A survey of genetic algorithms for clustering: Taxonomy and empirical analysis
Clustering, an unsupervised learning technique, aims to group patterns into clusters where similar patterns are grouped together, while dissimilar ones are placed in different clusters. This task can present itself as a complex optimization problem due to the extensive search space generated by all...
Uložené v:
| Vydané v: | Swarm and evolutionary computation Ročník 91; s. 101720 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2024
|
| Predmet: | |
| ISSN: | 2210-6502 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Clustering, an unsupervised learning technique, aims to group patterns into clusters where similar patterns are grouped together, while dissimilar ones are placed in different clusters. This task can present itself as a complex optimization problem due to the extensive search space generated by all potential data partitions. Genetic Algorithms (GAs) have emerged as efficient tools for addressing this task. Consequently, significant advancements and numerous proposals have been developed in this field.
This work offers a comprehensive and critical review of state-of-the-art mono-objective Genetic Algorithms (GAs) for partitional clustering. From a more theoretical standpoint, it examines 22 well-known proposals in detail, covering their encoding strategies, objective functions, genetic operators, local search methods, and parent selection strategies. Based on this information, a specific taxonomy is proposed. In addition, from a more practical standpoint, a detailed experimental study is conducted to discern the advantages and disadvantages of approaches. Specifically, 22 different cluster validation indices are considered to compare the performance of clustering techniques. This evaluation is performed across 94 datasets encompassing diverse configurations, including the number of classes, separation between classes, and pattern dimensionality. Results reveal interesting findings, such as the key role of local search in optimizing results and reducing search space. Additionally, representations based on centroids and labels demonstrate greater efficiency and crossover and mutation operators do not prove to be as relevant. Ultimately, while the results are satisfactory, real-world clustering problems introduce additional complexity, especially for algorithms aiming to determine the number of clusters, resulting in diminished performance and the need for new approaches to be explored. Code, datasets and instructions to run algorithms in the LEAL library are available in an associated repository, in order to facilitate future experiments in this environment. |
|---|---|
| AbstractList | Clustering, an unsupervised learning technique, aims to group patterns into clusters where similar patterns are grouped together, while dissimilar ones are placed in different clusters. This task can present itself as a complex optimization problem due to the extensive search space generated by all potential data partitions. Genetic Algorithms (GAs) have emerged as efficient tools for addressing this task. Consequently, significant advancements and numerous proposals have been developed in this field.
This work offers a comprehensive and critical review of state-of-the-art mono-objective Genetic Algorithms (GAs) for partitional clustering. From a more theoretical standpoint, it examines 22 well-known proposals in detail, covering their encoding strategies, objective functions, genetic operators, local search methods, and parent selection strategies. Based on this information, a specific taxonomy is proposed. In addition, from a more practical standpoint, a detailed experimental study is conducted to discern the advantages and disadvantages of approaches. Specifically, 22 different cluster validation indices are considered to compare the performance of clustering techniques. This evaluation is performed across 94 datasets encompassing diverse configurations, including the number of classes, separation between classes, and pattern dimensionality. Results reveal interesting findings, such as the key role of local search in optimizing results and reducing search space. Additionally, representations based on centroids and labels demonstrate greater efficiency and crossover and mutation operators do not prove to be as relevant. Ultimately, while the results are satisfactory, real-world clustering problems introduce additional complexity, especially for algorithms aiming to determine the number of clusters, resulting in diminished performance and the need for new approaches to be explored. Code, datasets and instructions to run algorithms in the LEAL library are available in an associated repository, in order to facilitate future experiments in this environment. |
| ArticleNumber | 101720 |
| Author | Ventura, Sebastián Robles-Berumen, Hermes Zafra, Amelia |
| Author_xml | – sequence: 1 givenname: Hermes orcidid: 0000-0003-3595-2637 surname: Robles-Berumen fullname: Robles-Berumen, Hermes email: hermes@uaz.edu.mx organization: Department of Electrical Engineering and Earth Sciences, Autonomous University of Zacatecas, Jardín Juárez 147, Centro, 98000, Zacatecas, Mexico – sequence: 2 givenname: Amelia orcidid: 0000-0003-3868-6143 surname: Zafra fullname: Zafra, Amelia email: azafra@uco.es organization: Department of Computer Science and Numerical Analysis. Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI). University of Cordoba, Campus Universitario de Rabanales, 14071, Cordoba, Spain – sequence: 3 givenname: Sebastián orcidid: 0000-0003-4216-6378 surname: Ventura fullname: Ventura, Sebastián email: sventura@uco.es organization: Department of Computer Science and Numerical Analysis. Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI). University of Cordoba, Campus Universitario de Rabanales, 14071, Cordoba, Spain |
| BookMark | eNqFkMtOwzAQRb0oEgX6BWz8Ayl-pg0Si6riJVWwKWvLccbFVWJXtlvI35NSVixgNqMZ6Vzpngs08sEDQteUTCmh5c12mj7gEKaMMHH8zBgZoTFjlBSlJOwcTVLakmFKwqSsxuhlgdM-HqDHweINeMjOYN1uQnT5vUvYhohNu08ZovObW7zWn8GHrsfaNxi6nYvO6Ha4dNsnl67QmdVtgsnPvkRvD_fr5VOxen18Xi5WheGE50ID11UjqBQVYboGqK0oTU1nei5A15JbwQUTlpWSMVPxegZEck4rVs-5aUp-ifgp18SQUgSrdtF1OvaKEnU0obbq24Q6mlAnEwNV_aKMyzq74HPUrv2HvTuxMNQ6OIgqGQfeQOMimKya4P7kvwBfgH_b |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2025_113143 |
| Cites_doi | 10.1186/1471-2105-5-172 10.1016/j.knosys.2019.05.008 10.1109/TETC.2014.2330519 10.1016/j.patcog.2012.07.021 10.1016/j.asoc.2010.06.010 10.1007/BF01897163 10.1016/j.eswa.2020.113288 10.1109/34.85677 10.1080/01969727408546059 10.1109/ICDM.2001.989517 10.1145/2742642 10.1016/j.irbm.2020.06.002 10.1093/comjnl/40.9.547 10.1016/S0031-3203(01)00108-X 10.1016/j.ins.2015.10.032 10.1016/j.patrec.2018.08.005 10.1016/j.cageo.2019.104335 10.1016/S0031-3203(99)00105-3 10.1007/s10044-004-0218-1 10.1016/0003-2670(93)80130-D 10.1016/j.palaeo.2017.11.057 10.1016/j.eswa.2016.08.021 10.1016/j.swevo.2013.11.003 10.1109/3477.764879 10.1016/j.ins.2005.07.015 10.1016/S0031-3203(99)00137-5 10.1109/TEVC.2013.2281513 10.1016/S0020-0255(02)00208-6 10.3233/IDA-2003-7103 10.1109/ICWR51868.2021.9443113 10.1145/331499.331504 10.1016/j.swevo.2016.06.004 10.1023/A:1022521428870 10.1016/j.patcog.2008.11.006 10.1109/TKDE.2016.2551240 10.4018/IJAEC.2016010103 10.1109/TEVC.2013.2290082 10.1145/967900.968029 10.1109/5326.923275 10.1016/j.jappgeo.2020.104203 10.1016/j.swevo.2020.100665 10.1016/j.procs.2020.08.013 10.1007/s11042-020-10139-6 10.1016/j.eswa.2023.120876 10.1016/j.neucom.2011.11.001 10.1016/j.datak.2014.07.008 10.1109/TSMCC.2008.2007252 10.1109/TNN.2005.845141 10.1016/j.asoc.2018.07.026 10.1016/j.eswa.2012.02.149 10.1007/s42979-020-00283-z 10.1109/IICSPI48186.2019.9095977 10.1016/S0031-3203(00)00005-4 10.1007/s10489-018-1238-7 10.1016/0098-3004(84)90020-7 10.1016/j.knosys.2019.105018 10.1023/A:1012801612483 10.1016/0167-8655(96)00043-8 10.1016/j.patrec.2005.10.010 10.1016/j.engappai.2022.104743 10.1016/S0167-8655(99)00133-6 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2024.101720 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2024_101720 S221065022400258X |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXKI AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c303t-ae3a9d4154902abeebf46cb17a84eab53f43424f26522c93b7e0533192b83cd63 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001324365800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Tue Nov 18 21:31:41 EST 2025 Sat Nov 29 05:45:04 EST 2025 Wed Dec 04 16:48:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Clustering Experimental study Genetic algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-ae3a9d4154902abeebf46cb17a84eab53f43424f26522c93b7e0533192b83cd63 |
| ORCID | 0000-0003-3595-2637 0000-0003-4216-6378 0000-0003-3868-6143 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2024_101720 crossref_citationtrail_10_1016_j_swevo_2024_101720 elsevier_sciencedirect_doi_10_1016_j_swevo_2024_101720 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – sequence: 0 name: Elsevier B.V |
| References | Kakkar, Singla, Garg, Gupta, Srivastava, Kumar (b18) 2021; Vol. 1950 Hruschka, Campello, De Castro (b45) 2006; 176 Hruschka, Campello, Freitas, de Carvalho (b22) 2009; 39 Hancer, Karaboga (b24) 2017; 32 Kivijärvi, Fränti, Nevalainen (b66) 2003; 9 Tseng, Bien Yang (b36) 2001; 34 Poczeta, Kubuś, Yastrebov (b7) 2020; 176 Zafra, Gibaja (b78) 2023; 232 Campo, Stegmayer, Milone (b40) 2016; 64 Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S.J. Brown, FGKA: A fast genetic k-means clustering algorithm, in: Proceedings of the 2004 ACM Symposium on Applied Computing, 2004, pp. 622–623. Rezaei, Fränti (b65) 2016; 28 Tange (b76) 2011; 36 Krishna, Murty (b47) 1999; 29 Bandyopadhyay, Maulik (b54) 2002; 35 Chawla (b6) 2016; 7 Halkidi, Batistakis, Vazirgiannis (b39) 2001; 17 Lu, Lu, Fotouhi, Deng, Brown (b48) 2004; 5 Fränti, Kivijärvi, Kaukoranta, Nevalainen (b51) 1997; 40 Kim, Kim, Cho (b5) 2020; 150 Chang, Zhang, Zheng (b60) 2009; 42 Tarekegn, Michalak, Giacobini (b75) 2020; 1 M. Halkidi, M. Vazirgiannis, Clustering validity assessment: finding the optimal partitioning of a data set, in: Proceedings 2001 IEEE International Conference on Data Mining, 2001, pp. 187–194. Murthy, Chowdhury (b57) 1996; 17 Jain, Murty, Flynn (b11) 1999; 31 Gan, Ma, Wu (b1) 2020 Bandyopadhyay, Maulik (b55) 2001; 31 Xie, Beni (b72) 1991; 13 Naldi, Campello, Hruschka, Carvalho (b50) 2011; 11 Nanda, Panda (b21) 2014; 16 Fränti, Sieranoja (b46) 2018; 48 Bandyopadhyay, Maulik (b53) 2002; 146 Tseng, Bien Yang (b35) 2000; 33 Mukhopadhyay, Maulik, Bandyopadhyay, Coello (b28) 2014; 18 Rao, Josephine (b73) 2018 Ghezelbash, Maghsoudi, Carranza (b8) 2020; 134 Saitta, Raphael, Smith (b70) 2007; vol. 4571 Göhring, Mauder, Vohberger, Nehlich, von Carnap-Bornheim, Hilberg, Kröger, Grupe (b10) 2018; 490 Agustín-Blas, Salcedo-Sanz, Jiménez-Fernández, Carro-Calvo, Del Ser, Portilla-Figueras (b29) 2012; 39 Bezdek, Boggavarapu, Hall, Bensaid (b58) 1994 MacQueen (b14) 1967 Theodoridis, Koutroumbas (b62) 2006 Delforge, Watlet, Kaufmann, Van Camp, Vanclooster (b9) 2021; 184 Milligan, Cooper (b61) 1988; 5 M. Mardi, M.R. Keyvanpour, GBKM: A New Genetic Based K-Means Clustering Algorithm, in: 2021 7th International Conference on Web Research, ICWR, 2021, pp. 222–226. Fahad, Alshatri, Tari, Alamri, Khalil, Zomaya, Foufou, Bouras (b12) 2014; 2 Liu, Peng, Chen, Zhang (b15) 2006 Dunn (b69) 1974; 4 Zhao, Fränti (b71) 2014; 92 He, Tan (b42) 2012; 81 Garcia-Piquer, Fornells, Bacardit, Orriols-Puig, Golobardes (b27) 2014; 18 Bezdek, Ehrlich, Full (b30) 1984; 10 Wu, Kang (b4) 2020 Michalewicz (b17) 1992 Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (b2) 2013; 46 Chou, Su, Lai (b68) 2004; 7 Maulik, Bandyopadhyay (b52) 2000; 33 Carrasco, García, Rueda, Das, Herrera (b79) 2020; 54 Fränti (b59) 2000; 21 Xu, Wunsch (b20) 2005; 16 Casillas, de Lena, Martínez (b37) 2003; vol. 2807 Kayaalp, Erdogmus (b25) 2020; 41 Zhu, Xu, Goodman (b34) 2020; 188 Mukhopadhyay, Maulik, Bandyopadhyay (b23) 2015; 47 Thant, Aye, Mandalay (b31) 2020; 7 Fawcett (b74) 2006; 27 Alves, Campello, Hruschka (b41) 2006 Lee, Jeong, Kim, Jeong (b64) 2018; 112 L.I. Kuncheva, J.C. Bezdek, Selection of cluster prototypes from data by a genetic algorithm, in: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, 1997, pp. 1683–1688. Goldberg (b16) 1989 Sheng, Liu (b56) 2004; Vol. 1 Lucasius, Dane, Kateman (b43) 1993; 282 Liu, Li, Xiong, Gao, Wu (b63) 2010 Katoch, Chauhan, Kumar (b26) 2021; 80 Z. Bin, G. Zhichun, H. Qiangqiang, A Genetic Clustering Method Based on Variable Length String, in: 2019 2nd International Conference on Safety Produce Informatization, IICSPI, 2019, pp. 460–464. Ezugwu, Ikotun, Oyelade, Abualigah, Agushaka, Eke, Akinyelu (b3) 2022; 110 Zhu, Ma (b13) 2018; 71 Cano, Luna, Gibaja, Ventura (b77) 2016; 330 Hruschka, Ebecken (b44) 2003; 7 Robles-Berumen, Zafra, Fardoun, Ventura (b19) 2019; 179 Zhu (10.1016/j.swevo.2024.101720_b34) 2020; 188 Maulik (10.1016/j.swevo.2024.101720_b52) 2000; 33 Jain (10.1016/j.swevo.2024.101720_b11) 1999; 31 Zhao (10.1016/j.swevo.2024.101720_b71) 2014; 92 Dunn (10.1016/j.swevo.2024.101720_b69) 1974; 4 Poczeta (10.1016/j.swevo.2024.101720_b7) 2020; 176 Krishna (10.1016/j.swevo.2024.101720_b47) 1999; 29 Casillas (10.1016/j.swevo.2024.101720_b37) 2003; vol. 2807 Bandyopadhyay (10.1016/j.swevo.2024.101720_b53) 2002; 146 Chou (10.1016/j.swevo.2024.101720_b68) 2004; 7 10.1016/j.swevo.2024.101720_b38 Zhu (10.1016/j.swevo.2024.101720_b13) 2018; 71 Tange (10.1016/j.swevo.2024.101720_b76) 2011; 36 10.1016/j.swevo.2024.101720_b33 Tseng (10.1016/j.swevo.2024.101720_b36) 2001; 34 Chawla (10.1016/j.swevo.2024.101720_b6) 2016; 7 Delforge (10.1016/j.swevo.2024.101720_b9) 2021; 184 He (10.1016/j.swevo.2024.101720_b42) 2012; 81 Saitta (10.1016/j.swevo.2024.101720_b70) 2007; vol. 4571 Chang (10.1016/j.swevo.2024.101720_b60) 2009; 42 Hruschka (10.1016/j.swevo.2024.101720_b45) 2006; 176 Kivijärvi (10.1016/j.swevo.2024.101720_b66) 2003; 9 Bandyopadhyay (10.1016/j.swevo.2024.101720_b55) 2001; 31 Agustín-Blas (10.1016/j.swevo.2024.101720_b29) 2012; 39 Thant (10.1016/j.swevo.2024.101720_b31) 2020; 7 Naldi (10.1016/j.swevo.2024.101720_b50) 2011; 11 10.1016/j.swevo.2024.101720_b32 Nanda (10.1016/j.swevo.2024.101720_b21) 2014; 16 Milligan (10.1016/j.swevo.2024.101720_b61) 1988; 5 Xu (10.1016/j.swevo.2024.101720_b20) 2005; 16 Campo (10.1016/j.swevo.2024.101720_b40) 2016; 64 Fawcett (10.1016/j.swevo.2024.101720_b74) 2006; 27 10.1016/j.swevo.2024.101720_b67 Carrasco (10.1016/j.swevo.2024.101720_b79) 2020; 54 Hancer (10.1016/j.swevo.2024.101720_b24) 2017; 32 Garcia-Piquer (10.1016/j.swevo.2024.101720_b27) 2014; 18 Murthy (10.1016/j.swevo.2024.101720_b57) 1996; 17 Lucasius (10.1016/j.swevo.2024.101720_b43) 1993; 282 Mukhopadhyay (10.1016/j.swevo.2024.101720_b23) 2015; 47 Sheng (10.1016/j.swevo.2024.101720_b56) 2004; Vol. 1 Cano (10.1016/j.swevo.2024.101720_b77) 2016; 330 Fränti (10.1016/j.swevo.2024.101720_b59) 2000; 21 Kayaalp (10.1016/j.swevo.2024.101720_b25) 2020; 41 Fränti (10.1016/j.swevo.2024.101720_b46) 2018; 48 Robles-Berumen (10.1016/j.swevo.2024.101720_b19) 2019; 179 Michalewicz (10.1016/j.swevo.2024.101720_b17) 1992 Lu (10.1016/j.swevo.2024.101720_b48) 2004; 5 Bandyopadhyay (10.1016/j.swevo.2024.101720_b54) 2002; 35 Lee (10.1016/j.swevo.2024.101720_b64) 2018; 112 Tseng (10.1016/j.swevo.2024.101720_b35) 2000; 33 Arbelaitz (10.1016/j.swevo.2024.101720_b2) 2013; 46 Gan (10.1016/j.swevo.2024.101720_b1) 2020 Goldberg (10.1016/j.swevo.2024.101720_b16) 1989 Bezdek (10.1016/j.swevo.2024.101720_b58) 1994 Kakkar (10.1016/j.swevo.2024.101720_b18) 2021; Vol. 1950 MacQueen (10.1016/j.swevo.2024.101720_b14) 1967 Fränti (10.1016/j.swevo.2024.101720_b51) 1997; 40 Ghezelbash (10.1016/j.swevo.2024.101720_b8) 2020; 134 Hruschka (10.1016/j.swevo.2024.101720_b44) 2003; 7 Liu (10.1016/j.swevo.2024.101720_b63) 2010 Mukhopadhyay (10.1016/j.swevo.2024.101720_b28) 2014; 18 Fahad (10.1016/j.swevo.2024.101720_b12) 2014; 2 Bezdek (10.1016/j.swevo.2024.101720_b30) 1984; 10 10.1016/j.swevo.2024.101720_b49 Rezaei (10.1016/j.swevo.2024.101720_b65) 2016; 28 Theodoridis (10.1016/j.swevo.2024.101720_b62) 2006 Kim (10.1016/j.swevo.2024.101720_b5) 2020; 150 Rao (10.1016/j.swevo.2024.101720_b73) 2018 Ezugwu (10.1016/j.swevo.2024.101720_b3) 2022; 110 Hruschka (10.1016/j.swevo.2024.101720_b22) 2009; 39 Tarekegn (10.1016/j.swevo.2024.101720_b75) 2020; 1 Xie (10.1016/j.swevo.2024.101720_b72) 1991; 13 Halkidi (10.1016/j.swevo.2024.101720_b39) 2001; 17 Alves (10.1016/j.swevo.2024.101720_b41) 2006 Liu (10.1016/j.swevo.2024.101720_b15) 2006 Wu (10.1016/j.swevo.2024.101720_b4) 2020 Göhring (10.1016/j.swevo.2024.101720_b10) 2018; 490 Katoch (10.1016/j.swevo.2024.101720_b26) 2021; 80 Zafra (10.1016/j.swevo.2024.101720_b78) 2023; 232 |
| References_xml | – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: b20 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. – start-page: 1776 year: 2006 end-page: 1783 ident: b41 article-title: Towards a fast evolutionary algorithm for clustering publication-title: IEEE International Conference on Evolutionary Computation – volume: 39 start-page: 133 year: 2009 end-page: 155 ident: b22 article-title: A survey of evolutionary algorithms for clustering publication-title: IEEE Trans. Syst. Man Cybern. C – volume: 71 start-page: 608 year: 2018 end-page: 621 ident: b13 article-title: An effective partitional clustering algorithm based on new clustering validity index publication-title: Appl. Soft Comput. – volume: 184 year: 2021 ident: b9 article-title: Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset publication-title: J. Appl. Geophys. – volume: 33 start-page: 1251 year: 2000 end-page: 1259 ident: b35 article-title: A genetic clustering algorithm for data with non-spherical-shape clusters publication-title: Pattern Recognit. – start-page: 911 year: 2010 end-page: 916 ident: b63 article-title: Understanding of internal clustering validation measures publication-title: 2010 IEEE International Conference on Data Mining – volume: 7 start-page: 33 year: 2016 end-page: 49 ident: b6 article-title: Application of genetic algorithm and back propagation neural network for effective personalize web search-based on clustered query sessions publication-title: Int. J. Appl. Evol. Comput. – start-page: 281 year: 1967 end-page: 297 ident: b14 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability – volume: 36 start-page: 42 year: 2011 end-page: 47 ident: b76 article-title: GNU parallel - the command-line power tool publication-title: Login: USENIX Mag. – volume: 7 start-page: 15 year: 2003 end-page: 25 ident: b44 article-title: A genetic algorithm for cluster analysis publication-title: Intell. Data Anal. – reference: M. Halkidi, M. Vazirgiannis, Clustering validity assessment: finding the optimal partitioning of a data set, in: Proceedings 2001 IEEE International Conference on Data Mining, 2001, pp. 187–194. – volume: 17 start-page: 825 year: 1996 end-page: 832 ident: b57 article-title: In search of optimal clusters using genetic algorithms publication-title: Pattern Recognit. Lett. – volume: 7 year: 2020 ident: b31 article-title: Euclidean, manhattan and Minkowski distance methods for clustering algorithms publication-title: Int. J. Sci. Res. Sci. Eng. Technol. – volume: 48 start-page: 4743 year: 2018 end-page: 4759 ident: b46 article-title: K-means properties on six clustering benchmark datasets publication-title: Appl. Intell. – volume: 176 start-page: 118 year: 2020 end-page: 127 ident: b7 article-title: Multidimensional medical data modeling based on fuzzy cognitive maps and k-means clustering publication-title: Procedia Comput. Sci. – volume: 5 start-page: 172 year: 2004 ident: b48 article-title: Incremental genetic K-means algorithm and its application in gene expression data analysis publication-title: BMC Bioinformatics – volume: 112 start-page: 263 year: 2018 end-page: 269 ident: b64 article-title: A new clustering validity index for arbitrary shape of clusters publication-title: Pattern Recognit. Lett. – reference: Z. Bin, G. Zhichun, H. Qiangqiang, A Genetic Clustering Method Based on Variable Length String, in: 2019 2nd International Conference on Safety Produce Informatization, IICSPI, 2019, pp. 460–464. – volume: 110 year: 2022 ident: b3 article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects publication-title: Eng. Appl. Artif. Intell. – reference: L.I. Kuncheva, J.C. Bezdek, Selection of cluster prototypes from data by a genetic algorithm, in: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, 1997, pp. 1683–1688. – volume: 46 start-page: 243 year: 2013 end-page: 256 ident: b2 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognit. – volume: 150 year: 2020 ident: b5 article-title: Improving spherical k-means for document clustering: Fast initialization, sparse centroid projection, and efficient cluster labeling publication-title: Expert Syst. Appl. – year: 1992 ident: b17 article-title: Genetic Algorithms + Data Structures = Evolution Programs – volume: 7 start-page: 205 year: 2004 end-page: 220 ident: b68 article-title: A new cluster validity measure and its application to image compression publication-title: Pattern Anal. Appl. – volume: 80 start-page: 8091 year: 2021 end-page: 8126 ident: b26 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimedia Tools Appl. – volume: 9 start-page: 113 year: 2003 end-page: 129 ident: b66 article-title: Self-adaptive genetic algorithm for clustering publication-title: J. Heuristics – year: 2020 ident: b4 article-title: Robust entropy-based symmetric regularized picture fuzzy clustering for image segmentation publication-title: Digit. Signal Process. – volume: 42 start-page: 1210 year: 2009 end-page: 1222 ident: b60 article-title: A genetic algorithm with gene rearrangement for K-means clustering publication-title: Pattern Recognit. – volume: 146 start-page: 221 year: 2002 end-page: 237 ident: b53 article-title: An evolutionary technique based on K-means algorithm for optimal clustering in RN publication-title: Inf. Sci. Appl. – year: 2020 ident: b1 article-title: Data Clustering: Theory, Algorithms, and Applications – volume: 2 start-page: 267 year: 2014 end-page: 279 ident: b12 article-title: A survey of clustering algorithms for big data: Taxonomy and empirical analysis publication-title: IEEE Trans. Emerg. Top. Comput. – year: 1989 ident: b16 article-title: Genetic Algorithms in Search, Optimization and Machine Learning – volume: 33 start-page: 1455 year: 2000 end-page: 1465 ident: b52 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recognit. – volume: 32 start-page: 49 year: 2017 end-page: 67 ident: b24 article-title: A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number publication-title: Swarm Evol. Comput. – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: b74 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. – volume: 54 year: 2020 ident: b79 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. – volume: 18 start-page: 36 year: 2014 end-page: 53 ident: b27 article-title: Large-scale experimental evaluation of cluster representations for multiobjective evolutionary clustering publication-title: IEEE Trans. Evol. Comput. – volume: 179 start-page: 117 year: 2019 end-page: 119 ident: b19 article-title: LEAC: an efficient library for clustering with evolutionary algorithms publication-title: Knowl.-Based Syst. – volume: 490 start-page: 673 year: 2018 end-page: 686 ident: b10 article-title: Palaeobiodiversity research based on stable isotopes: Correction of the sea spray effect on bone carbonate 13C and 18o by Gaussian mixture model clustering publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – volume: 41 start-page: 267 year: 2020 end-page: 275 ident: b25 article-title: Benchmarking the clustering performances of evolutionary algorithms: A case study on varying data size publication-title: IRBM – volume: 13 start-page: 841 year: 1991 end-page: 847 ident: b72 article-title: A validity measure for fuzzy clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 1197 year: 2002 end-page: 1208 ident: b54 article-title: Genetic clustering for automatic evolution of clusters and application to image classification publication-title: Pattern Recognit. – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: b21 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evol. Comput. – volume: 232 year: 2023 ident: b78 article-title: Nearest neighbor-based approaches for multi-instance multi-label classification publication-title: Expert Syst. Appl. – volume: 17 start-page: 107 year: 2001 end-page: 145 ident: b39 article-title: On clustering validation techniques publication-title: J. Intell. Inf. Syst. – volume: 282 start-page: 647 year: 1993 end-page: 669 ident: b43 article-title: On k-medoid clustering of large data sets with the aid of a genetic algorithm: background, feasiblity and comparison publication-title: Anal. Chim. Acta – volume: 29 start-page: 433 year: 1999 end-page: 439 ident: b47 article-title: Genetic K-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. B – start-page: 754 year: 2018 end-page: 757 ident: b73 article-title: Exploring the impact of optimal clusters on cluster purity publication-title: Proceedings of the 3rd International Conference on Communication and Electronics Systems – volume: 92 start-page: 77 year: 2014 end-page: 89 ident: b71 article-title: WB-index: A sum-of-squares based index for cluster validity publication-title: Data Knowl. Eng. – volume: Vol. 1950 year: 2021 ident: b18 article-title: Class schedule generation using evolutionary algorithms publication-title: Journal of Physics: Conference Series – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: b11 article-title: Data clustering: A review publication-title: ACM Comput. Surv. – volume: 18 start-page: 20 year: 2014 end-page: 35 ident: b28 article-title: Survey of multiobjective evolutionary algorithms for data mining: Part II publication-title: IEEE Trans. Evol. Comput. – volume: 39 start-page: 9695 year: 2012 end-page: 9703 ident: b29 article-title: A new grouping genetic algorithm for clustering problems publication-title: Expert Syst. Appl. – volume: 28 start-page: 2173 year: 2016 end-page: 2186 ident: b65 article-title: Set matching measures for external cluster validity publication-title: IEEE Trans. Knowl. Data Eng. – volume: 34 start-page: 415 year: 2001 end-page: 424 ident: b36 article-title: A genetic approach to the automatic clustering problem publication-title: Pattern Recognit. – volume: 21 start-page: 61 year: 2000 end-page: 68 ident: b59 article-title: Genetic algorithm with deterministic crossover for vector quantization publication-title: Pattern Recognit. Lett. – reference: M. Mardi, M.R. Keyvanpour, GBKM: A New Genetic Based K-Means Clustering Algorithm, in: 2021 7th International Conference on Web Research, ICWR, 2021, pp. 222–226. – volume: vol. 2807 start-page: 43 year: 2003 end-page: 49 ident: b37 article-title: Document clustering into an unknown number of clusters using a genetic algorithm publication-title: Text, Speech and Dialogue – volume: 134 year: 2020 ident: b8 article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm publication-title: Comput. Geosci. – volume: 40 start-page: 547 year: 1997 end-page: 554 ident: b51 article-title: Genetic algorithms for large-scale clustering problems publication-title: Comput. J. – volume: Vol. 1 start-page: 77 year: 2004 end-page: 82 ident: b56 article-title: A hybrid algorithm for k-medoid clustering of large data sets publication-title: IEEE International Conference on Evolutionary Computation – volume: 188 year: 2020 ident: b34 article-title: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy publication-title: Knowl.-Based Syst. – volume: 47 start-page: 61:1 year: 2015 end-page: 61:46 ident: b23 article-title: A survey of multiobjective evolutionary clustering publication-title: ACM Comput. Surv. – volume: vol. 4571 start-page: 174 year: 2007 end-page: 187 ident: b70 article-title: A bounded index for cluster validity publication-title: Machine Learning and Data Mining in Pattern Recognition – volume: 176 start-page: 1898 year: 2006 end-page: 1927 ident: b45 article-title: Evolving clusters in gene-expression data publication-title: Inform. Sci. – volume: 64 start-page: 549 year: 2016 end-page: 556 ident: b40 article-title: A new index for clustering validation with overlapped clusters publication-title: Expert Syst. Appl. – volume: 81 start-page: 49 year: 2012 end-page: 59 ident: b42 article-title: A two-stage genetic algorithm for automatic clustering publication-title: Neurocomputing – volume: 31 start-page: 120 year: 2001 end-page: 125 ident: b55 article-title: Nonparametric genetic clustering: Comparison of validity indices publication-title: IEEE Trans. Syst. Man Cybern. C – volume: 4 start-page: 95 year: 1974 end-page: 104 ident: b69 article-title: Well-separated clusters and optimal fuzzy partitions publication-title: J. Cybern. – year: 2006 ident: b62 article-title: Pattern Recognition – volume: 5 start-page: 181 year: 1988 end-page: 204 ident: b61 article-title: A study of standardization of variables in cluster analysis publication-title: J. Classification – start-page: 192 year: 2006 end-page: 202 ident: b15 article-title: An improved hybrid genetic clustering algorithm publication-title: Advances in Artificial Intelligence – volume: 11 start-page: 1938 year: 2011 end-page: 1952 ident: b50 article-title: Efficiency issues of evolutionary k-means publication-title: Appl. Soft Comput. – start-page: 34 year: 1994 end-page: 39 ident: b58 article-title: Genetic algorithm guided clustering publication-title: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence – volume: 1 start-page: 1 year: 2020 end-page: 9 ident: b75 article-title: Cross-validation approach to evaluate clustering algorithms: An experimental study using multi-label datasets publication-title: SN Comput. Sci. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b30 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. – reference: Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S.J. Brown, FGKA: A fast genetic k-means clustering algorithm, in: Proceedings of the 2004 ACM Symposium on Applied Computing, 2004, pp. 622–623. – volume: 330 start-page: 370 year: 2016 end-page: 384 ident: b77 article-title: LAIM discretization for multi-label data publication-title: Inform. Sci. – volume: 5 start-page: 172 year: 2004 ident: 10.1016/j.swevo.2024.101720_b48 article-title: Incremental genetic K-means algorithm and its application in gene expression data analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-172 – volume: vol. 4571 start-page: 174 year: 2007 ident: 10.1016/j.swevo.2024.101720_b70 article-title: A bounded index for cluster validity – volume: 179 start-page: 117 year: 2019 ident: 10.1016/j.swevo.2024.101720_b19 article-title: LEAC: an efficient library for clustering with evolutionary algorithms publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.05.008 – volume: 2 start-page: 267 issue: 3 year: 2014 ident: 10.1016/j.swevo.2024.101720_b12 article-title: A survey of clustering algorithms for big data: Taxonomy and empirical analysis publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2014.2330519 – start-page: 34 year: 1994 ident: 10.1016/j.swevo.2024.101720_b58 article-title: Genetic algorithm guided clustering – year: 1989 ident: 10.1016/j.swevo.2024.101720_b16 – volume: 46 start-page: 243 issue: 1 year: 2013 ident: 10.1016/j.swevo.2024.101720_b2 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.07.021 – volume: 11 start-page: 1938 issue: 2 year: 2011 ident: 10.1016/j.swevo.2024.101720_b50 article-title: Efficiency issues of evolutionary k-means publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.010 – volume: 5 start-page: 181 year: 1988 ident: 10.1016/j.swevo.2024.101720_b61 article-title: A study of standardization of variables in cluster analysis publication-title: J. Classification doi: 10.1007/BF01897163 – volume: 150 year: 2020 ident: 10.1016/j.swevo.2024.101720_b5 article-title: Improving spherical k-means for document clustering: Fast initialization, sparse centroid projection, and efficient cluster labeling publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113288 – volume: 13 start-page: 841 issue: 8 year: 1991 ident: 10.1016/j.swevo.2024.101720_b72 article-title: A validity measure for fuzzy clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.85677 – volume: 4 start-page: 95 issue: 1 year: 1974 ident: 10.1016/j.swevo.2024.101720_b69 article-title: Well-separated clusters and optimal fuzzy partitions publication-title: J. Cybern. doi: 10.1080/01969727408546059 – ident: 10.1016/j.swevo.2024.101720_b38 doi: 10.1109/ICDM.2001.989517 – year: 2020 ident: 10.1016/j.swevo.2024.101720_b4 article-title: Robust entropy-based symmetric regularized picture fuzzy clustering for image segmentation publication-title: Digit. Signal Process. – volume: 47 start-page: 61:1 issue: 4 year: 2015 ident: 10.1016/j.swevo.2024.101720_b23 article-title: A survey of multiobjective evolutionary clustering publication-title: ACM Comput. Surv. doi: 10.1145/2742642 – volume: 41 start-page: 267 issue: 5 year: 2020 ident: 10.1016/j.swevo.2024.101720_b25 article-title: Benchmarking the clustering performances of evolutionary algorithms: A case study on varying data size publication-title: IRBM doi: 10.1016/j.irbm.2020.06.002 – volume: 40 start-page: 547 issue: 9 year: 1997 ident: 10.1016/j.swevo.2024.101720_b51 article-title: Genetic algorithms for large-scale clustering problems publication-title: Comput. J. doi: 10.1093/comjnl/40.9.547 – volume: 35 start-page: 1197 issue: 6 year: 2002 ident: 10.1016/j.swevo.2024.101720_b54 article-title: Genetic clustering for automatic evolution of clusters and application to image classification publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(01)00108-X – volume: 330 start-page: 370 year: 2016 ident: 10.1016/j.swevo.2024.101720_b77 article-title: LAIM discretization for multi-label data publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.10.032 – volume: 112 start-page: 263 year: 2018 ident: 10.1016/j.swevo.2024.101720_b64 article-title: A new clustering validity index for arbitrary shape of clusters publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.08.005 – volume: Vol. 1950 year: 2021 ident: 10.1016/j.swevo.2024.101720_b18 article-title: Class schedule generation using evolutionary algorithms – volume: Vol. 1 start-page: 77 year: 2004 ident: 10.1016/j.swevo.2024.101720_b56 article-title: A hybrid algorithm for k-medoid clustering of large data sets – volume: vol. 2807 start-page: 43 year: 2003 ident: 10.1016/j.swevo.2024.101720_b37 article-title: Document clustering into an unknown number of clusters using a genetic algorithm – volume: 134 year: 2020 ident: 10.1016/j.swevo.2024.101720_b8 article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.104335 – volume: 33 start-page: 1251 issue: 7 year: 2000 ident: 10.1016/j.swevo.2024.101720_b35 article-title: A genetic clustering algorithm for data with non-spherical-shape clusters publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00105-3 – volume: 7 start-page: 205 issue: 2 year: 2004 ident: 10.1016/j.swevo.2024.101720_b68 article-title: A new cluster validity measure and its application to image compression publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-004-0218-1 – volume: 282 start-page: 647 issue: 3 year: 1993 ident: 10.1016/j.swevo.2024.101720_b43 article-title: On k-medoid clustering of large data sets with the aid of a genetic algorithm: background, feasiblity and comparison publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(93)80130-D – volume: 490 start-page: 673 year: 2018 ident: 10.1016/j.swevo.2024.101720_b10 article-title: Palaeobiodiversity research based on stable isotopes: Correction of the sea spray effect on bone carbonate 13C and 18o by Gaussian mixture model clustering publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/j.palaeo.2017.11.057 – volume: 64 start-page: 549 year: 2016 ident: 10.1016/j.swevo.2024.101720_b40 article-title: A new index for clustering validation with overlapped clusters publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.08.021 – volume: 16 start-page: 1 year: 2014 ident: 10.1016/j.swevo.2024.101720_b21 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.11.003 – volume: 29 start-page: 433 issue: 3 year: 1999 ident: 10.1016/j.swevo.2024.101720_b47 article-title: Genetic K-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/3477.764879 – volume: 176 start-page: 1898 issue: 13 year: 2006 ident: 10.1016/j.swevo.2024.101720_b45 article-title: Evolving clusters in gene-expression data publication-title: Inform. Sci. doi: 10.1016/j.ins.2005.07.015 – volume: 33 start-page: 1455 issue: 9 year: 2000 ident: 10.1016/j.swevo.2024.101720_b52 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00137-5 – start-page: 754 year: 2018 ident: 10.1016/j.swevo.2024.101720_b73 article-title: Exploring the impact of optimal clusters on cluster purity – volume: 18 start-page: 36 issue: 1 year: 2014 ident: 10.1016/j.swevo.2024.101720_b27 article-title: Large-scale experimental evaluation of cluster representations for multiobjective evolutionary clustering publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281513 – volume: 146 start-page: 221 issue: 1–4 year: 2002 ident: 10.1016/j.swevo.2024.101720_b53 article-title: An evolutionary technique based on K-means algorithm for optimal clustering in RN publication-title: Inf. Sci. Appl. doi: 10.1016/S0020-0255(02)00208-6 – volume: 7 start-page: 15 issue: 1 year: 2003 ident: 10.1016/j.swevo.2024.101720_b44 article-title: A genetic algorithm for cluster analysis publication-title: Intell. Data Anal. doi: 10.3233/IDA-2003-7103 – ident: 10.1016/j.swevo.2024.101720_b33 doi: 10.1109/ICWR51868.2021.9443113 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.swevo.2024.101720_b11 article-title: Data clustering: A review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – volume: 32 start-page: 49 year: 2017 ident: 10.1016/j.swevo.2024.101720_b24 article-title: A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.06.004 – volume: 9 start-page: 113 issue: 2 year: 2003 ident: 10.1016/j.swevo.2024.101720_b66 article-title: Self-adaptive genetic algorithm for clustering publication-title: J. Heuristics doi: 10.1023/A:1022521428870 – volume: 36 start-page: 42 issue: 1 year: 2011 ident: 10.1016/j.swevo.2024.101720_b76 article-title: GNU parallel - the command-line power tool publication-title: Login: USENIX Mag. – volume: 7 year: 2020 ident: 10.1016/j.swevo.2024.101720_b31 article-title: Euclidean, manhattan and Minkowski distance methods for clustering algorithms publication-title: Int. J. Sci. Res. Sci. Eng. Technol. – volume: 42 start-page: 1210 issue: 7 year: 2009 ident: 10.1016/j.swevo.2024.101720_b60 article-title: A genetic algorithm with gene rearrangement for K-means clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.11.006 – volume: 28 start-page: 2173 issue: 8 year: 2016 ident: 10.1016/j.swevo.2024.101720_b65 article-title: Set matching measures for external cluster validity publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2551240 – volume: 7 start-page: 33 issue: 1 year: 2016 ident: 10.1016/j.swevo.2024.101720_b6 article-title: Application of genetic algorithm and back propagation neural network for effective personalize web search-based on clustered query sessions publication-title: Int. J. Appl. Evol. Comput. doi: 10.4018/IJAEC.2016010103 – volume: 18 start-page: 20 issue: 1 year: 2014 ident: 10.1016/j.swevo.2024.101720_b28 article-title: Survey of multiobjective evolutionary algorithms for data mining: Part II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2290082 – ident: 10.1016/j.swevo.2024.101720_b49 doi: 10.1145/967900.968029 – volume: 31 start-page: 120 issue: 1 year: 2001 ident: 10.1016/j.swevo.2024.101720_b55 article-title: Nonparametric genetic clustering: Comparison of validity indices publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/5326.923275 – volume: 184 year: 2021 ident: 10.1016/j.swevo.2024.101720_b9 article-title: Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2020.104203 – volume: 54 year: 2020 ident: 10.1016/j.swevo.2024.101720_b79 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100665 – ident: 10.1016/j.swevo.2024.101720_b67 – volume: 176 start-page: 118 year: 2020 ident: 10.1016/j.swevo.2024.101720_b7 article-title: Multidimensional medical data modeling based on fuzzy cognitive maps and k-means clustering publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.08.013 – volume: 80 start-page: 8091 year: 2021 ident: 10.1016/j.swevo.2024.101720_b26 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-10139-6 – volume: 232 year: 2023 ident: 10.1016/j.swevo.2024.101720_b78 article-title: Nearest neighbor-based approaches for multi-instance multi-label classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120876 – start-page: 281 year: 1967 ident: 10.1016/j.swevo.2024.101720_b14 article-title: Some methods for classification and analysis of multivariate observations – start-page: 911 year: 2010 ident: 10.1016/j.swevo.2024.101720_b63 article-title: Understanding of internal clustering validation measures – year: 1992 ident: 10.1016/j.swevo.2024.101720_b17 – volume: 81 start-page: 49 year: 2012 ident: 10.1016/j.swevo.2024.101720_b42 article-title: A two-stage genetic algorithm for automatic clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.11.001 – volume: 92 start-page: 77 year: 2014 ident: 10.1016/j.swevo.2024.101720_b71 article-title: WB-index: A sum-of-squares based index for cluster validity publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2014.07.008 – start-page: 1776 year: 2006 ident: 10.1016/j.swevo.2024.101720_b41 article-title: Towards a fast evolutionary algorithm for clustering – volume: 39 start-page: 133 issue: 2 year: 2009 ident: 10.1016/j.swevo.2024.101720_b22 article-title: A survey of evolutionary algorithms for clustering publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2008.2007252 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 10.1016/j.swevo.2024.101720_b20 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 71 start-page: 608 year: 2018 ident: 10.1016/j.swevo.2024.101720_b13 article-title: An effective partitional clustering algorithm based on new clustering validity index publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.026 – volume: 39 start-page: 9695 issue: 10 year: 2012 ident: 10.1016/j.swevo.2024.101720_b29 article-title: A new grouping genetic algorithm for clustering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.149 – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.swevo.2024.101720_b75 article-title: Cross-validation approach to evaluate clustering algorithms: An experimental study using multi-label datasets publication-title: SN Comput. Sci. doi: 10.1007/s42979-020-00283-z – ident: 10.1016/j.swevo.2024.101720_b32 doi: 10.1109/IICSPI48186.2019.9095977 – volume: 34 start-page: 415 issue: 2 year: 2001 ident: 10.1016/j.swevo.2024.101720_b36 article-title: A genetic approach to the automatic clustering problem publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00005-4 – volume: 48 start-page: 4743 issue: 12 year: 2018 ident: 10.1016/j.swevo.2024.101720_b46 article-title: K-means properties on six clustering benchmark datasets publication-title: Appl. Intell. doi: 10.1007/s10489-018-1238-7 – year: 2020 ident: 10.1016/j.swevo.2024.101720_b1 – volume: 10 start-page: 191 issue: 2 year: 1984 ident: 10.1016/j.swevo.2024.101720_b30 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 188 year: 2020 ident: 10.1016/j.swevo.2024.101720_b34 article-title: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105018 – volume: 17 start-page: 107 issue: 2–3 year: 2001 ident: 10.1016/j.swevo.2024.101720_b39 article-title: On clustering validation techniques publication-title: J. Intell. Inf. Syst. doi: 10.1023/A:1012801612483 – volume: 17 start-page: 825 issue: 8 year: 1996 ident: 10.1016/j.swevo.2024.101720_b57 article-title: In search of optimal clusters using genetic algorithms publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(96)00043-8 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.swevo.2024.101720_b74 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 110 year: 2022 ident: 10.1016/j.swevo.2024.101720_b3 article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104743 – year: 2006 ident: 10.1016/j.swevo.2024.101720_b62 – volume: 21 start-page: 61 issue: 1 year: 2000 ident: 10.1016/j.swevo.2024.101720_b59 article-title: Genetic algorithm with deterministic crossover for vector quantization publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(99)00133-6 – start-page: 192 year: 2006 ident: 10.1016/j.swevo.2024.101720_b15 article-title: An improved hybrid genetic clustering algorithm |
| SSID | ssj0000602559 |
| Score | 2.379146 |
| Snippet | Clustering, an unsupervised learning technique, aims to group patterns into clusters where similar patterns are grouped together, while dissimilar ones are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101720 |
| SubjectTerms | Clustering Experimental study Genetic algorithms |
| Title | A survey of genetic algorithms for clustering: Taxonomy and empirical analysis |
| URI | https://dx.doi.org/10.1016/j.swevo.2024.101720 |
| Volume | 91 |
| WOSCitedRecordID | wos001324365800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagy4ELb8SygHzgtqRqY8dx9lbQIkCoQmxZVVwi23WWrLpplaTd_nzGj6Qpiyr2wCWqUsd5zKeZ8XjmG4TecprIiCU8kFlEA5oQFkjCWZAQlWkwV1zbbPfzr_F4zKfT5JuPKlW2nUBcFHyzSZb_VdRwDoRtSmdvIe52UjgBv0HocASxw_GfBD86rlblWtudcxikLSPr_GJR5vUvx75wrOYrw4_ga50nYmMrG-w-gr5a5qVnEHB0JV339exalK6nhl77lzBZd8q2htjZ0_9u-tRUwXttyBkKZ-DKTrXJT5GVLqR7ped5axvOrQ20f5xpsLB1bnfyh0U3OhHSTqaHVWIhLCkD8AJ3NK7rz-VVptEJth7upjZ3gYXLfnUNL9U30_e3o3e5s_-waW2mYZPEdpnaSVIzSeomuYsOwjhKeA8djD6fTr-0obkBswst05awefqGr8pmBt54nL_7NB0_ZfIIPfALDDxywHiM7ujiCXrYNO_AXpc_ReMRdjjBiwx7nOAtTjDgBG9xcoIblGCQPm5RghuUPEM_Pp5OPnwKfHONQIHXUgdCE5HMqGHoG4RCai0zypQcxoJTLWREMkpoSLOQgYeuEiJj00QEFHYoOVEzRp6jXrEo9AuE1VDP6GA2kIqFNFLa-IxgCMHx0yJjXByisPk8qfLM86YByjzdI51D9K69aOmIV_YPZ813T73v6HzCFMC078KXt7vPEbq_hfkr1KvLlX6N7ql1nVflG4-k31Q4kfM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+genetic+algorithms+for+clustering%3A+Taxonomy+and+empirical+analysis&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Robles-Berumen%2C+Hermes&rft.au=Zafra%2C+Amelia&rft.au=Ventura%2C+Sebasti%C3%A1n&rft.date=2024-12-01&rft.issn=2210-6502&rft.volume=91&rft.spage=101720&rft_id=info:doi/10.1016%2Fj.swevo.2024.101720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2024_101720 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |