A survey of genetic algorithms for clustering: Taxonomy and empirical analysis

Clustering, an unsupervised learning technique, aims to group patterns into clusters where similar patterns are grouped together, while dissimilar ones are placed in different clusters. This task can present itself as a complex optimization problem due to the extensive search space generated by all...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Swarm and evolutionary computation Ročník 91; s. 101720
Hlavní autori: Robles-Berumen, Hermes, Zafra, Amelia, Ventura, Sebastián
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2024
Predmet:
ISSN:2210-6502
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clustering, an unsupervised learning technique, aims to group patterns into clusters where similar patterns are grouped together, while dissimilar ones are placed in different clusters. This task can present itself as a complex optimization problem due to the extensive search space generated by all potential data partitions. Genetic Algorithms (GAs) have emerged as efficient tools for addressing this task. Consequently, significant advancements and numerous proposals have been developed in this field. This work offers a comprehensive and critical review of state-of-the-art mono-objective Genetic Algorithms (GAs) for partitional clustering. From a more theoretical standpoint, it examines 22 well-known proposals in detail, covering their encoding strategies, objective functions, genetic operators, local search methods, and parent selection strategies. Based on this information, a specific taxonomy is proposed. In addition, from a more practical standpoint, a detailed experimental study is conducted to discern the advantages and disadvantages of approaches. Specifically, 22 different cluster validation indices are considered to compare the performance of clustering techniques. This evaluation is performed across 94 datasets encompassing diverse configurations, including the number of classes, separation between classes, and pattern dimensionality. Results reveal interesting findings, such as the key role of local search in optimizing results and reducing search space. Additionally, representations based on centroids and labels demonstrate greater efficiency and crossover and mutation operators do not prove to be as relevant. Ultimately, while the results are satisfactory, real-world clustering problems introduce additional complexity, especially for algorithms aiming to determine the number of clusters, resulting in diminished performance and the need for new approaches to be explored. Code, datasets and instructions to run algorithms in the LEAL library are available in an associated repository, in order to facilitate future experiments in this environment.
AbstractList Clustering, an unsupervised learning technique, aims to group patterns into clusters where similar patterns are grouped together, while dissimilar ones are placed in different clusters. This task can present itself as a complex optimization problem due to the extensive search space generated by all potential data partitions. Genetic Algorithms (GAs) have emerged as efficient tools for addressing this task. Consequently, significant advancements and numerous proposals have been developed in this field. This work offers a comprehensive and critical review of state-of-the-art mono-objective Genetic Algorithms (GAs) for partitional clustering. From a more theoretical standpoint, it examines 22 well-known proposals in detail, covering their encoding strategies, objective functions, genetic operators, local search methods, and parent selection strategies. Based on this information, a specific taxonomy is proposed. In addition, from a more practical standpoint, a detailed experimental study is conducted to discern the advantages and disadvantages of approaches. Specifically, 22 different cluster validation indices are considered to compare the performance of clustering techniques. This evaluation is performed across 94 datasets encompassing diverse configurations, including the number of classes, separation between classes, and pattern dimensionality. Results reveal interesting findings, such as the key role of local search in optimizing results and reducing search space. Additionally, representations based on centroids and labels demonstrate greater efficiency and crossover and mutation operators do not prove to be as relevant. Ultimately, while the results are satisfactory, real-world clustering problems introduce additional complexity, especially for algorithms aiming to determine the number of clusters, resulting in diminished performance and the need for new approaches to be explored. Code, datasets and instructions to run algorithms in the LEAL library are available in an associated repository, in order to facilitate future experiments in this environment.
ArticleNumber 101720
Author Ventura, Sebastián
Robles-Berumen, Hermes
Zafra, Amelia
Author_xml – sequence: 1
  givenname: Hermes
  orcidid: 0000-0003-3595-2637
  surname: Robles-Berumen
  fullname: Robles-Berumen, Hermes
  email: hermes@uaz.edu.mx
  organization: Department of Electrical Engineering and Earth Sciences, Autonomous University of Zacatecas, Jardín Juárez 147, Centro, 98000, Zacatecas, Mexico
– sequence: 2
  givenname: Amelia
  orcidid: 0000-0003-3868-6143
  surname: Zafra
  fullname: Zafra, Amelia
  email: azafra@uco.es
  organization: Department of Computer Science and Numerical Analysis. Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI). University of Cordoba, Campus Universitario de Rabanales, 14071, Cordoba, Spain
– sequence: 3
  givenname: Sebastián
  orcidid: 0000-0003-4216-6378
  surname: Ventura
  fullname: Ventura, Sebastián
  email: sventura@uco.es
  organization: Department of Computer Science and Numerical Analysis. Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI). University of Cordoba, Campus Universitario de Rabanales, 14071, Cordoba, Spain
BookMark eNqFkMtOwzAQRb0oEgX6BWz8Ayl-pg0Si6riJVWwKWvLccbFVWJXtlvI35NSVixgNqMZ6Vzpngs08sEDQteUTCmh5c12mj7gEKaMMHH8zBgZoTFjlBSlJOwcTVLakmFKwqSsxuhlgdM-HqDHweINeMjOYN1uQnT5vUvYhohNu08ZovObW7zWn8GHrsfaNxi6nYvO6Ha4dNsnl67QmdVtgsnPvkRvD_fr5VOxen18Xi5WheGE50ID11UjqBQVYboGqK0oTU1nei5A15JbwQUTlpWSMVPxegZEck4rVs-5aUp-ifgp18SQUgSrdtF1OvaKEnU0obbq24Q6mlAnEwNV_aKMyzq74HPUrv2HvTuxMNQ6OIgqGQfeQOMimKya4P7kvwBfgH_b
CitedBy_id crossref_primary_10_1016_j_asoc_2025_113143
Cites_doi 10.1186/1471-2105-5-172
10.1016/j.knosys.2019.05.008
10.1109/TETC.2014.2330519
10.1016/j.patcog.2012.07.021
10.1016/j.asoc.2010.06.010
10.1007/BF01897163
10.1016/j.eswa.2020.113288
10.1109/34.85677
10.1080/01969727408546059
10.1109/ICDM.2001.989517
10.1145/2742642
10.1016/j.irbm.2020.06.002
10.1093/comjnl/40.9.547
10.1016/S0031-3203(01)00108-X
10.1016/j.ins.2015.10.032
10.1016/j.patrec.2018.08.005
10.1016/j.cageo.2019.104335
10.1016/S0031-3203(99)00105-3
10.1007/s10044-004-0218-1
10.1016/0003-2670(93)80130-D
10.1016/j.palaeo.2017.11.057
10.1016/j.eswa.2016.08.021
10.1016/j.swevo.2013.11.003
10.1109/3477.764879
10.1016/j.ins.2005.07.015
10.1016/S0031-3203(99)00137-5
10.1109/TEVC.2013.2281513
10.1016/S0020-0255(02)00208-6
10.3233/IDA-2003-7103
10.1109/ICWR51868.2021.9443113
10.1145/331499.331504
10.1016/j.swevo.2016.06.004
10.1023/A:1022521428870
10.1016/j.patcog.2008.11.006
10.1109/TKDE.2016.2551240
10.4018/IJAEC.2016010103
10.1109/TEVC.2013.2290082
10.1145/967900.968029
10.1109/5326.923275
10.1016/j.jappgeo.2020.104203
10.1016/j.swevo.2020.100665
10.1016/j.procs.2020.08.013
10.1007/s11042-020-10139-6
10.1016/j.eswa.2023.120876
10.1016/j.neucom.2011.11.001
10.1016/j.datak.2014.07.008
10.1109/TSMCC.2008.2007252
10.1109/TNN.2005.845141
10.1016/j.asoc.2018.07.026
10.1016/j.eswa.2012.02.149
10.1007/s42979-020-00283-z
10.1109/IICSPI48186.2019.9095977
10.1016/S0031-3203(00)00005-4
10.1007/s10489-018-1238-7
10.1016/0098-3004(84)90020-7
10.1016/j.knosys.2019.105018
10.1023/A:1012801612483
10.1016/0167-8655(96)00043-8
10.1016/j.patrec.2005.10.010
10.1016/j.engappai.2022.104743
10.1016/S0167-8655(99)00133-6
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2024.101720
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2024_101720
S221065022400258X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-ae3a9d4154902abeebf46cb17a84eab53f43424f26522c93b7e0533192b83cd63
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001324365800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Tue Nov 18 21:31:41 EST 2025
Sat Nov 29 05:45:04 EST 2025
Wed Dec 04 16:48:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Clustering
Experimental study
Genetic algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-ae3a9d4154902abeebf46cb17a84eab53f43424f26522c93b7e0533192b83cd63
ORCID 0000-0003-3595-2637
0000-0003-4216-6378
0000-0003-3868-6143
ParticipantIDs crossref_primary_10_1016_j_swevo_2024_101720
crossref_citationtrail_10_1016_j_swevo_2024_101720
elsevier_sciencedirect_doi_10_1016_j_swevo_2024_101720
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Kakkar, Singla, Garg, Gupta, Srivastava, Kumar (b18) 2021; Vol. 1950
Hruschka, Campello, De Castro (b45) 2006; 176
Hruschka, Campello, Freitas, de Carvalho (b22) 2009; 39
Hancer, Karaboga (b24) 2017; 32
Kivijärvi, Fränti, Nevalainen (b66) 2003; 9
Tseng, Bien Yang (b36) 2001; 34
Poczeta, Kubuś, Yastrebov (b7) 2020; 176
Zafra, Gibaja (b78) 2023; 232
Campo, Stegmayer, Milone (b40) 2016; 64
Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S.J. Brown, FGKA: A fast genetic k-means clustering algorithm, in: Proceedings of the 2004 ACM Symposium on Applied Computing, 2004, pp. 622–623.
Rezaei, Fränti (b65) 2016; 28
Tange (b76) 2011; 36
Krishna, Murty (b47) 1999; 29
Bandyopadhyay, Maulik (b54) 2002; 35
Chawla (b6) 2016; 7
Halkidi, Batistakis, Vazirgiannis (b39) 2001; 17
Lu, Lu, Fotouhi, Deng, Brown (b48) 2004; 5
Fränti, Kivijärvi, Kaukoranta, Nevalainen (b51) 1997; 40
Kim, Kim, Cho (b5) 2020; 150
Chang, Zhang, Zheng (b60) 2009; 42
Tarekegn, Michalak, Giacobini (b75) 2020; 1
M. Halkidi, M. Vazirgiannis, Clustering validity assessment: finding the optimal partitioning of a data set, in: Proceedings 2001 IEEE International Conference on Data Mining, 2001, pp. 187–194.
Murthy, Chowdhury (b57) 1996; 17
Jain, Murty, Flynn (b11) 1999; 31
Gan, Ma, Wu (b1) 2020
Bandyopadhyay, Maulik (b55) 2001; 31
Xie, Beni (b72) 1991; 13
Naldi, Campello, Hruschka, Carvalho (b50) 2011; 11
Nanda, Panda (b21) 2014; 16
Fränti, Sieranoja (b46) 2018; 48
Bandyopadhyay, Maulik (b53) 2002; 146
Tseng, Bien Yang (b35) 2000; 33
Mukhopadhyay, Maulik, Bandyopadhyay, Coello (b28) 2014; 18
Rao, Josephine (b73) 2018
Ghezelbash, Maghsoudi, Carranza (b8) 2020; 134
Saitta, Raphael, Smith (b70) 2007; vol. 4571
Göhring, Mauder, Vohberger, Nehlich, von Carnap-Bornheim, Hilberg, Kröger, Grupe (b10) 2018; 490
Agustín-Blas, Salcedo-Sanz, Jiménez-Fernández, Carro-Calvo, Del Ser, Portilla-Figueras (b29) 2012; 39
Bezdek, Boggavarapu, Hall, Bensaid (b58) 1994
MacQueen (b14) 1967
Theodoridis, Koutroumbas (b62) 2006
Delforge, Watlet, Kaufmann, Van Camp, Vanclooster (b9) 2021; 184
Milligan, Cooper (b61) 1988; 5
M. Mardi, M.R. Keyvanpour, GBKM: A New Genetic Based K-Means Clustering Algorithm, in: 2021 7th International Conference on Web Research, ICWR, 2021, pp. 222–226.
Fahad, Alshatri, Tari, Alamri, Khalil, Zomaya, Foufou, Bouras (b12) 2014; 2
Liu, Peng, Chen, Zhang (b15) 2006
Dunn (b69) 1974; 4
Zhao, Fränti (b71) 2014; 92
He, Tan (b42) 2012; 81
Garcia-Piquer, Fornells, Bacardit, Orriols-Puig, Golobardes (b27) 2014; 18
Bezdek, Ehrlich, Full (b30) 1984; 10
Wu, Kang (b4) 2020
Michalewicz (b17) 1992
Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (b2) 2013; 46
Chou, Su, Lai (b68) 2004; 7
Maulik, Bandyopadhyay (b52) 2000; 33
Carrasco, García, Rueda, Das, Herrera (b79) 2020; 54
Fränti (b59) 2000; 21
Xu, Wunsch (b20) 2005; 16
Casillas, de Lena, Martínez (b37) 2003; vol. 2807
Kayaalp, Erdogmus (b25) 2020; 41
Zhu, Xu, Goodman (b34) 2020; 188
Mukhopadhyay, Maulik, Bandyopadhyay (b23) 2015; 47
Thant, Aye, Mandalay (b31) 2020; 7
Fawcett (b74) 2006; 27
Alves, Campello, Hruschka (b41) 2006
Lee, Jeong, Kim, Jeong (b64) 2018; 112
L.I. Kuncheva, J.C. Bezdek, Selection of cluster prototypes from data by a genetic algorithm, in: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, 1997, pp. 1683–1688.
Goldberg (b16) 1989
Sheng, Liu (b56) 2004; Vol. 1
Lucasius, Dane, Kateman (b43) 1993; 282
Liu, Li, Xiong, Gao, Wu (b63) 2010
Katoch, Chauhan, Kumar (b26) 2021; 80
Z. Bin, G. Zhichun, H. Qiangqiang, A Genetic Clustering Method Based on Variable Length String, in: 2019 2nd International Conference on Safety Produce Informatization, IICSPI, 2019, pp. 460–464.
Ezugwu, Ikotun, Oyelade, Abualigah, Agushaka, Eke, Akinyelu (b3) 2022; 110
Zhu, Ma (b13) 2018; 71
Cano, Luna, Gibaja, Ventura (b77) 2016; 330
Hruschka, Ebecken (b44) 2003; 7
Robles-Berumen, Zafra, Fardoun, Ventura (b19) 2019; 179
Zhu (10.1016/j.swevo.2024.101720_b34) 2020; 188
Maulik (10.1016/j.swevo.2024.101720_b52) 2000; 33
Jain (10.1016/j.swevo.2024.101720_b11) 1999; 31
Zhao (10.1016/j.swevo.2024.101720_b71) 2014; 92
Dunn (10.1016/j.swevo.2024.101720_b69) 1974; 4
Poczeta (10.1016/j.swevo.2024.101720_b7) 2020; 176
Krishna (10.1016/j.swevo.2024.101720_b47) 1999; 29
Casillas (10.1016/j.swevo.2024.101720_b37) 2003; vol. 2807
Bandyopadhyay (10.1016/j.swevo.2024.101720_b53) 2002; 146
Chou (10.1016/j.swevo.2024.101720_b68) 2004; 7
10.1016/j.swevo.2024.101720_b38
Zhu (10.1016/j.swevo.2024.101720_b13) 2018; 71
Tange (10.1016/j.swevo.2024.101720_b76) 2011; 36
10.1016/j.swevo.2024.101720_b33
Tseng (10.1016/j.swevo.2024.101720_b36) 2001; 34
Chawla (10.1016/j.swevo.2024.101720_b6) 2016; 7
Delforge (10.1016/j.swevo.2024.101720_b9) 2021; 184
He (10.1016/j.swevo.2024.101720_b42) 2012; 81
Saitta (10.1016/j.swevo.2024.101720_b70) 2007; vol. 4571
Chang (10.1016/j.swevo.2024.101720_b60) 2009; 42
Hruschka (10.1016/j.swevo.2024.101720_b45) 2006; 176
Kivijärvi (10.1016/j.swevo.2024.101720_b66) 2003; 9
Bandyopadhyay (10.1016/j.swevo.2024.101720_b55) 2001; 31
Agustín-Blas (10.1016/j.swevo.2024.101720_b29) 2012; 39
Thant (10.1016/j.swevo.2024.101720_b31) 2020; 7
Naldi (10.1016/j.swevo.2024.101720_b50) 2011; 11
10.1016/j.swevo.2024.101720_b32
Nanda (10.1016/j.swevo.2024.101720_b21) 2014; 16
Milligan (10.1016/j.swevo.2024.101720_b61) 1988; 5
Xu (10.1016/j.swevo.2024.101720_b20) 2005; 16
Campo (10.1016/j.swevo.2024.101720_b40) 2016; 64
Fawcett (10.1016/j.swevo.2024.101720_b74) 2006; 27
10.1016/j.swevo.2024.101720_b67
Carrasco (10.1016/j.swevo.2024.101720_b79) 2020; 54
Hancer (10.1016/j.swevo.2024.101720_b24) 2017; 32
Garcia-Piquer (10.1016/j.swevo.2024.101720_b27) 2014; 18
Murthy (10.1016/j.swevo.2024.101720_b57) 1996; 17
Lucasius (10.1016/j.swevo.2024.101720_b43) 1993; 282
Mukhopadhyay (10.1016/j.swevo.2024.101720_b23) 2015; 47
Sheng (10.1016/j.swevo.2024.101720_b56) 2004; Vol. 1
Cano (10.1016/j.swevo.2024.101720_b77) 2016; 330
Fränti (10.1016/j.swevo.2024.101720_b59) 2000; 21
Kayaalp (10.1016/j.swevo.2024.101720_b25) 2020; 41
Fränti (10.1016/j.swevo.2024.101720_b46) 2018; 48
Robles-Berumen (10.1016/j.swevo.2024.101720_b19) 2019; 179
Michalewicz (10.1016/j.swevo.2024.101720_b17) 1992
Lu (10.1016/j.swevo.2024.101720_b48) 2004; 5
Bandyopadhyay (10.1016/j.swevo.2024.101720_b54) 2002; 35
Lee (10.1016/j.swevo.2024.101720_b64) 2018; 112
Tseng (10.1016/j.swevo.2024.101720_b35) 2000; 33
Arbelaitz (10.1016/j.swevo.2024.101720_b2) 2013; 46
Gan (10.1016/j.swevo.2024.101720_b1) 2020
Goldberg (10.1016/j.swevo.2024.101720_b16) 1989
Bezdek (10.1016/j.swevo.2024.101720_b58) 1994
Kakkar (10.1016/j.swevo.2024.101720_b18) 2021; Vol. 1950
MacQueen (10.1016/j.swevo.2024.101720_b14) 1967
Fränti (10.1016/j.swevo.2024.101720_b51) 1997; 40
Ghezelbash (10.1016/j.swevo.2024.101720_b8) 2020; 134
Hruschka (10.1016/j.swevo.2024.101720_b44) 2003; 7
Liu (10.1016/j.swevo.2024.101720_b63) 2010
Mukhopadhyay (10.1016/j.swevo.2024.101720_b28) 2014; 18
Fahad (10.1016/j.swevo.2024.101720_b12) 2014; 2
Bezdek (10.1016/j.swevo.2024.101720_b30) 1984; 10
10.1016/j.swevo.2024.101720_b49
Rezaei (10.1016/j.swevo.2024.101720_b65) 2016; 28
Theodoridis (10.1016/j.swevo.2024.101720_b62) 2006
Kim (10.1016/j.swevo.2024.101720_b5) 2020; 150
Rao (10.1016/j.swevo.2024.101720_b73) 2018
Ezugwu (10.1016/j.swevo.2024.101720_b3) 2022; 110
Hruschka (10.1016/j.swevo.2024.101720_b22) 2009; 39
Tarekegn (10.1016/j.swevo.2024.101720_b75) 2020; 1
Xie (10.1016/j.swevo.2024.101720_b72) 1991; 13
Halkidi (10.1016/j.swevo.2024.101720_b39) 2001; 17
Alves (10.1016/j.swevo.2024.101720_b41) 2006
Liu (10.1016/j.swevo.2024.101720_b15) 2006
Wu (10.1016/j.swevo.2024.101720_b4) 2020
Göhring (10.1016/j.swevo.2024.101720_b10) 2018; 490
Katoch (10.1016/j.swevo.2024.101720_b26) 2021; 80
Zafra (10.1016/j.swevo.2024.101720_b78) 2023; 232
References_xml – volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: b20
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– start-page: 1776
  year: 2006
  end-page: 1783
  ident: b41
  article-title: Towards a fast evolutionary algorithm for clustering
  publication-title: IEEE International Conference on Evolutionary Computation
– volume: 39
  start-page: 133
  year: 2009
  end-page: 155
  ident: b22
  article-title: A survey of evolutionary algorithms for clustering
  publication-title: IEEE Trans. Syst. Man Cybern. C
– volume: 71
  start-page: 608
  year: 2018
  end-page: 621
  ident: b13
  article-title: An effective partitional clustering algorithm based on new clustering validity index
  publication-title: Appl. Soft Comput.
– volume: 184
  year: 2021
  ident: b9
  article-title: Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset
  publication-title: J. Appl. Geophys.
– volume: 33
  start-page: 1251
  year: 2000
  end-page: 1259
  ident: b35
  article-title: A genetic clustering algorithm for data with non-spherical-shape clusters
  publication-title: Pattern Recognit.
– start-page: 911
  year: 2010
  end-page: 916
  ident: b63
  article-title: Understanding of internal clustering validation measures
  publication-title: 2010 IEEE International Conference on Data Mining
– volume: 7
  start-page: 33
  year: 2016
  end-page: 49
  ident: b6
  article-title: Application of genetic algorithm and back propagation neural network for effective personalize web search-based on clustered query sessions
  publication-title: Int. J. Appl. Evol. Comput.
– start-page: 281
  year: 1967
  end-page: 297
  ident: b14
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability
– volume: 36
  start-page: 42
  year: 2011
  end-page: 47
  ident: b76
  article-title: GNU parallel - the command-line power tool
  publication-title: Login: USENIX Mag.
– volume: 7
  start-page: 15
  year: 2003
  end-page: 25
  ident: b44
  article-title: A genetic algorithm for cluster analysis
  publication-title: Intell. Data Anal.
– reference: M. Halkidi, M. Vazirgiannis, Clustering validity assessment: finding the optimal partitioning of a data set, in: Proceedings 2001 IEEE International Conference on Data Mining, 2001, pp. 187–194.
– volume: 17
  start-page: 825
  year: 1996
  end-page: 832
  ident: b57
  article-title: In search of optimal clusters using genetic algorithms
  publication-title: Pattern Recognit. Lett.
– volume: 7
  year: 2020
  ident: b31
  article-title: Euclidean, manhattan and Minkowski distance methods for clustering algorithms
  publication-title: Int. J. Sci. Res. Sci. Eng. Technol.
– volume: 48
  start-page: 4743
  year: 2018
  end-page: 4759
  ident: b46
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intell.
– volume: 176
  start-page: 118
  year: 2020
  end-page: 127
  ident: b7
  article-title: Multidimensional medical data modeling based on fuzzy cognitive maps and k-means clustering
  publication-title: Procedia Comput. Sci.
– volume: 5
  start-page: 172
  year: 2004
  ident: b48
  article-title: Incremental genetic K-means algorithm and its application in gene expression data analysis
  publication-title: BMC Bioinformatics
– volume: 112
  start-page: 263
  year: 2018
  end-page: 269
  ident: b64
  article-title: A new clustering validity index for arbitrary shape of clusters
  publication-title: Pattern Recognit. Lett.
– reference: Z. Bin, G. Zhichun, H. Qiangqiang, A Genetic Clustering Method Based on Variable Length String, in: 2019 2nd International Conference on Safety Produce Informatization, IICSPI, 2019, pp. 460–464.
– volume: 110
  year: 2022
  ident: b3
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Eng. Appl. Artif. Intell.
– reference: L.I. Kuncheva, J.C. Bezdek, Selection of cluster prototypes from data by a genetic algorithm, in: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, 1997, pp. 1683–1688.
– volume: 46
  start-page: 243
  year: 2013
  end-page: 256
  ident: b2
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
– volume: 150
  year: 2020
  ident: b5
  article-title: Improving spherical k-means for document clustering: Fast initialization, sparse centroid projection, and efficient cluster labeling
  publication-title: Expert Syst. Appl.
– year: 1992
  ident: b17
  article-title: Genetic Algorithms + Data Structures = Evolution Programs
– volume: 7
  start-page: 205
  year: 2004
  end-page: 220
  ident: b68
  article-title: A new cluster validity measure and its application to image compression
  publication-title: Pattern Anal. Appl.
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: b26
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimedia Tools Appl.
– volume: 9
  start-page: 113
  year: 2003
  end-page: 129
  ident: b66
  article-title: Self-adaptive genetic algorithm for clustering
  publication-title: J. Heuristics
– year: 2020
  ident: b4
  article-title: Robust entropy-based symmetric regularized picture fuzzy clustering for image segmentation
  publication-title: Digit. Signal Process.
– volume: 42
  start-page: 1210
  year: 2009
  end-page: 1222
  ident: b60
  article-title: A genetic algorithm with gene rearrangement for K-means clustering
  publication-title: Pattern Recognit.
– volume: 146
  start-page: 221
  year: 2002
  end-page: 237
  ident: b53
  article-title: An evolutionary technique based on K-means algorithm for optimal clustering in RN
  publication-title: Inf. Sci. Appl.
– year: 2020
  ident: b1
  article-title: Data Clustering: Theory, Algorithms, and Applications
– volume: 2
  start-page: 267
  year: 2014
  end-page: 279
  ident: b12
  article-title: A survey of clustering algorithms for big data: Taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Top. Comput.
– year: 1989
  ident: b16
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– volume: 33
  start-page: 1455
  year: 2000
  end-page: 1465
  ident: b52
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 49
  year: 2017
  end-page: 67
  ident: b24
  article-title: A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number
  publication-title: Swarm Evol. Comput.
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b74
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
– volume: 54
  year: 2020
  ident: b79
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
– volume: 18
  start-page: 36
  year: 2014
  end-page: 53
  ident: b27
  article-title: Large-scale experimental evaluation of cluster representations for multiobjective evolutionary clustering
  publication-title: IEEE Trans. Evol. Comput.
– volume: 179
  start-page: 117
  year: 2019
  end-page: 119
  ident: b19
  article-title: LEAC: an efficient library for clustering with evolutionary algorithms
  publication-title: Knowl.-Based Syst.
– volume: 490
  start-page: 673
  year: 2018
  end-page: 686
  ident: b10
  article-title: Palaeobiodiversity research based on stable isotopes: Correction of the sea spray effect on bone carbonate 13C and 18o by Gaussian mixture model clustering
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 41
  start-page: 267
  year: 2020
  end-page: 275
  ident: b25
  article-title: Benchmarking the clustering performances of evolutionary algorithms: A case study on varying data size
  publication-title: IRBM
– volume: 13
  start-page: 841
  year: 1991
  end-page: 847
  ident: b72
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 1197
  year: 2002
  end-page: 1208
  ident: b54
  article-title: Genetic clustering for automatic evolution of clusters and application to image classification
  publication-title: Pattern Recognit.
– volume: 16
  start-page: 1
  year: 2014
  end-page: 18
  ident: b21
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm Evol. Comput.
– volume: 232
  year: 2023
  ident: b78
  article-title: Nearest neighbor-based approaches for multi-instance multi-label classification
  publication-title: Expert Syst. Appl.
– volume: 17
  start-page: 107
  year: 2001
  end-page: 145
  ident: b39
  article-title: On clustering validation techniques
  publication-title: J. Intell. Inf. Syst.
– volume: 282
  start-page: 647
  year: 1993
  end-page: 669
  ident: b43
  article-title: On k-medoid clustering of large data sets with the aid of a genetic algorithm: background, feasiblity and comparison
  publication-title: Anal. Chim. Acta
– volume: 29
  start-page: 433
  year: 1999
  end-page: 439
  ident: b47
  article-title: Genetic K-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. B
– start-page: 754
  year: 2018
  end-page: 757
  ident: b73
  article-title: Exploring the impact of optimal clusters on cluster purity
  publication-title: Proceedings of the 3rd International Conference on Communication and Electronics Systems
– volume: 92
  start-page: 77
  year: 2014
  end-page: 89
  ident: b71
  article-title: WB-index: A sum-of-squares based index for cluster validity
  publication-title: Data Knowl. Eng.
– volume: Vol. 1950
  year: 2021
  ident: b18
  article-title: Class schedule generation using evolutionary algorithms
  publication-title: Journal of Physics: Conference Series
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b11
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv.
– volume: 18
  start-page: 20
  year: 2014
  end-page: 35
  ident: b28
  article-title: Survey of multiobjective evolutionary algorithms for data mining: Part II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 39
  start-page: 9695
  year: 2012
  end-page: 9703
  ident: b29
  article-title: A new grouping genetic algorithm for clustering problems
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 2173
  year: 2016
  end-page: 2186
  ident: b65
  article-title: Set matching measures for external cluster validity
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 34
  start-page: 415
  year: 2001
  end-page: 424
  ident: b36
  article-title: A genetic approach to the automatic clustering problem
  publication-title: Pattern Recognit.
– volume: 21
  start-page: 61
  year: 2000
  end-page: 68
  ident: b59
  article-title: Genetic algorithm with deterministic crossover for vector quantization
  publication-title: Pattern Recognit. Lett.
– reference: M. Mardi, M.R. Keyvanpour, GBKM: A New Genetic Based K-Means Clustering Algorithm, in: 2021 7th International Conference on Web Research, ICWR, 2021, pp. 222–226.
– volume: vol. 2807
  start-page: 43
  year: 2003
  end-page: 49
  ident: b37
  article-title: Document clustering into an unknown number of clusters using a genetic algorithm
  publication-title: Text, Speech and Dialogue
– volume: 134
  year: 2020
  ident: b8
  article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm
  publication-title: Comput. Geosci.
– volume: 40
  start-page: 547
  year: 1997
  end-page: 554
  ident: b51
  article-title: Genetic algorithms for large-scale clustering problems
  publication-title: Comput. J.
– volume: Vol. 1
  start-page: 77
  year: 2004
  end-page: 82
  ident: b56
  article-title: A hybrid algorithm for k-medoid clustering of large data sets
  publication-title: IEEE International Conference on Evolutionary Computation
– volume: 188
  year: 2020
  ident: b34
  article-title: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy
  publication-title: Knowl.-Based Syst.
– volume: 47
  start-page: 61:1
  year: 2015
  end-page: 61:46
  ident: b23
  article-title: A survey of multiobjective evolutionary clustering
  publication-title: ACM Comput. Surv.
– volume: vol. 4571
  start-page: 174
  year: 2007
  end-page: 187
  ident: b70
  article-title: A bounded index for cluster validity
  publication-title: Machine Learning and Data Mining in Pattern Recognition
– volume: 176
  start-page: 1898
  year: 2006
  end-page: 1927
  ident: b45
  article-title: Evolving clusters in gene-expression data
  publication-title: Inform. Sci.
– volume: 64
  start-page: 549
  year: 2016
  end-page: 556
  ident: b40
  article-title: A new index for clustering validation with overlapped clusters
  publication-title: Expert Syst. Appl.
– volume: 81
  start-page: 49
  year: 2012
  end-page: 59
  ident: b42
  article-title: A two-stage genetic algorithm for automatic clustering
  publication-title: Neurocomputing
– volume: 31
  start-page: 120
  year: 2001
  end-page: 125
  ident: b55
  article-title: Nonparametric genetic clustering: Comparison of validity indices
  publication-title: IEEE Trans. Syst. Man Cybern. C
– volume: 4
  start-page: 95
  year: 1974
  end-page: 104
  ident: b69
  article-title: Well-separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
– year: 2006
  ident: b62
  article-title: Pattern Recognition
– volume: 5
  start-page: 181
  year: 1988
  end-page: 204
  ident: b61
  article-title: A study of standardization of variables in cluster analysis
  publication-title: J. Classification
– start-page: 192
  year: 2006
  end-page: 202
  ident: b15
  article-title: An improved hybrid genetic clustering algorithm
  publication-title: Advances in Artificial Intelligence
– volume: 11
  start-page: 1938
  year: 2011
  end-page: 1952
  ident: b50
  article-title: Efficiency issues of evolutionary k-means
  publication-title: Appl. Soft Comput.
– start-page: 34
  year: 1994
  end-page: 39
  ident: b58
  article-title: Genetic algorithm guided clustering
  publication-title: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence
– volume: 1
  start-page: 1
  year: 2020
  end-page: 9
  ident: b75
  article-title: Cross-validation approach to evaluate clustering algorithms: An experimental study using multi-label datasets
  publication-title: SN Comput. Sci.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b30
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– reference: Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S.J. Brown, FGKA: A fast genetic k-means clustering algorithm, in: Proceedings of the 2004 ACM Symposium on Applied Computing, 2004, pp. 622–623.
– volume: 330
  start-page: 370
  year: 2016
  end-page: 384
  ident: b77
  article-title: LAIM discretization for multi-label data
  publication-title: Inform. Sci.
– volume: 5
  start-page: 172
  year: 2004
  ident: 10.1016/j.swevo.2024.101720_b48
  article-title: Incremental genetic K-means algorithm and its application in gene expression data analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-172
– volume: vol. 4571
  start-page: 174
  year: 2007
  ident: 10.1016/j.swevo.2024.101720_b70
  article-title: A bounded index for cluster validity
– volume: 179
  start-page: 117
  year: 2019
  ident: 10.1016/j.swevo.2024.101720_b19
  article-title: LEAC: an efficient library for clustering with evolutionary algorithms
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.05.008
– volume: 2
  start-page: 267
  issue: 3
  year: 2014
  ident: 10.1016/j.swevo.2024.101720_b12
  article-title: A survey of clustering algorithms for big data: Taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2014.2330519
– start-page: 34
  year: 1994
  ident: 10.1016/j.swevo.2024.101720_b58
  article-title: Genetic algorithm guided clustering
– year: 1989
  ident: 10.1016/j.swevo.2024.101720_b16
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2024.101720_b2
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.021
– volume: 11
  start-page: 1938
  issue: 2
  year: 2011
  ident: 10.1016/j.swevo.2024.101720_b50
  article-title: Efficiency issues of evolutionary k-means
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.010
– volume: 5
  start-page: 181
  year: 1988
  ident: 10.1016/j.swevo.2024.101720_b61
  article-title: A study of standardization of variables in cluster analysis
  publication-title: J. Classification
  doi: 10.1007/BF01897163
– volume: 150
  year: 2020
  ident: 10.1016/j.swevo.2024.101720_b5
  article-title: Improving spherical k-means for document clustering: Fast initialization, sparse centroid projection, and efficient cluster labeling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113288
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  ident: 10.1016/j.swevo.2024.101720_b72
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.85677
– volume: 4
  start-page: 95
  issue: 1
  year: 1974
  ident: 10.1016/j.swevo.2024.101720_b69
  article-title: Well-separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
  doi: 10.1080/01969727408546059
– ident: 10.1016/j.swevo.2024.101720_b38
  doi: 10.1109/ICDM.2001.989517
– year: 2020
  ident: 10.1016/j.swevo.2024.101720_b4
  article-title: Robust entropy-based symmetric regularized picture fuzzy clustering for image segmentation
  publication-title: Digit. Signal Process.
– volume: 47
  start-page: 61:1
  issue: 4
  year: 2015
  ident: 10.1016/j.swevo.2024.101720_b23
  article-title: A survey of multiobjective evolutionary clustering
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2742642
– volume: 41
  start-page: 267
  issue: 5
  year: 2020
  ident: 10.1016/j.swevo.2024.101720_b25
  article-title: Benchmarking the clustering performances of evolutionary algorithms: A case study on varying data size
  publication-title: IRBM
  doi: 10.1016/j.irbm.2020.06.002
– volume: 40
  start-page: 547
  issue: 9
  year: 1997
  ident: 10.1016/j.swevo.2024.101720_b51
  article-title: Genetic algorithms for large-scale clustering problems
  publication-title: Comput. J.
  doi: 10.1093/comjnl/40.9.547
– volume: 35
  start-page: 1197
  issue: 6
  year: 2002
  ident: 10.1016/j.swevo.2024.101720_b54
  article-title: Genetic clustering for automatic evolution of clusters and application to image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(01)00108-X
– volume: 330
  start-page: 370
  year: 2016
  ident: 10.1016/j.swevo.2024.101720_b77
  article-title: LAIM discretization for multi-label data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.10.032
– volume: 112
  start-page: 263
  year: 2018
  ident: 10.1016/j.swevo.2024.101720_b64
  article-title: A new clustering validity index for arbitrary shape of clusters
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.08.005
– volume: Vol. 1950
  year: 2021
  ident: 10.1016/j.swevo.2024.101720_b18
  article-title: Class schedule generation using evolutionary algorithms
– volume: Vol. 1
  start-page: 77
  year: 2004
  ident: 10.1016/j.swevo.2024.101720_b56
  article-title: A hybrid algorithm for k-medoid clustering of large data sets
– volume: vol. 2807
  start-page: 43
  year: 2003
  ident: 10.1016/j.swevo.2024.101720_b37
  article-title: Document clustering into an unknown number of clusters using a genetic algorithm
– volume: 134
  year: 2020
  ident: 10.1016/j.swevo.2024.101720_b8
  article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.104335
– volume: 33
  start-page: 1251
  issue: 7
  year: 2000
  ident: 10.1016/j.swevo.2024.101720_b35
  article-title: A genetic clustering algorithm for data with non-spherical-shape clusters
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00105-3
– volume: 7
  start-page: 205
  issue: 2
  year: 2004
  ident: 10.1016/j.swevo.2024.101720_b68
  article-title: A new cluster validity measure and its application to image compression
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-004-0218-1
– volume: 282
  start-page: 647
  issue: 3
  year: 1993
  ident: 10.1016/j.swevo.2024.101720_b43
  article-title: On k-medoid clustering of large data sets with the aid of a genetic algorithm: background, feasiblity and comparison
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(93)80130-D
– volume: 490
  start-page: 673
  year: 2018
  ident: 10.1016/j.swevo.2024.101720_b10
  article-title: Palaeobiodiversity research based on stable isotopes: Correction of the sea spray effect on bone carbonate 13C and 18o by Gaussian mixture model clustering
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2017.11.057
– volume: 64
  start-page: 549
  year: 2016
  ident: 10.1016/j.swevo.2024.101720_b40
  article-title: A new index for clustering validation with overlapped clusters
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.08.021
– volume: 16
  start-page: 1
  year: 2014
  ident: 10.1016/j.swevo.2024.101720_b21
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.11.003
– volume: 29
  start-page: 433
  issue: 3
  year: 1999
  ident: 10.1016/j.swevo.2024.101720_b47
  article-title: Genetic K-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/3477.764879
– volume: 176
  start-page: 1898
  issue: 13
  year: 2006
  ident: 10.1016/j.swevo.2024.101720_b45
  article-title: Evolving clusters in gene-expression data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2005.07.015
– volume: 33
  start-page: 1455
  issue: 9
  year: 2000
  ident: 10.1016/j.swevo.2024.101720_b52
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00137-5
– start-page: 754
  year: 2018
  ident: 10.1016/j.swevo.2024.101720_b73
  article-title: Exploring the impact of optimal clusters on cluster purity
– volume: 18
  start-page: 36
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2024.101720_b27
  article-title: Large-scale experimental evaluation of cluster representations for multiobjective evolutionary clustering
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281513
– volume: 146
  start-page: 221
  issue: 1–4
  year: 2002
  ident: 10.1016/j.swevo.2024.101720_b53
  article-title: An evolutionary technique based on K-means algorithm for optimal clustering in RN
  publication-title: Inf. Sci. Appl.
  doi: 10.1016/S0020-0255(02)00208-6
– volume: 7
  start-page: 15
  issue: 1
  year: 2003
  ident: 10.1016/j.swevo.2024.101720_b44
  article-title: A genetic algorithm for cluster analysis
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2003-7103
– ident: 10.1016/j.swevo.2024.101720_b33
  doi: 10.1109/ICWR51868.2021.9443113
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.swevo.2024.101720_b11
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 32
  start-page: 49
  year: 2017
  ident: 10.1016/j.swevo.2024.101720_b24
  article-title: A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.06.004
– volume: 9
  start-page: 113
  issue: 2
  year: 2003
  ident: 10.1016/j.swevo.2024.101720_b66
  article-title: Self-adaptive genetic algorithm for clustering
  publication-title: J. Heuristics
  doi: 10.1023/A:1022521428870
– volume: 36
  start-page: 42
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2024.101720_b76
  article-title: GNU parallel - the command-line power tool
  publication-title: Login: USENIX Mag.
– volume: 7
  year: 2020
  ident: 10.1016/j.swevo.2024.101720_b31
  article-title: Euclidean, manhattan and Minkowski distance methods for clustering algorithms
  publication-title: Int. J. Sci. Res. Sci. Eng. Technol.
– volume: 42
  start-page: 1210
  issue: 7
  year: 2009
  ident: 10.1016/j.swevo.2024.101720_b60
  article-title: A genetic algorithm with gene rearrangement for K-means clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.11.006
– volume: 28
  start-page: 2173
  issue: 8
  year: 2016
  ident: 10.1016/j.swevo.2024.101720_b65
  article-title: Set matching measures for external cluster validity
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2551240
– volume: 7
  start-page: 33
  issue: 1
  year: 2016
  ident: 10.1016/j.swevo.2024.101720_b6
  article-title: Application of genetic algorithm and back propagation neural network for effective personalize web search-based on clustered query sessions
  publication-title: Int. J. Appl. Evol. Comput.
  doi: 10.4018/IJAEC.2016010103
– volume: 18
  start-page: 20
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2024.101720_b28
  article-title: Survey of multiobjective evolutionary algorithms for data mining: Part II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2290082
– ident: 10.1016/j.swevo.2024.101720_b49
  doi: 10.1145/967900.968029
– volume: 31
  start-page: 120
  issue: 1
  year: 2001
  ident: 10.1016/j.swevo.2024.101720_b55
  article-title: Nonparametric genetic clustering: Comparison of validity indices
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/5326.923275
– volume: 184
  year: 2021
  ident: 10.1016/j.swevo.2024.101720_b9
  article-title: Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2020.104203
– volume: 54
  year: 2020
  ident: 10.1016/j.swevo.2024.101720_b79
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100665
– ident: 10.1016/j.swevo.2024.101720_b67
– volume: 176
  start-page: 118
  year: 2020
  ident: 10.1016/j.swevo.2024.101720_b7
  article-title: Multidimensional medical data modeling based on fuzzy cognitive maps and k-means clustering
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.08.013
– volume: 80
  start-page: 8091
  year: 2021
  ident: 10.1016/j.swevo.2024.101720_b26
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-10139-6
– volume: 232
  year: 2023
  ident: 10.1016/j.swevo.2024.101720_b78
  article-title: Nearest neighbor-based approaches for multi-instance multi-label classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120876
– start-page: 281
  year: 1967
  ident: 10.1016/j.swevo.2024.101720_b14
  article-title: Some methods for classification and analysis of multivariate observations
– start-page: 911
  year: 2010
  ident: 10.1016/j.swevo.2024.101720_b63
  article-title: Understanding of internal clustering validation measures
– year: 1992
  ident: 10.1016/j.swevo.2024.101720_b17
– volume: 81
  start-page: 49
  year: 2012
  ident: 10.1016/j.swevo.2024.101720_b42
  article-title: A two-stage genetic algorithm for automatic clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.11.001
– volume: 92
  start-page: 77
  year: 2014
  ident: 10.1016/j.swevo.2024.101720_b71
  article-title: WB-index: A sum-of-squares based index for cluster validity
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2014.07.008
– start-page: 1776
  year: 2006
  ident: 10.1016/j.swevo.2024.101720_b41
  article-title: Towards a fast evolutionary algorithm for clustering
– volume: 39
  start-page: 133
  issue: 2
  year: 2009
  ident: 10.1016/j.swevo.2024.101720_b22
  article-title: A survey of evolutionary algorithms for clustering
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2008.2007252
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.swevo.2024.101720_b20
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 71
  start-page: 608
  year: 2018
  ident: 10.1016/j.swevo.2024.101720_b13
  article-title: An effective partitional clustering algorithm based on new clustering validity index
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.026
– volume: 39
  start-page: 9695
  issue: 10
  year: 2012
  ident: 10.1016/j.swevo.2024.101720_b29
  article-title: A new grouping genetic algorithm for clustering problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.149
– volume: 1
  start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2024.101720_b75
  article-title: Cross-validation approach to evaluate clustering algorithms: An experimental study using multi-label datasets
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00283-z
– ident: 10.1016/j.swevo.2024.101720_b32
  doi: 10.1109/IICSPI48186.2019.9095977
– volume: 34
  start-page: 415
  issue: 2
  year: 2001
  ident: 10.1016/j.swevo.2024.101720_b36
  article-title: A genetic approach to the automatic clustering problem
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00005-4
– volume: 48
  start-page: 4743
  issue: 12
  year: 2018
  ident: 10.1016/j.swevo.2024.101720_b46
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1238-7
– year: 2020
  ident: 10.1016/j.swevo.2024.101720_b1
– volume: 10
  start-page: 191
  issue: 2
  year: 1984
  ident: 10.1016/j.swevo.2024.101720_b30
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 188
  year: 2020
  ident: 10.1016/j.swevo.2024.101720_b34
  article-title: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105018
– volume: 17
  start-page: 107
  issue: 2–3
  year: 2001
  ident: 10.1016/j.swevo.2024.101720_b39
  article-title: On clustering validation techniques
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1023/A:1012801612483
– volume: 17
  start-page: 825
  issue: 8
  year: 1996
  ident: 10.1016/j.swevo.2024.101720_b57
  article-title: In search of optimal clusters using genetic algorithms
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(96)00043-8
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.swevo.2024.101720_b74
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 110
  year: 2022
  ident: 10.1016/j.swevo.2024.101720_b3
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104743
– year: 2006
  ident: 10.1016/j.swevo.2024.101720_b62
– volume: 21
  start-page: 61
  issue: 1
  year: 2000
  ident: 10.1016/j.swevo.2024.101720_b59
  article-title: Genetic algorithm with deterministic crossover for vector quantization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(99)00133-6
– start-page: 192
  year: 2006
  ident: 10.1016/j.swevo.2024.101720_b15
  article-title: An improved hybrid genetic clustering algorithm
SSID ssj0000602559
Score 2.379146
Snippet Clustering, an unsupervised learning technique, aims to group patterns into clusters where similar patterns are grouped together, while dissimilar ones are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101720
SubjectTerms Clustering
Experimental study
Genetic algorithms
Title A survey of genetic algorithms for clustering: Taxonomy and empirical analysis
URI https://dx.doi.org/10.1016/j.swevo.2024.101720
Volume 91
WOSCitedRecordID wos001324365800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagy4ELb8SygHzgtqRqY8dx9lbQIkCoQmxZVVwi23WWrLpplaTd_nzGj6Qpiyr2wCWqUsd5zKeZ8XjmG4TecprIiCU8kFlEA5oQFkjCWZAQlWkwV1zbbPfzr_F4zKfT5JuPKlW2nUBcFHyzSZb_VdRwDoRtSmdvIe52UjgBv0HocASxw_GfBD86rlblWtudcxikLSPr_GJR5vUvx75wrOYrw4_ga50nYmMrG-w-gr5a5qVnEHB0JV339exalK6nhl77lzBZd8q2htjZ0_9u-tRUwXttyBkKZ-DKTrXJT5GVLqR7ped5axvOrQ20f5xpsLB1bnfyh0U3OhHSTqaHVWIhLCkD8AJ3NK7rz-VVptEJth7upjZ3gYXLfnUNL9U30_e3o3e5s_-waW2mYZPEdpnaSVIzSeomuYsOwjhKeA8djD6fTr-0obkBswst05awefqGr8pmBt54nL_7NB0_ZfIIPfALDDxywHiM7ujiCXrYNO_AXpc_ReMRdjjBiwx7nOAtTjDgBG9xcoIblGCQPm5RghuUPEM_Pp5OPnwKfHONQIHXUgdCE5HMqGHoG4RCai0zypQcxoJTLWREMkpoSLOQgYeuEiJj00QEFHYoOVEzRp6jXrEo9AuE1VDP6GA2kIqFNFLa-IxgCMHx0yJjXByisPk8qfLM86YByjzdI51D9K69aOmIV_YPZ813T73v6HzCFMC078KXt7vPEbq_hfkr1KvLlX6N7ql1nVflG4-k31Q4kfM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+genetic+algorithms+for+clustering%3A+Taxonomy+and+empirical+analysis&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Robles-Berumen%2C+Hermes&rft.au=Zafra%2C+Amelia&rft.au=Ventura%2C+Sebasti%C3%A1n&rft.date=2024-12-01&rft.issn=2210-6502&rft.volume=91&rft.spage=101720&rft_id=info:doi/10.1016%2Fj.swevo.2024.101720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2024_101720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon