Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study

•A portfolio approach is applied for spatiotemporally integrated decision-making in a multi-regional supply chain under pandemic disruption risks.•Stochastic mixed integer programs for optimization of supply chain operations under propagated regional disruptions are developed.•Simultaneous disruptio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Omega (Oxford) Ročník 109; s. 102596
Hlavný autor: Sawik, Tadeusz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.06.2022
Predmet:
ISSN:0305-0483, 1873-5274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A portfolio approach is applied for spatiotemporally integrated decision-making in a multi-regional supply chain under pandemic disruption risks.•Stochastic mixed integer programs for optimization of supply chain operations under propagated regional disruptions are developed.•Simultaneous disruptions in supply, demand and logistics across the entire supply chain are modeled.•The resilient measures commonly used to mitigate the impacts of region-specific disruptions are successfully applied for mitigation the impacts of multi-regional pandemic disruptions. This paper presents a multi-portfolio approach and scenario-based stochastic MIP (mixed integer programming) models for optimization of supply chain operations under ripple effect. The ripple effect is caused by regional pandemic disruption risks propagated from a single primary source region and triggering delayed regional disruptions of different durations in other regions. The propagated regional disruption risks are assumed to impact both primary and backup suppliers of parts, OEM (Original Equipment Manufacturer) assembly plants as well as market demand. As a result, simultaneous disruptions in supply, demand and logistics across the entire supply chain is observed. The mitigation and recovery decisions made to improve the supply chain resilience include pre-positioning of RMI (Risk Mitigation Inventory) of parts at OEM plants and ordering recovery supplies from backup suppliers of parts, located outside the primary source region. The decisions are spatiotemporally integrated. The pre-positioning of RMI implemented before a disruptive event is optimized simultaneously with the RMI usage and recovery supply portfolios for the backup suppliers in the aftermath periods. The recovery supplies of parts and production at OEM plants, are coordinated under random availability of suppliers and plants and random market demand. The resilient solutions for the resilient supply portfolios are compared with the non-resilient solutions with no recovery resources available. The findings indicate that the resilient measures commonly used to mitigate the impacts of region-specific disruptions can be successfully applied for mitigation the impacts of multi-regional pandemic disruptions and the ripple effect.
AbstractList •A portfolio approach is applied for spatiotemporally integrated decision-making in a multi-regional supply chain under pandemic disruption risks.•Stochastic mixed integer programs for optimization of supply chain operations under propagated regional disruptions are developed.•Simultaneous disruptions in supply, demand and logistics across the entire supply chain are modeled.•The resilient measures commonly used to mitigate the impacts of region-specific disruptions are successfully applied for mitigation the impacts of multi-regional pandemic disruptions. This paper presents a multi-portfolio approach and scenario-based stochastic MIP (mixed integer programming) models for optimization of supply chain operations under ripple effect. The ripple effect is caused by regional pandemic disruption risks propagated from a single primary source region and triggering delayed regional disruptions of different durations in other regions. The propagated regional disruption risks are assumed to impact both primary and backup suppliers of parts, OEM (Original Equipment Manufacturer) assembly plants as well as market demand. As a result, simultaneous disruptions in supply, demand and logistics across the entire supply chain is observed. The mitigation and recovery decisions made to improve the supply chain resilience include pre-positioning of RMI (Risk Mitigation Inventory) of parts at OEM plants and ordering recovery supplies from backup suppliers of parts, located outside the primary source region. The decisions are spatiotemporally integrated. The pre-positioning of RMI implemented before a disruptive event is optimized simultaneously with the RMI usage and recovery supply portfolios for the backup suppliers in the aftermath periods. The recovery supplies of parts and production at OEM plants, are coordinated under random availability of suppliers and plants and random market demand. The resilient solutions for the resilient supply portfolios are compared with the non-resilient solutions with no recovery resources available. The findings indicate that the resilient measures commonly used to mitigate the impacts of region-specific disruptions can be successfully applied for mitigation the impacts of multi-regional pandemic disruptions and the ripple effect.
ArticleNumber 102596
Author Sawik, Tadeusz
Author_xml – sequence: 1
  givenname: Tadeusz
  surname: Sawik
  fullname: Sawik, Tadeusz
  email: sawik@ru.is, ghsawik@cyf-kr.edu.pl
  organization: Department of Engineering, Reykjavik University, Reykjavik IS-101, Iceland
BookMark eNqFkMtKAzEUhoNUsK0-gZu8wNRkkrkJLkq9FYQuvGxDJjnRlOlkSFKhPr1p68qFrg6c_3w_nG-CRr3rAaFLSmaU0PJqPXMbeJeznOR52uRFU56gMa0rlhV5xUdoTBgpMsJrdoYmIawJIbQmbIzsc3TqQ4ZoFXZDtBv7JaN1PXYGh-0wdDucYttjD8F2FnoFeNtr8NjblAIGY0DFazzHi9Xb8jajDR5kOtikQg-djKBxiFu9O0enRnYBLn7mFL3e370sHrOn1cNyMX_KFCMsZi1tecGUblpCKwLQcqK4Aa5q0DlhFSuVNkoVpmFcGc5l3UheQqVAM1PUhk0RO_Yq70LwYMTg7Ub6naBE7G2JtTjYEntb4mgrUc0vStl4MBG9tN0_7M2RhfTWpwUvgjqY0tYnN0I7-yf_DXguito
CitedBy_id crossref_primary_10_1016_j_omega_2022_102819
crossref_primary_10_1080_00207543_2025_2537344
crossref_primary_10_1080_21681015_2023_2259385
crossref_primary_10_1016_j_cie_2023_109202
crossref_primary_10_1016_j_cie_2023_109444
crossref_primary_10_1016_j_omega_2022_102817
crossref_primary_10_1002_joom_1347
crossref_primary_10_1080_00207543_2024_2354843
crossref_primary_10_1007_s12351_024_00832_x
crossref_primary_10_3390_economies12010012
crossref_primary_10_3390_jmse11040732
crossref_primary_10_1016_j_tre_2022_103013
crossref_primary_10_3389_fmars_2024_1510791
crossref_primary_10_1016_j_omega_2024_103228
crossref_primary_10_1108_JGOSS_06_2024_0040
crossref_primary_10_1016_j_rsma_2025_104502
crossref_primary_10_1016_j_orp_2025_100325
crossref_primary_10_1080_00207543_2022_2118889
crossref_primary_10_1016_j_omega_2022_102806
crossref_primary_10_1109_TEM_2025_3599711
crossref_primary_10_1080_00207543_2025_2520598
crossref_primary_10_1080_00207721_2025_2519204
crossref_primary_10_1080_00207543_2025_2496962
crossref_primary_10_1080_00207543_2025_2508332
crossref_primary_10_1016_j_ijpe_2025_109532
crossref_primary_10_1016_j_tre_2023_103089
crossref_primary_10_1080_00207543_2023_2285424
crossref_primary_10_3390_ijerph19031416
crossref_primary_10_1007_s40171_025_00458_8
crossref_primary_10_1057_s41278_023_00277_7
crossref_primary_10_1016_j_omega_2025_103356
crossref_primary_10_1108_MSCRA_03_2024_0011
crossref_primary_10_1108_EJIM_01_2024_0017
crossref_primary_10_1177_20552076231185475
crossref_primary_10_1002_sres_3062
crossref_primary_10_1007_s42524_022_0230_4
crossref_primary_10_1016_j_tre_2025_104172
crossref_primary_10_1109_TEM_2023_3296276
crossref_primary_10_1007_s10696_024_09564_8
crossref_primary_10_3390_su142416726
crossref_primary_10_1080_00207543_2025_2514726
crossref_primary_10_1002_sdr_1744
crossref_primary_10_1080_00207543_2022_2161022
crossref_primary_10_1080_00207543_2023_2236726
crossref_primary_10_1016_j_ijpe_2023_108935
crossref_primary_10_1016_j_ijpe_2023_108817
crossref_primary_10_1111_itor_70075
crossref_primary_10_3390_systems13080618
crossref_primary_10_1016_j_omega_2025_103283
crossref_primary_10_1057_s41272_023_00440_y
crossref_primary_10_1080_24725854_2023_2253881
crossref_primary_10_1016_j_eswa_2024_123226
crossref_primary_10_3390_logistics9020051
crossref_primary_10_1007_s12063_024_00476_2
crossref_primary_10_3390_app15010265
crossref_primary_10_1007_s40171_024_00380_5
crossref_primary_10_1016_j_pursup_2025_101014
crossref_primary_10_1080_00207543_2023_2217937
crossref_primary_10_1080_13675567_2025_2554801
crossref_primary_10_1007_s10479_024_06370_1
crossref_primary_10_3390_math11112530
crossref_primary_10_1016_j_omega_2022_102617
crossref_primary_10_1016_j_tre_2025_104393
crossref_primary_10_1016_j_omega_2022_102737
crossref_primary_10_1007_s11740_024_01279_x
crossref_primary_10_3390_su14106240
crossref_primary_10_1016_j_ijpe_2025_109567
crossref_primary_10_1016_j_ijpe_2023_108997
crossref_primary_10_1007_s00500_023_09338_8
crossref_primary_10_1016_j_omega_2023_102972
crossref_primary_10_1080_00207543_2024_2360088
crossref_primary_10_1080_00207543_2023_2177049
crossref_primary_10_1016_j_cie_2025_110873
crossref_primary_10_1080_00207543_2023_2217306
crossref_primary_10_1109_TFUZZ_2023_3324207
crossref_primary_10_1016_j_omega_2024_103264
crossref_primary_10_1080_00207543_2022_2098073
crossref_primary_10_1080_00207543_2023_2178370
crossref_primary_10_1111_itor_13459
crossref_primary_10_3390_math12101444
crossref_primary_10_3390_su17146519
crossref_primary_10_1016_j_omega_2023_102863
crossref_primary_10_1002_ceat_202100504
crossref_primary_10_1007_s12351_025_00928_y
crossref_primary_10_1016_j_cie_2025_111157
crossref_primary_10_1080_00207543_2024_2425771
crossref_primary_10_3390_math11183955
crossref_primary_10_1080_00207543_2025_2532136
crossref_primary_10_3390_su15020917
crossref_primary_10_1007_s10479_022_04650_2
crossref_primary_10_1016_j_omega_2022_102683
crossref_primary_10_1080_23302674_2025_2517340
crossref_primary_10_1080_00207543_2024_2436127
crossref_primary_10_1016_j_omega_2022_102637
crossref_primary_10_1007_s11431_024_2943_2
crossref_primary_10_1016_j_jbef_2024_100904
crossref_primary_10_1080_00207543_2022_2126021
crossref_primary_10_1007_s10668_023_03769_x
crossref_primary_10_1007_s12063_022_00336_x
crossref_primary_10_1080_13675567_2023_2165052
crossref_primary_10_1016_j_omega_2022_102635
crossref_primary_10_3390_su15076327
crossref_primary_10_1016_j_omega_2022_102750
crossref_primary_10_1080_01605682_2024_2406228
crossref_primary_10_1080_13675567_2023_2262396
crossref_primary_10_1007_s10479_023_05408_0
crossref_primary_10_1016_j_cie_2024_110028
crossref_primary_10_1016_j_trb_2025_103190
crossref_primary_10_3934_jimo_2025124
crossref_primary_10_1016_j_joitmc_2025_100489
crossref_primary_10_1016_j_ijpe_2024_109179
crossref_primary_10_1080_00207543_2023_2172964
crossref_primary_10_1109_ACCESS_2022_3215620
crossref_primary_10_1016_j_tre_2022_102676
crossref_primary_10_1007_s13132_025_02682_0
crossref_primary_10_3390_su16198702
crossref_primary_10_1016_j_compchemeng_2023_108428
crossref_primary_10_1007_s10479_024_05870_4
crossref_primary_10_1080_24725854_2023_2184515
crossref_primary_10_3846_jcem_2024_21450
crossref_primary_10_1016_j_omega_2024_103234
crossref_primary_10_1016_j_cie_2023_109385
crossref_primary_10_1016_j_omega_2024_103110
Cites_doi 10.1016/j.omega.2017.01.001
10.1016/j.cor.2010.09.011
10.1080/00207543.2019.1668073
10.1007/s40171-020-00248-4
10.1038/s41591-020-1132-9
10.1016/j.omega.2010.06.007
10.1080/00207543.2021.1890852
10.1080/00207543.2020.1750727
10.1016/j.ijpe.2020.107921
10.1016/j.tre.2015.03.005
10.1080/00207543.2016.1249432
10.1016/j.omega.2017.06.004
10.1016/j.tre.2021.102271
10.1080/00207543.2021.1840148
10.1007/978-3-030-14302-2
10.1080/00207543.2019.1698782
10.1080/00207543.2021.1976431
10.1080/00207543.2019.1665204
10.1080/00207543.2018.1504246
10.1080/00207543.2020.1841318
10.1080/00207543.2020.1834159
10.1002/nav.21905
10.1016/j.tre.2019.03.001
10.1016/j.ijpe.2019.03.018
10.1016/j.omega.2018.05.006
10.1016/j.omega.2014.12.004
10.1080/00207543.2013.852702
10.1080/00207543.2017.1401238
10.1080/00207543.2015.1016192
10.1016/j.omega.2020.102267
10.1007/s12063-020-00166-9
10.1016/j.omega.2012.05.003
10.1016/j.tre.2021.102505
10.1016/j.tre.2020.101922
10.1080/00207543.2018.1504173
10.1080/00207543.2017.1370149
10.1108/IJPDLM-04-2020-0127
10.1016/j.omega.2018.08.008
10.1016/j.cie.2021.107401
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.omega.2022.102596
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-5274
ExternalDocumentID 10_1016_j_omega_2022_102596
S0305048322000056
GroupedDBID --K
--M
-~X
.~1
0R~
13V
1B1
1OL
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
96U
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABJNI
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACBMB
ACDAQ
ACGFS
ACHQT
ACHRH
ACNCT
ACNTT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFACB
AFAZI
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGQRV
AGUBO
AGUMN
AGYEJ
AHEHV
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BAAKF
BDEBP
BKOJK
BKOMP
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HAMUX
HVGLF
HZ~
IAO
IEA
IGG
IHE
IHR
IOF
IPO
ITC
J1W
KOM
LPU
LXL
LY1
M41
MO0
MS~
N95
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPCBC
SSB
SSD
SSL
SSZ
T5K
TAE
TAF
TN5
U5U
VQA
WUQ
XI7
XPP
XSW
XYO
YNT
ZRQ
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
IPC
~HD
ID FETCH-LOGICAL-c303t-b1b453cd9b0170eeb40c4fe4c8ed203736cdfcc5f934cf44a89a46e7ced3f58f3
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793288000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0483
IngestDate Tue Nov 18 21:56:16 EST 2025
Sat Nov 29 07:24:37 EST 2025
Fri Feb 23 02:40:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords COVID-19 pandemic disruptions
Ripple effect
Mixed integer programming
Resilient supply portfolio
Supply chain disruption management
Stochastic optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-b1b453cd9b0170eeb40c4fe4c8ed203736cdfcc5f934cf44a89a46e7ced3f58f3
ParticipantIDs crossref_primary_10_1016_j_omega_2022_102596
crossref_citationtrail_10_1016_j_omega_2022_102596
elsevier_sciencedirect_doi_10_1016_j_omega_2022_102596
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Omega (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dolgui, Ivanov (bib0005) 2021; 59
Sawik (bib0022) 2021; 101
Reiner (bib0048) 2021; 27
Sawik (bib0015) 2015; 53
Lei, Lim, Cui, Wang (bib0035) 2021; 59
Sawik (bib0009) 2020
Ivanov (bib0010) 2020; 136
Sawik (bib0018) 2018; 56
He, Alavifard, Ivanov, Jahani (bib0030) 2019; 88
Mishra, Dwivedi, Rana, Hassini (bib0032) 2021; 59
Sawik (bib0021) 2020; 58
Sawik (bib0012) 2011; 38
Lücker, Seifert (bib0024) 2016; 73
Ivanov (bib0046) 2021; 59
Apple falls after iPhone supply-chain disruption drives first revenue miss since 2018.
Freeman, Mittenthal, Keskin, Melouk (bib0026) 2017; 77
Mehrotra, Rahimian, Barah, Luo, Schantz (bib0042) 2020; 67
Where is the iPhone made?
Paul S.K., Moktadir M.A., Sallam K., T-S C., Chakrabortty R.K.. A recovery planning model for online business operations under the COVID-19 outbreak. International Journal of Production Research 2021 (article in press). doi
Sawik (bib0017) 2017; 55
.
Sawik (bib0011) 2011; 39
Sawik (bib0020) 2019; 84
Hosseini, Morshedlou, Ivanov, Sarder, Barker, Al Khaled (bib0027) 2019; 213
Sawik (bib0013) 2013; 41
Lücker, Seifert, Biçer (bib0023) 2019; 57
Sawik (bib0014) 2013; 51
Cheramin, Saha, Cheng, Paul, Jin (bib0043) 2021; 155
Aubin (bib0044) 1991
Sawik (bib0019) 2018; 57
Cavalcante, Frazzon, Forcellini, Ivanov (bib0031) 2019; 49
Rahman, Taghikhah, Paul, Shukla, Agarwal (bib0039) 2021; 158
Ivanov, Dolgui (bib0047) 2020; 58
Ivanov (bib0002) 2018
Chowdhury, Paul, Kaisar, Moktadir (bib0036) 2021; 148
Ivanov, Dolgui (bib0004) 2020; 232
Ivanov (bib0008) 2020
Paul, Chowdhury (bib0037) 2020; 21
Torabi, Baghersad, Mansouri (bib0028) 2015; 79
Ivanov (bib0001) 2021
Hosseini, Ivanov, Dolgui (bib0025) 2019; 125
Chowdhury M.T., Sarkar A., Paul S.K., Moktadir M.A.. A case study on strategies to deal with the impacts of COVID-19 pandemic in the food and beverage industry. Operations Management Research 2020 (article in press) doi
Paul, Chowdhury (bib0040) 2021; 51
Karacaoglu, Krawczyk (bib0045) 2021; 00
Gholami-Zanjani, Klibi, Jabalameli, Pishvaee (bib0034) 2021; 59
Namdar, Li, Sawhney, Pradhan (bib0029) 2018; 56
Ivanov D., Dolgui A., Sokolov B., editors. Handbook of ripple effects in the supply chain. New York, Springer; 2019.
Sawik (bib0016) 2016; 54
Liu, Liu, Chu, Zheng, Chu (bib0033) 2021; 59
Namdar (10.1016/j.omega.2022.102596_bib0029) 2018; 56
Hosseini (10.1016/j.omega.2022.102596_bib0027) 2019; 213
Sawik (10.1016/j.omega.2022.102596_bib0012) 2011; 38
Sawik (10.1016/j.omega.2022.102596_bib0017) 2017; 55
Hosseini (10.1016/j.omega.2022.102596_bib0025) 2019; 125
Rahman (10.1016/j.omega.2022.102596_bib0039) 2021; 158
10.1016/j.omega.2022.102596_bib0038
Karacaoglu (10.1016/j.omega.2022.102596_bib0045) 2021; 00
Freeman (10.1016/j.omega.2022.102596_bib0026) 2017; 77
Mehrotra (10.1016/j.omega.2022.102596_bib0042) 2020; 67
Reiner (10.1016/j.omega.2022.102596_bib0048) 2021; 27
Sawik (10.1016/j.omega.2022.102596_bib0018) 2018; 56
Ivanov (10.1016/j.omega.2022.102596_bib0001) 2021
Paul (10.1016/j.omega.2022.102596_bib0037) 2020; 21
10.1016/j.omega.2022.102596_bib0041
Lücker (10.1016/j.omega.2022.102596_bib0023) 2019; 57
Aubin (10.1016/j.omega.2022.102596_bib0044) 1991
Torabi (10.1016/j.omega.2022.102596_bib0028) 2015; 79
Mishra (10.1016/j.omega.2022.102596_bib0032) 2021; 59
Ivanov (10.1016/j.omega.2022.102596_bib0047) 2020; 58
Dolgui (10.1016/j.omega.2022.102596_bib0005) 2021; 59
Sawik (10.1016/j.omega.2022.102596_bib0009) 2020
Lei (10.1016/j.omega.2022.102596_bib0035) 2021; 59
Ivanov (10.1016/j.omega.2022.102596_bib0046) 2021; 59
Sawik (10.1016/j.omega.2022.102596_bib0015) 2015; 53
Paul (10.1016/j.omega.2022.102596_bib0040) 2021; 51
Sawik (10.1016/j.omega.2022.102596_bib0020) 2019; 84
Sawik (10.1016/j.omega.2022.102596_bib0014) 2013; 51
Cavalcante (10.1016/j.omega.2022.102596_bib0031) 2019; 49
10.1016/j.omega.2022.102596_bib0006
10.1016/j.omega.2022.102596_bib0007
Chowdhury (10.1016/j.omega.2022.102596_bib0036) 2021; 148
Cheramin (10.1016/j.omega.2022.102596_bib0043) 2021; 155
10.1016/j.omega.2022.102596_bib0003
Sawik (10.1016/j.omega.2022.102596_bib0011) 2011; 39
Sawik (10.1016/j.omega.2022.102596_bib0013) 2013; 41
Sawik (10.1016/j.omega.2022.102596_bib0016) 2016; 54
Ivanov (10.1016/j.omega.2022.102596_bib0010) 2020; 136
He (10.1016/j.omega.2022.102596_bib0030) 2019; 88
Lücker (10.1016/j.omega.2022.102596_bib0024) 2016; 73
Gholami-Zanjani (10.1016/j.omega.2022.102596_bib0034) 2021; 59
Ivanov (10.1016/j.omega.2022.102596_bib0002) 2018
Ivanov (10.1016/j.omega.2022.102596_bib0008) 2020
Sawik (10.1016/j.omega.2022.102596_bib0021) 2020; 58
Sawik (10.1016/j.omega.2022.102596_bib0022) 2021; 101
Sawik (10.1016/j.omega.2022.102596_bib0019) 2018; 57
Liu (10.1016/j.omega.2022.102596_bib0033) 2021; 59
Ivanov (10.1016/j.omega.2022.102596_bib0004) 2020; 232
References_xml – volume: 00
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib0045
  article-title: Public policy, systemic resilience and viability theory
  publication-title: Metroeconomica
– volume: 41
  start-page: 259
  year: 2013
  end-page: 269
  ident: bib0013
  article-title: Selection of resilient supply portfolio under disruption risks
  publication-title: Omega
– volume: 213
  start-page: 124
  year: 2019
  end-page: 137
  ident: bib0027
  article-title: Resilient supplier selection and optimal order allocation under disruption risks
  publication-title: Int J Prod Econ
– volume: 59
  start-page: 3535
  year: 2021
  end-page: 3552
  ident: bib0046
  article-title: Supply chain viability and the COVID-19 pandemic: aconceptual and formal generalisation of four major adaptation strategies
  publication-title: Int J Prod Res
– volume: 55
  start-page: 1970
  year: 2017
  end-page: 1991
  ident: bib0017
  article-title: A portfolio approach to supply chain disruption management
  publication-title: Int J Prod Res
– volume: 79
  start-page: 22
  year: 2015
  end-page: 48
  ident: bib0028
  article-title: Resilient supplier selection and order allocation under operational and disruption risks
  publication-title: Transportation Research Part E
– volume: 56
  start-page: 2339
  year: 2018
  end-page: 2360
  ident: bib0029
  article-title: Supply chain resilience for single and multiple sourcing in the presence of disruption risks
  publication-title: Int J Prod Res
– volume: 73
  start-page: 114
  year: 2016
  end-page: 124
  ident: bib0024
  article-title: Building up resilience in a pharmaceutical supply chain through inventory, dual sourcing and agility capacity
  publication-title: Omega
– volume: 77
  start-page: 127
  year: 2017
  end-page: 142
  ident: bib0026
  article-title: Sourcing strategies for a capacitated firm subject to supply and demand uncertainty
  publication-title: Omega
– volume: 59
  start-page: 129
  year: 2021
  end-page: 147
  ident: bib0032
  article-title: Evolution of supply chain ripple effect: abibliometric and meta-analytic view of the constructs
  publication-title: Int J Prod Res
– volume: 125
  start-page: 285
  year: 2019
  end-page: 307
  ident: bib0025
  article-title: Review of quantitative methods for supply chain resilience analysis
  publication-title: Transportation Research Part E
– volume: 136
  start-page: 101
  year: 2020
  end-page: 922
  ident: bib0010
  article-title: Predicting the impacts of epidemic outbreaks on global supply chains: a simulation-based analysis on the coronavirus outbreak (COVID-19/SARSCov-2) case
  publication-title: Transportation Research Part E
– volume: 88
  start-page: 133
  year: 2019
  end-page: 149
  ident: bib0030
  article-title: A real-option approach to mitigate disruption risk in the supply chain
  publication-title: Omega
– volume: 57
  start-page: 4502
  year: 2018
  end-page: 4518
  ident: bib0019
  article-title: Two-period vs. multi-period model for supply chain disruption management
  publication-title: Int J Prod Res
– volume: 39
  start-page: 194
  year: 2011
  end-page: 208
  ident: bib0011
  article-title: Selection of supply portfolio under disruption risks
  publication-title: Omega
– reference: Ivanov D., Dolgui A., Sokolov B., editors. Handbook of ripple effects in the supply chain. New York, Springer; 2019.
– volume: 158
  start-page: 107401
  year: 2021
  ident: bib0039
  article-title: An agent-based model for supply chain recovery in the wake of the COVID-19 pandemic
  publication-title: Computers and Industrial Engineering
– volume: 58
  start-page: 2904
  year: 2020
  end-page: 2915
  ident: bib0047
  article-title: Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. a position paper motivated by COVID-19 outbreak
  publication-title: Int J Prod Res
– reference: Where is the iPhone made?
– volume: 38
  start-page: 782
  year: 2011
  end-page: 796
  ident: bib0012
  article-title: Selection of a dynamic supply portfolio in make-to-order environment with risks
  publication-title: Computers and Operations Research
– year: 2021
  ident: bib0001
  article-title: Introduction to supply chain resilience
– volume: 56
  start-page: 760
  year: 2018
  end-page: 782
  ident: bib0018
  article-title: Selection of a dynamic supply portfolio under delay and disruption risks
  publication-title: Int J Prod Res
– volume: 67
  start-page: 303
  year: 2020
  end-page: 320
  ident: bib0042
  article-title: A model of supply-chain decisions for resource sharing with an application to ventilator allocation to combat COVID-19
  publication-title: Nav Res Logist
– year: 1991
  ident: bib0044
  article-title: Viability theory
– volume: 54
  start-page: 97
  year: 2016
  end-page: 112
  ident: bib0016
  article-title: On the risk-averse optimization of service level in a supply chain under disruption risks
  publication-title: Int J Prod Res
– volume: 58
  start-page: 6043
  year: 2020
  end-page: 6060
  ident: bib0021
  article-title: A two-period model for selection of resilient multi-tier supply portfolio
  publication-title: Int J Prod Res
– volume: 155
  start-page: 102505
  year: 2021
  ident: bib0043
  article-title: Resilient ndfeb magnet recycling under the impacts of COVID-19 pandemic: stochastic programming and benders decomposition
  publication-title: Transportation Research Part E
– volume: 51
  start-page: 7006
  year: 2013
  end-page: 7022
  ident: bib0014
  article-title: Integrated selection of suppliers and scheduling of customer orders in the presence of supply chain disruption risks
  publication-title: Int J Prod Res
– volume: 59
  start-page: 148
  year: 2021
  end-page: 167
  ident: bib0035
  article-title: Modelling of risk transmission and control strategy in the transnational supply chain
  publication-title: Int J Prod Res
– volume: 51
  start-page: 104
  year: 2021
  end-page: 125
  ident: bib0040
  article-title: A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19
  publication-title: International Journal of Physical Distribution and Logistics Management
– volume: 101
  start-page: 102267
  year: 2021
  ident: bib0022
  article-title: On the risk-averse selection of resilient multi-tier supply portfolio
  publication-title: Omega
– year: 2020
  ident: bib0008
  article-title: Viable supply chain model: integrating agility, resilience and sustainability perspectiveslessons from and thinking beyond the COVID-19 pandemic
  publication-title: Ann Oper Res
– reference: Paul S.K., Moktadir M.A., Sallam K., T-S C., Chakrabortty R.K.. A recovery planning model for online business operations under the COVID-19 outbreak. International Journal of Production Research 2021 (article in press). doi:
– year: 2018
  ident: bib0002
  article-title: Structural dynamics and resilience in supply chain risk management
– reference: Apple falls after iPhone supply-chain disruption drives first revenue miss since 2018.
– year: 2020
  ident: bib0009
  article-title: Supply chain disruption management: using stochastic mixed integer programming
– volume: 53
  start-page: 58
  year: 2015
  end-page: 66
  ident: bib0015
  article-title: On the fair optimization of cost and customer service level in a supply chain under disruption risks
  publication-title: Omega
– volume: 21
  start-page: 283
  year: 2020
  end-page: 293
  ident: bib0037
  article-title: Strategies for managing the impacts of disruptions during COVID-19: an example of toilet paper
  publication-title: Global Journal of Flexible Systems Management
– volume: 59
  start-page: 265
  year: 2021
  end-page: 285
  ident: bib0033
  article-title: A new robust dynamic bayesian network approach for disruption risk assessment under the supply chain ripple effect
  publication-title: Int J Prod Res
– volume: 84
  start-page: 232
  year: 2019
  end-page: 248
  ident: bib0020
  article-title: Disruption mitigation and recovery in supply chains using portfolio approach
  publication-title: Omega
– volume: 49
  start-page: 86
  year: 2019
  end-page: 97
  ident: bib0031
  article-title: A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing
  publication-title: Int J Inf Manage
– volume: 59
  start-page: 301
  year: 2021
  end-page: 324
  ident: bib0034
  article-title: A robust location-inventory model for food supply chains operating under disruptions with ripple effects
  publication-title: Int J Prod Res
– reference: .
– volume: 148
  start-page: 102271
  year: 2021
  ident: bib0036
  article-title: COVID-19 pandemic related supply chain studies: asystematic review
  publication-title: Transportation Research Part E
– volume: 232
  start-page: 107921
  year: 2020
  ident: bib0004
  article-title: OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: managerial insights and research implications
  publication-title: Int J Prod Econ
– volume: 59
  start-page: 102
  year: 2021
  end-page: 109
  ident: bib0005
  article-title: Ripple effect and supply chain disruption management: new trends and research directions
  publication-title: Int J Prod Res
– volume: 57
  start-page: 1238
  year: 2019
  end-page: 1249
  ident: bib0023
  article-title: Roles of inventory and reserve capacity in mitigating supply chain disruption risk
  publication-title: Int J Prod Res
– reference: Chowdhury M.T., Sarkar A., Paul S.K., Moktadir M.A.. A case study on strategies to deal with the impacts of COVID-19 pandemic in the food and beverage industry. Operations Management Research 2020 (article in press) doi:
– volume: 27
  start-page: 94
  year: 2021
  end-page: 105
  ident: bib0048
  article-title: Modeling COVID-19 scenarios for the united states
  publication-title: Nat Med
– volume: 73
  start-page: 114
  year: 2016
  ident: 10.1016/j.omega.2022.102596_bib0024
  article-title: Building up resilience in a pharmaceutical supply chain through inventory, dual sourcing and agility capacity
  publication-title: Omega
  doi: 10.1016/j.omega.2017.01.001
– volume: 38
  start-page: 782
  year: 2011
  ident: 10.1016/j.omega.2022.102596_bib0012
  article-title: Selection of a dynamic supply portfolio in make-to-order environment with risks
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2010.09.011
– volume: 59
  start-page: 129
  issue: 1
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0032
  article-title: Evolution of supply chain ripple effect: abibliometric and meta-analytic view of the constructs
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2019.1668073
– volume: 21
  start-page: 283
  issue: 3
  year: 2020
  ident: 10.1016/j.omega.2022.102596_bib0037
  article-title: Strategies for managing the impacts of disruptions during COVID-19: an example of toilet paper
  publication-title: Global Journal of Flexible Systems Management
  doi: 10.1007/s40171-020-00248-4
– volume: 27
  start-page: 94
  issue: 1
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0048
  article-title: Modeling COVID-19 scenarios for the united states
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1132-9
– volume: 39
  start-page: 194
  year: 2011
  ident: 10.1016/j.omega.2022.102596_bib0011
  article-title: Selection of supply portfolio under disruption risks
  publication-title: Omega
  doi: 10.1016/j.omega.2010.06.007
– volume: 49
  start-page: 86
  year: 2019
  ident: 10.1016/j.omega.2022.102596_bib0031
  article-title: A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing
  publication-title: Int J Inf Manage
– volume: 59
  start-page: 3535
  issue: 12
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0046
  article-title: Supply chain viability and the COVID-19 pandemic: aconceptual and formal generalisation of four major adaptation strategies
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2021.1890852
– volume: 58
  start-page: 2904
  issue: 10
  year: 2020
  ident: 10.1016/j.omega.2022.102596_bib0047
  article-title: Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. a position paper motivated by COVID-19 outbreak
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1750727
– volume: 232
  start-page: 107921
  year: 2020
  ident: 10.1016/j.omega.2022.102596_bib0004
  article-title: OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: managerial insights and research implications
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2020.107921
– volume: 79
  start-page: 22
  year: 2015
  ident: 10.1016/j.omega.2022.102596_bib0028
  article-title: Resilient supplier selection and order allocation under operational and disruption risks
  publication-title: Transportation Research Part E
  doi: 10.1016/j.tre.2015.03.005
– year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0001
– year: 1991
  ident: 10.1016/j.omega.2022.102596_bib0044
– volume: 55
  start-page: 1970
  issue: 7
  year: 2017
  ident: 10.1016/j.omega.2022.102596_bib0017
  article-title: A portfolio approach to supply chain disruption management
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2016.1249432
– volume: 77
  start-page: 127
  year: 2017
  ident: 10.1016/j.omega.2022.102596_bib0026
  article-title: Sourcing strategies for a capacitated firm subject to supply and demand uncertainty
  publication-title: Omega
  doi: 10.1016/j.omega.2017.06.004
– volume: 148
  start-page: 102271
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0036
  article-title: COVID-19 pandemic related supply chain studies: asystematic review
  publication-title: Transportation Research Part E
  doi: 10.1016/j.tre.2021.102271
– ident: 10.1016/j.omega.2022.102596_bib0006
– volume: 59
  start-page: 102
  issue: 1
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0005
  article-title: Ripple effect and supply chain disruption management: new trends and research directions
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2021.1840148
– ident: 10.1016/j.omega.2022.102596_bib0003
  doi: 10.1007/978-3-030-14302-2
– year: 2020
  ident: 10.1016/j.omega.2022.102596_bib0008
  article-title: Viable supply chain model: integrating agility, resilience and sustainability perspectiveslessons from and thinking beyond the COVID-19 pandemic
  publication-title: Ann Oper Res
– volume: 59
  start-page: 148
  issue: 1
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0035
  article-title: Modelling of risk transmission and control strategy in the transnational supply chain
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2019.1698782
– ident: 10.1016/j.omega.2022.102596_bib0041
  doi: 10.1080/00207543.2021.1976431
– year: 2020
  ident: 10.1016/j.omega.2022.102596_bib0009
– volume: 58
  start-page: 6043
  issue: 19
  year: 2020
  ident: 10.1016/j.omega.2022.102596_bib0021
  article-title: A two-period model for selection of resilient multi-tier supply portfolio
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2019.1665204
– volume: 57
  start-page: 4502
  issue: 14
  year: 2018
  ident: 10.1016/j.omega.2022.102596_bib0019
  article-title: Two-period vs. multi-period model for supply chain disruption management
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1504246
– volume: 59
  start-page: 265
  issue: 1
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0033
  article-title: A new robust dynamic bayesian network approach for disruption risk assessment under the supply chain ripple effect
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1841318
– year: 2018
  ident: 10.1016/j.omega.2022.102596_bib0002
– volume: 59
  start-page: 301
  issue: 1
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0034
  article-title: A robust location-inventory model for food supply chains operating under disruptions with ripple effects
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1834159
– volume: 67
  start-page: 303
  year: 2020
  ident: 10.1016/j.omega.2022.102596_bib0042
  article-title: A model of supply-chain decisions for resource sharing with an application to ventilator allocation to combat COVID-19
  publication-title: Nav Res Logist
  doi: 10.1002/nav.21905
– volume: 125
  start-page: 285
  year: 2019
  ident: 10.1016/j.omega.2022.102596_bib0025
  article-title: Review of quantitative methods for supply chain resilience analysis
  publication-title: Transportation Research Part E
  doi: 10.1016/j.tre.2019.03.001
– volume: 213
  start-page: 124
  year: 2019
  ident: 10.1016/j.omega.2022.102596_bib0027
  article-title: Resilient supplier selection and optimal order allocation under disruption risks
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2019.03.018
– volume: 84
  start-page: 232
  issue: 4
  year: 2019
  ident: 10.1016/j.omega.2022.102596_bib0020
  article-title: Disruption mitigation and recovery in supply chains using portfolio approach
  publication-title: Omega
  doi: 10.1016/j.omega.2018.05.006
– volume: 53
  start-page: 58
  year: 2015
  ident: 10.1016/j.omega.2022.102596_bib0015
  article-title: On the fair optimization of cost and customer service level in a supply chain under disruption risks
  publication-title: Omega
  doi: 10.1016/j.omega.2014.12.004
– volume: 51
  start-page: 7006
  issue: 23–24
  year: 2013
  ident: 10.1016/j.omega.2022.102596_bib0014
  article-title: Integrated selection of suppliers and scheduling of customer orders in the presence of supply chain disruption risks
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2013.852702
– volume: 56
  start-page: 760
  year: 2018
  ident: 10.1016/j.omega.2022.102596_bib0018
  article-title: Selection of a dynamic supply portfolio under delay and disruption risks
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2017.1401238
– volume: 54
  start-page: 97
  issue: 1
  year: 2016
  ident: 10.1016/j.omega.2022.102596_bib0016
  article-title: On the risk-averse optimization of service level in a supply chain under disruption risks
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2015.1016192
– ident: 10.1016/j.omega.2022.102596_bib0007
– volume: 101
  start-page: 102267
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0022
  article-title: On the risk-averse selection of resilient multi-tier supply portfolio
  publication-title: Omega
  doi: 10.1016/j.omega.2020.102267
– ident: 10.1016/j.omega.2022.102596_bib0038
  doi: 10.1007/s12063-020-00166-9
– volume: 00
  start-page: 1
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0045
  article-title: Public policy, systemic resilience and viability theory
  publication-title: Metroeconomica
– volume: 41
  start-page: 259
  issue: 2
  year: 2013
  ident: 10.1016/j.omega.2022.102596_bib0013
  article-title: Selection of resilient supply portfolio under disruption risks
  publication-title: Omega
  doi: 10.1016/j.omega.2012.05.003
– volume: 155
  start-page: 102505
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0043
  article-title: Resilient ndfeb magnet recycling under the impacts of COVID-19 pandemic: stochastic programming and benders decomposition
  publication-title: Transportation Research Part E
  doi: 10.1016/j.tre.2021.102505
– volume: 136
  start-page: 101
  year: 2020
  ident: 10.1016/j.omega.2022.102596_bib0010
  article-title: Predicting the impacts of epidemic outbreaks on global supply chains: a simulation-based analysis on the coronavirus outbreak (COVID-19/SARSCov-2) case
  publication-title: Transportation Research Part E
  doi: 10.1016/j.tre.2020.101922
– volume: 57
  start-page: 1238
  issue: 4
  year: 2019
  ident: 10.1016/j.omega.2022.102596_bib0023
  article-title: Roles of inventory and reserve capacity in mitigating supply chain disruption risk
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1504173
– volume: 56
  start-page: 2339
  issue: 6
  year: 2018
  ident: 10.1016/j.omega.2022.102596_bib0029
  article-title: Supply chain resilience for single and multiple sourcing in the presence of disruption risks
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2017.1370149
– volume: 51
  start-page: 104
  issue: 2
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0040
  article-title: A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19
  publication-title: International Journal of Physical Distribution and Logistics Management
  doi: 10.1108/IJPDLM-04-2020-0127
– volume: 88
  start-page: 133
  year: 2019
  ident: 10.1016/j.omega.2022.102596_bib0030
  article-title: A real-option approach to mitigate disruption risk in the supply chain
  publication-title: Omega
  doi: 10.1016/j.omega.2018.08.008
– volume: 158
  start-page: 107401
  year: 2021
  ident: 10.1016/j.omega.2022.102596_bib0039
  article-title: An agent-based model for supply chain recovery in the wake of the COVID-19 pandemic
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2021.107401
SSID ssj0001803
Score 2.661212
Snippet •A portfolio approach is applied for spatiotemporally integrated decision-making in a multi-regional supply chain under pandemic disruption risks.•Stochastic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102596
SubjectTerms COVID-19 pandemic disruptions
Mixed integer programming
Resilient supply portfolio
Ripple effect
Stochastic optimization
Supply chain disruption management
Title Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study
URI https://dx.doi.org/10.1016/j.omega.2022.102596
Volume 109
WOSCitedRecordID wos000793288000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001803
  issn: 0305-0483
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Lb9NAEIdXoUWIC-Ipykt74BYc-bFre7mgCIoohxapBeVmrddrSJXYUZKWwF_PzD7sQFFED1ysyLInq3yb2Z_X8yDkZcZLzmMVBdjXNmB1lAQSFoIgzU0mJ9Zwq0yziez4OJ9MxKfB4I3PhbmcZU2TbzZi8V9RwzmAjamz18DdGYUT8BmgwxGww_GfwJ-uW_VNYvnlYQv-YO4SLVEVrrCF5w9M9jVZLKvpzP6xMZFsOQT3gZGFNsLDZayffDl6F0RiuMC95rkp9zyTKFL7srRO2Z7M9VdpipdubLx8t8NwKr9PbTy2rPTF6uf2RgM8o3YBUT7BCuP8mO070znPUGy5P1Ar3DaoveKZ7SbB-ajF0YzQ_qi_-vc62H-sT13UoA9IOy-MkQKNFNbIDbIfZ1yAW9sfHx1OPnaLcZSHtkO2G7svPGVC_K6M5e_iZEtwnN0ld9yTAh1bwvfIQDf3yS2fqPCATHvQdBs0bWtqQVMDmvagqQFNLWhqQb-mY-oxU4-ZOszUYH5IPr8_PHv7IXCNMwIFimQdlFHJeKIqUWJ1JK1LFipWa6ZyXcVhkiWpqmqleC0SpmrGZC4kS3WmdJXUPK-TR2SvaRv9mNBcRim-nE_SSjDQLiUv4zpUGnQgCDsdH5DY_2KFclXlsbnJrNhB64C86m5a2KIquy9PPYrC6UKr9wqYXLtufHK973lKbvfz_hnZWy8v9HNyU12up6vlCzezfgGHc4IT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+optimization+of+supply+chain+resilience+under+ripple+effect%3A+A+COVID-19+pandemic+related+study&rft.jtitle=Omega+%28Oxford%29&rft.au=Sawik%2C+Tadeusz&rft.date=2022-06-01&rft.issn=0305-0483&rft.volume=109&rft.spage=102596&rft_id=info:doi/10.1016%2Fj.omega.2022.102596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_omega_2022_102596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0483&client=summon