page: 1
  year: 2022
  ident: 10.1016/j.chaos.2023.113529_b25
  article-title: Generalized fractal jensen and Jensen-Mercer inequalities for harmonic convex function with applications
  publication-title: J Inequ Appl
– volume: 42
  start-page: 1159
  issue: 9
  year: 2019
  ident: 10.1016/j.chaos.2023.113529_b20
  article-title: On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals
  publication-title: Quaest Math
  doi: 10.2989/16073606.2018.1509242
– year: 2018
  ident: 10.1016/j.chaos.2023.113529_b2
– volume: 163
  year: 2022
  ident: 10.1016/j.chaos.2023.113529_b4
  article-title: Generalized cyclic jensen and information inequalities
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112602
– volume: 43
  start-page: 5776
  issue: 9
  year: 2020
  ident: 10.1016/j.chaos.2023.113529_b21
  article-title: Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.6319
– volume: 40
  start-page: 6127
  issue: 17
  year: 2017
  ident: 10.1016/j.chaos.2023.113529_b14
  article-title: On the local fractional LWR model in fractal traffic flows in the entropy condition
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.3808
– volume: 30
  issue: 1
  year: 2022
  ident: 10.1016/j.chaos.2023.113529_b29
  article-title: Jensen–Mercer inequality and related results in the fractal sense with applications
  publication-title: Fractals
  doi: 10.1142/S0218348X22400084
– volume: 30
  issue: 2
  year: 2022
  ident: 10.1016/j.chaos.2023.113529_b30
  article-title: Fractal Hadamard–Mercer-type inequalities with applications
  publication-title: Fractals
  doi: 10.1142/S0218348X22400552
– volume: 372
  year: 2020
  ident: 10.1016/j.chaos.2023.113529_b34
  article-title: On generalized fractional integral inequalities for twice differentiable convex functions
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2020.112740
– volume: 148
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b11
  article-title: New Hadamard-type integral inequalities via a general form of fractional integral operators
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111025
– volume: 164
  year: 2022
  ident: 10.1016/j.chaos.2023.113529_b32
  article-title: Certain midpoint-type integral inequalitie involving twice differentiable generalized convex mappings and applications in fractal domain
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112661
– volume: 19
  start-page: 1007
  issue: 2
  year: 2018
  ident: 10.1016/j.chaos.2023.113529_b12
  article-title: Improvement of frational Hermite–Hadamard type inequality for convex functions
  publication-title: iskolc Math Notes
  doi: 10.18514/MMN.2018.2441
– volume: 657
  year: 2020
  ident: 10.1016/j.chaos.2023.113529_b26
  article-title: Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property
  publication-title: Adv Difference Equ
– volume: 47
  start-page: 193
  issue: 1
  year: 2020
  ident: 10.1016/j.chaos.2023.113529_b9
  article-title: On the generalized Hermite–Hadamard inequalities
  publication-title: An Univ Craiova Ser Mat comput Sci
– volume: 5
  start-page: 176
  issue: 2
  year: 2020
  ident: 10.1016/j.chaos.2023.113529_b3
  article-title: Convex functions: Ariadne’s thread or charlotte’s spiderweb
  publication-title: Adv Math Models Appl
– volume: 25
  start-page: 2249
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b35
  article-title: Some new Simpson’s formula type inequalities for twice differentiable convex functions via generalized fractional operators
  publication-title: Symmetry
  doi: 10.3390/sym13122249
– volume: 28
  start-page: 225
  year: 2014
  ident: 10.1016/j.chaos.2023.113529_b19
  article-title: Generalized-convex functions on fractal sets
  publication-title: Abstr Appl Anal
– year: 2000
  ident: 10.1016/j.chaos.2023.113529_b1
– volume: 80
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2023.113529_b5
  article-title: On fractional derivatives with exponential kernel and their discrete versions
  publication-title: Rep Math Phys
  doi: 10.1016/S0034-4877(17)30059-9
– start-page: 2021
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b8
  article-title: Fractional calculus in the sky
– volume: 37
  issue: 12
  year: 2023
  ident: 10.1016/j.chaos.2023.113529_b33
  article-title: New parameterized inequalities for twice differentiable functions
  publication-title: Filomat
  doi: 10.2298/FIL2312737B
– volume: 61
  start-page: 4837
  issue: 6
  year: 2022
  ident: 10.1016/j.chaos.2023.113529_b27
  article-title: Generalized fractal Jensen–Mercer and Hermite-Mercer type inequalities via h-convex functions involving Mittag-Leffler kernel
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2021.10.033
– volume: 29
  issue: 1
  year: 2021
  ident: 10.1016/j.chaos.2023.113529_b28
  article-title: Local fractional Ostrowski type inequalities involving generalized h-convex functions and some applications for generalized moments
  publication-title: Fractals
  doi: 10.1142/S0218348X21500067
SSID ssj0001062
Score 2.5339525
Snippet In the present paper, we first establish a general parameterized identity for local fractional twice differentiable functions involving extended...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113529
SubjectTerms Fractal theory
Generalized convex functions
Generalized fractional integral operators
Quadrature inequalities
Title New fractal–fractional parametric inequalities with applications
URI https://dx.doi.org/10.1016/j.chaos.2023.113529
Volume 172
WOSCitedRecordID wos001072383400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001062
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RpYf2gIC2AlpQDj20okHGiWPnuEWg0geqBJX2FjmOowVBisiCOPY_8A_5JczEzqMCobZSL1Y28iOaz_LOjL-ZAXjLC6lSyxO0TRgL6aYpVGWEjc5NYrlJtMsz-1UeHKjJJP3uq67VTTkBWVXq-jo9_69Q4zsEm0Jn_wLublJ8gc8IOrYIO7Z_BDwxFkuKfdKnLZMhan47px_l-j6jMlpmExVMF1OJ1rIPchtcZw_V1p2pdnS8muhyxK4hf7tfpXe0X7qbpkOti8396YDu82Xq_Kzj6Zkuho4GHnWkVO_9aiNgerpR40ZMGHZ0BWG6E9VV47l3OjtHwcmWoY_eojWopIzwLo_f014f0sw0MY-avGTyCcxzKVI1gvnx_u7kc_d_i0Ztc1fUfkmbW6ph8d1b6mH9Y6BTHC3CgjcGgrEDcQnmbLUMz791mXTrZVjyh28dvPMZwt-_gI-IceClf_vrpkc36NENhugGhG4wRPcl_NjbPdr5FPpiGKFBLWMW5pFINLN5wU2MWpWIdRwVghspC6NsLgoutMxTIXONRiz2SqxNYzyPS2OFykX0CkbVz8quQMCEokSFomDbJrZppFjJecmwm7ZxwtQq8FZEmfGZ4qlgyWnWUgJPskauGck1c3JdhQ_doHOXKOXx7kkr-8zrek6Hy3CzPDZw7V8HvoZn_a5-A6PZxaVdh6fmanZcX2z4TXUH6Dd4qg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+fractal%E2%80%93fractional+parametric+inequalities+with+applications&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Butt%2C+Saad+Ihsan&rft.au=Khan%2C+Ahmad&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=172&rft_id=info:doi/10.1016%2Fj.chaos.2023.113529&rft.externalDocID=S0960077923004307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon