Rethinking PCA for Modern Data Sets: Theory, Algorithms, and Applications [Scanning the Issue]
The papers in this special issue introduce the reader to the theory, algorithms, and applications of principal component analysis (PCA) and its many extensions. The aim of PCA is to reduce the dimensionality of multivariate data while preserving as much of the relevant information as possible. It is...
Uloženo v:
| Vydáno v: | Proceedings of the IEEE Ročník 106; číslo 8; s. 1274 - 1276 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0018-9219, 1558-2256 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The papers in this special issue introduce the reader to the theory, algorithms, and applications of principal component analysis (PCA) and its many extensions. The aim of PCA is to reduce the dimensionality of multivariate data while preserving as much of the relevant information as possible. It is often the first step in various types of exploratory data analysis, predictive modeling, and classification and clustering tasks, and finds applications in biomedical imaging, computer vision, process fault detection, recommendation systems’ design, and many more domains. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9219 1558-2256 |
| DOI: | 10.1109/JPROC.2018.2853498 |