Ensemble prediction-based dynamic robust multi-objective optimization methods

Many real-world multi-objective optimization problems are subject to environmental changes over time, resulting in changing Pareto-optima. Wide studies on solving dynamic multi-objective optimization problems have so far concentrated on tracking moving Pareto-optima as soon as possible. In practice,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Swarm and evolutionary computation Ročník 48; s. 156 - 171
Hlavní autoři: Guo, Yinan, Yang, Huan, Chen, Meirong, Cheng, Jian, Gong, Dunwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2019
Témata:
ISSN:2210-6502
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many real-world multi-objective optimization problems are subject to environmental changes over time, resulting in changing Pareto-optima. Wide studies on solving dynamic multi-objective optimization problems have so far concentrated on tracking moving Pareto-optima as soon as possible. In practice, however, a new solution every time the environmental change may be different from the previous optima, causing the expensive switching-cost. To this end, dynamic robust multi-objective optimization method is developed to find robust Pareto-optima over time whose performance is acceptable for the current and subsequently changed environments. With the purpose of measuring the robustness of a candidate, its fitness values in the subsequent environments are estimated by ensemble prediction methods constructed by moving average(MA), autoregressive(AR), and single exponential smoothing(SES). MA-, SES- and AR-based sub-prediction models are synthesized by the weight sum. The weights can be the pre-set constant or the binary/real number adjusted in terms of the prediction error. To examine the performance of the developed algorithm, the proposed prediction strategies are compared with three single prediction methods for 11 dynamic benchmark functions. The experimental results indicate that ensemble prediction methods have the better robustness than the single prediction models and can effectively tackle dynamic robust multi-objective optimization problems.
AbstractList Many real-world multi-objective optimization problems are subject to environmental changes over time, resulting in changing Pareto-optima. Wide studies on solving dynamic multi-objective optimization problems have so far concentrated on tracking moving Pareto-optima as soon as possible. In practice, however, a new solution every time the environmental change may be different from the previous optima, causing the expensive switching-cost. To this end, dynamic robust multi-objective optimization method is developed to find robust Pareto-optima over time whose performance is acceptable for the current and subsequently changed environments. With the purpose of measuring the robustness of a candidate, its fitness values in the subsequent environments are estimated by ensemble prediction methods constructed by moving average(MA), autoregressive(AR), and single exponential smoothing(SES). MA-, SES- and AR-based sub-prediction models are synthesized by the weight sum. The weights can be the pre-set constant or the binary/real number adjusted in terms of the prediction error. To examine the performance of the developed algorithm, the proposed prediction strategies are compared with three single prediction methods for 11 dynamic benchmark functions. The experimental results indicate that ensemble prediction methods have the better robustness than the single prediction models and can effectively tackle dynamic robust multi-objective optimization problems.
Author Guo, Yinan
Yang, Huan
Chen, Meirong
Gong, Dunwei
Cheng, Jian
Author_xml – sequence: 1
  givenname: Yinan
  surname: Guo
  fullname: Guo, Yinan
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Huan
  surname: Yang
  fullname: Yang, Huan
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 3
  givenname: Meirong
  surname: Chen
  fullname: Chen, Meirong
  email: cmrzl@cumt.edu.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 4
  givenname: Jian
  surname: Cheng
  fullname: Cheng, Jian
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 5
  givenname: Dunwei
  surname: Gong
  fullname: Gong, Dunwei
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNqFkLtOAzEQRV0EiRDyBTT7A7t47H0WFCgKDymIBmrLj1nh1e46sp2g8PVsEioKmGaaOaN7zxWZjW5EQm6AZkChvO2y8Il7lzEKTUZ5RqGYkTljQNOyoOySLEPo6DQlZUXRzMnLegw4qB6TrUdjdbRuTJUMaBJzGOVgdeKd2oWYDLs-2tSpDqejPSZuG-1gv-SRSAaMH86Ea3LRyj7g8mcvyPvD-m31lG5eH59X95tUc8pjKk1RKGggR6ibXLZQ6VzxWrMaSkDFQRUtlRVrqGwU43VlSgM5l6VRKpem5QvSnP9q70Lw2Apt4ylJ9NL2Aqg46hCdOOkQRx2CcjHpmFj-i916O0h_-Ie6O1M41dpb9CJoi6OenPlJiDDO_sl_Axq2gQo
CitedBy_id crossref_primary_10_1016_j_asoc_2020_107027
crossref_primary_10_1016_j_asoc_2020_106733
crossref_primary_10_1016_j_swevo_2020_100829
crossref_primary_10_3390_math9040420
crossref_primary_10_1007_s10489_020_01861_7
crossref_primary_10_1007_s00521_022_07023_9
crossref_primary_10_1016_j_eswa_2021_116126
crossref_primary_10_1016_j_artmed_2021_102228
crossref_primary_10_1109_TEVC_2022_3222844
crossref_primary_10_1007_s10489_022_03934_1
crossref_primary_10_1016_j_swevo_2020_100667
crossref_primary_10_1109_TCYB_2022_3159584
crossref_primary_10_1016_j_ins_2022_01_008
crossref_primary_10_1016_j_asoc_2021_107838
crossref_primary_10_1109_TNNLS_2024_3397393
crossref_primary_10_1016_j_compbiomed_2022_105536
crossref_primary_10_1186_s12859_022_05091_1
crossref_primary_10_1016_j_swevo_2023_101409
crossref_primary_10_1016_j_asoc_2021_108094
crossref_primary_10_1016_j_swevo_2024_101621
crossref_primary_10_1109_TEVC_2023_3306017
crossref_primary_10_1109_TEVC_2019_2925358
crossref_primary_10_21303_2504_5695_2025_003762
crossref_primary_10_3390_math10193466
crossref_primary_10_1016_j_swevo_2020_100806
crossref_primary_10_1145_3524495
crossref_primary_10_1016_j_cie_2021_107523
crossref_primary_10_1007_s00521_020_05000_8
crossref_primary_10_1016_j_eswa_2022_118088
crossref_primary_10_1080_08839514_2023_2222257
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1186_s12873_023_00824_8
crossref_primary_10_1016_j_knosys_2020_105518
crossref_primary_10_1007_s00500_019_04365_w
crossref_primary_10_1109_TCSS_2023_3293331
crossref_primary_10_1016_j_asoc_2020_106160
crossref_primary_10_1109_TASE_2020_3011428
crossref_primary_10_1109_TETCI_2023_3251400
crossref_primary_10_1016_j_asoc_2021_107258
crossref_primary_10_1007_s40789_022_00516_x
crossref_primary_10_1016_j_swevo_2024_101693
crossref_primary_10_1016_j_ins_2023_03_111
crossref_primary_10_1002_aisy_202500172
crossref_primary_10_1016_j_engappai_2023_105944
crossref_primary_10_1109_TEVC_2023_3235196
crossref_primary_10_1109_TEVC_2023_3313689
crossref_primary_10_1016_j_asoc_2022_108493
crossref_primary_10_1016_j_asoc_2022_109622
crossref_primary_10_1016_j_swevo_2024_101566
crossref_primary_10_1016_j_swevo_2023_101420
crossref_primary_10_1016_j_ins_2024_120999
crossref_primary_10_1038_s41598_021_95159_4
crossref_primary_10_1016_j_ins_2022_05_050
crossref_primary_10_1109_TEVC_2019_2951217
crossref_primary_10_1007_s40747_022_00889_1
crossref_primary_10_1016_j_eswa_2021_115620
crossref_primary_10_1016_j_future_2020_01_048
crossref_primary_10_1016_j_ins_2022_04_002
crossref_primary_10_1016_j_eswa_2022_116725
crossref_primary_10_1016_j_asoc_2020_106764
crossref_primary_10_1016_j_asoc_2022_109915
crossref_primary_10_1016_j_knosys_2021_107215
crossref_primary_10_1109_TCYB_2022_3174519
crossref_primary_10_1007_s40747_024_01656_0
crossref_primary_10_1016_j_knosys_2022_108640
crossref_primary_10_1007_s40747_022_00824_4
crossref_primary_10_1109_ACCESS_2020_3031498
crossref_primary_10_1109_TEVC_2022_3180590
crossref_primary_10_1016_j_swevo_2021_100872
crossref_primary_10_1016_j_knosys_2021_107224
crossref_primary_10_1155_2022_9924163
crossref_primary_10_1109_ACCESS_2020_2990500
crossref_primary_10_1155_2022_4418706
crossref_primary_10_1016_j_swevo_2023_101461
crossref_primary_10_1007_s40747_020_00232_6
crossref_primary_10_1016_j_ins_2021_03_066
crossref_primary_10_3390_min13030431
crossref_primary_10_1016_j_swevo_2021_100849
crossref_primary_10_1109_TETCI_2021_3079966
crossref_primary_10_1109_ACCESS_2020_2972631
crossref_primary_10_1038_s41598_023_41855_2
crossref_primary_10_1155_2019_8405961
crossref_primary_10_1016_j_asoc_2020_106641
crossref_primary_10_1038_s41598_021_99617_x
crossref_primary_10_1109_TFUZZ_2020_2979119
crossref_primary_10_1016_j_ins_2021_05_064
crossref_primary_10_3390_electronics12224609
crossref_primary_10_1016_j_knosys_2022_108343
crossref_primary_10_1016_j_jclepro_2021_126066
crossref_primary_10_1016_j_ijpe_2021_108315
crossref_primary_10_1016_j_swevo_2020_100795
crossref_primary_10_1016_j_swevo_2021_100974
crossref_primary_10_3390_pr12010189
crossref_primary_10_1016_j_asoc_2019_105981
crossref_primary_10_1016_j_swevo_2021_100975
crossref_primary_10_1016_j_asoc_2019_105988
crossref_primary_10_1016_j_eswa_2025_129304
crossref_primary_10_1016_j_apenergy_2023_120879
crossref_primary_10_1016_j_asoc_2022_108694
crossref_primary_10_1109_ACCESS_2021_3096877
crossref_primary_10_1109_TETCI_2021_3067104
Cites_doi 10.1016/j.asoc.2007.07.005
10.1109/TEVC.2003.810758
10.1109/TEVC.2008.925798
10.1109/TEVC.2013.2281535
10.1016/j.swevo.2016.12.005
10.1109/TEVC.2008.920671
10.1109/TEVC.2005.846356
10.1016/j.ins.2014.02.123
10.1016/j.swevo.2012.05.001
10.1109/TEVC.2007.892759
10.1007/s12293-012-0090-2
10.1109/TCBB.2017.2652453
10.1109/TEVC.2017.2669638
10.1109/TCYB.2016.2602561
10.1007/s12293-009-0026-7
10.1038/s41598-017-00416-0
10.1109/TEVC.2011.2180533
10.1109/TCYB.2013.2245892
10.1016/j.procs.2013.10.028
10.1016/j.swevo.2013.08.004
10.1109/TCBB.2017.2685320
10.1016/j.ejor.2017.03.048
10.1007/s00521-016-2572-5
10.1016/j.asoc.2017.08.004
10.1016/j.ins.2017.02.029
10.1109/MCI.2015.2471235
10.1109/TEVC.2004.831456
10.1016/j.swevo.2018.03.010
10.1109/TCYB.2014.2304475
10.1016/j.asoc.2017.05.008
10.1109/TEVC.2004.826067
10.1007/s00500-014-1477-4
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2019.03.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 171
ExternalDocumentID 10_1016_j_swevo_2019_03_015
S2210650218302712
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-ad55b1914e1894af17c4b38c28161eb31b5f0a7290a9b2387d6d143a6dbb4adf3
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473374800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Tue Nov 18 21:01:06 EST 2025
Sat Nov 29 05:44:58 EST 2025
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic multi-objective optimization problem
Ensemble prediction
Robust Pareto-optimum over time
Evolutionary algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-ad55b1914e1894af17c4b38c28161eb31b5f0a7290a9b2387d6d143a6dbb4adf3
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2019_03_015
crossref_primary_10_1016_j_swevo_2019_03_015
elsevier_sciencedirect_doi_10_1016_j_swevo_2019_03_015
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationTitle Swarm and evolutionary computation
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ruan, Yu, Zheng (bib15) 2017; 58
Jin, Branke (bib26) 2005; 9
Deb, Jain (bib47) 2014; 18
Xu, Zhang, Gong (bib6) 2018; 15
Gee, Tan, Alippi (bib24) 2017; 47
Guo, Ji, Ji (bib9) 2018
Goh, Tan (bib50) 2009
Yu, Jin, Tang (bib32) 2010
Helbig, Engelbrecht (bib8) 2014; 14
Nguyen, Yang, Branke (bib1) 2012; 6
Hatzakis, Wallace (bib37) 2006
Kundu, Biswas, Das (bib19) 2013
Zou, Li, Yang (bib20) 2019; 44
Farina, Deb, Amato (bib11) 2004; 8
Chen, Guo, Liu (bib36) 2015; 2015
Muruganantham, Zhao, Gee (bib38) 2013; 24
Guo, Chen, Fu (bib33) 2014
Coello, Pulido, Lechuga (bib45) 2004; 8
Zou, Li, Yang (bib13) 2017; 61
Salomon, Avigad, Fleming (bib17) 2014; 44
Wang, Tan (bib40) 2017
Koo, Goh, Tan (bib28) 2010; 2
Xu (bib43) 2005
Chen, Guo, Gong, Yang (bib44) 2017; 43
Guo, Zhang, Cheng (bib10) 2018; 30
Jin, Tang, Yu (bib34) 2013; 5
Zhang (bib2) 2008; 8
Fu, Sendhoff, Tang (bib35) 2013
Wu, Jin, Liu (bib30) 2015; 19
Zitzler, Thiele, Laumanns (bib52) 2003; 7
Zhou, Jin, Zhang (bib29) 2014; 44
Mavrovouniotis, Li, Yang (bib3) 2017; 33
Chen, Li, Yao (bib25) 2018; 22
Zhang, Gong, Sun, Guo (bib53) 2017 March 23; 7
Huang, Ding, Hao (bib31) 2017; 394
Guo, Cheng, Luo (bib4) 2018; 15
Mavrovouniotis, Li, Yang (bib21) 2017; 33
Liu, Zeng (bib27) 2013; 24
Zhang, Li (bib48) 2007; 11
Deb, Karthik (bib16) 2007
Yang (bib5) 2015
Nguyen, Yao (bib7) 2012; 16
Zitzler, Laumanns, Thiele (bib46) 2001
Nguyen, Yang, Branke (bib18) 2012; 6
Greeff, Engelbrecht (bib12) 2010
Raquel, Yao (bib22) 2013
Goh, Tan (bib23) 2009; 13
Wang, Guo, Gandomi (bib41) 2014; 274
Ren, Zhang, Suganthan (bib39) 2016; 11
Box, Jenkins, Reinsel (bib42) 1994
Li, Zhang (bib49) 2009; 13
Liu, Li, Mu (bib14) 2017; 261
Biswas, Das, Suganthan (bib51) 2014
Zitzler (10.1016/j.swevo.2019.03.015_bib46) 2001
Chen (10.1016/j.swevo.2019.03.015_bib25) 2018; 22
Yang (10.1016/j.swevo.2019.03.015_bib5) 2015
Deb (10.1016/j.swevo.2019.03.015_bib16) 2007
Zhou (10.1016/j.swevo.2019.03.015_bib29) 2014; 44
Ren (10.1016/j.swevo.2019.03.015_bib39) 2016; 11
Zhang (10.1016/j.swevo.2019.03.015_bib2) 2008; 8
Wu (10.1016/j.swevo.2019.03.015_bib30) 2015; 19
Greeff (10.1016/j.swevo.2019.03.015_bib12) 2010
Koo (10.1016/j.swevo.2019.03.015_bib28) 2010; 2
Jin (10.1016/j.swevo.2019.03.015_bib34) 2013; 5
Goh (10.1016/j.swevo.2019.03.015_bib23) 2009; 13
Guo (10.1016/j.swevo.2019.03.015_bib4) 2018; 15
Kundu (10.1016/j.swevo.2019.03.015_bib19) 2013
Zou (10.1016/j.swevo.2019.03.015_bib20) 2019; 44
Yu (10.1016/j.swevo.2019.03.015_bib32) 2010
Wang (10.1016/j.swevo.2019.03.015_bib40) 2017
Guo (10.1016/j.swevo.2019.03.015_bib10) 2018; 30
Raquel (10.1016/j.swevo.2019.03.015_bib22) 2013
Deb (10.1016/j.swevo.2019.03.015_bib47) 2014; 18
Zhang (10.1016/j.swevo.2019.03.015_bib53) 2017; 7
Nguyen (10.1016/j.swevo.2019.03.015_bib18) 2012; 6
Liu (10.1016/j.swevo.2019.03.015_bib14) 2017; 261
Huang (10.1016/j.swevo.2019.03.015_bib31) 2017; 394
Goh (10.1016/j.swevo.2019.03.015_bib50) 2009
Zou (10.1016/j.swevo.2019.03.015_bib13) 2017; 61
Li (10.1016/j.swevo.2019.03.015_bib49) 2009; 13
Jin (10.1016/j.swevo.2019.03.015_bib26) 2005; 9
Nguyen (10.1016/j.swevo.2019.03.015_bib7) 2012; 16
Chen (10.1016/j.swevo.2019.03.015_bib36) 2015; 2015
Nguyen (10.1016/j.swevo.2019.03.015_bib1) 2012; 6
Xu (10.1016/j.swevo.2019.03.015_bib6) 2018; 15
Zhang (10.1016/j.swevo.2019.03.015_bib48) 2007; 11
Wang (10.1016/j.swevo.2019.03.015_bib41) 2014; 274
Muruganantham (10.1016/j.swevo.2019.03.015_bib38) 2013; 24
Biswas (10.1016/j.swevo.2019.03.015_bib51) 2014
Helbig (10.1016/j.swevo.2019.03.015_bib8) 2014; 14
Hatzakis (10.1016/j.swevo.2019.03.015_bib37) 2006
Farina (10.1016/j.swevo.2019.03.015_bib11) 2004; 8
Zitzler (10.1016/j.swevo.2019.03.015_bib52) 2003; 7
Mavrovouniotis (10.1016/j.swevo.2019.03.015_bib21) 2017; 33
Ruan (10.1016/j.swevo.2019.03.015_bib15) 2017; 58
Salomon (10.1016/j.swevo.2019.03.015_bib17) 2014; 44
Gee (10.1016/j.swevo.2019.03.015_bib24) 2017; 47
Box (10.1016/j.swevo.2019.03.015_bib42) 1994
Liu (10.1016/j.swevo.2019.03.015_bib27) 2013; 24
Mavrovouniotis (10.1016/j.swevo.2019.03.015_bib3) 2017; 33
Coello (10.1016/j.swevo.2019.03.015_bib45) 2004; 8
Guo (10.1016/j.swevo.2019.03.015_bib33) 2014
Xu (10.1016/j.swevo.2019.03.015_bib43) 2005
Fu (10.1016/j.swevo.2019.03.015_bib35) 2013
Guo (10.1016/j.swevo.2019.03.015_bib9) 2018
Chen (10.1016/j.swevo.2019.03.015_bib44) 2017; 43
References_xml – year: 1994
  ident: bib42
  article-title: Time Series Analysis: Forecasting and Control
– volume: 6
  start-page: 1
  year: 2012
  end-page: 24
  ident: bib1
  article-title: Evolutionary dynamic optimization: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
– volume: 6
  start-page: 1
  year: 2012
  end-page: 24
  ident: bib18
  article-title: Evolutionary dynamic optimization: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
– start-page: 3192
  year: 2014
  end-page: 3199
  ident: bib51
  article-title: Evolutionary multiobjective optimization in dynamic environments: a set of novel benchmark functions
  publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: bib41
  article-title: Chaotic krill herd algorithm
  publication-title: Inf. Sci.
– volume: 44
  start-page: 2221
  year: 2014
  end-page: 2231
  ident: bib17
  article-title: Active robust optimization: enhancing robustness to uncertain environments
  publication-title: IEEE Trans. Cybern.
– start-page: 629
  year: 2015
  end-page: 649
  ident: bib5
  article-title: Evolutionary computation for dynamic optimization problems
  publication-title: Proceedings of the 2015th Conference on Genetic and Evolutionary Computation
– volume: 394
  start-page: 183
  year: 2017
  end-page: 197
  ident: bib31
  article-title: A multi-objective approach to robust optimization over time considering switching cost
  publication-title: Inf. Sci.
– volume: 9
  start-page: 303
  year: 2005
  end-page: 317
  ident: bib26
  article-title: Evolutionary optimization in uncertain environments-a survey
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1201
  year: 2006
  end-page: 1208
  ident: bib37
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach
  publication-title: Proceedings of the 8th Conference on Genetic and Evolutionary Computation
– start-page: 105
  year: 2010
  end-page: 123
  ident: bib12
  article-title: Dynamic multi-objective optimisation using PSO
  publication-title: Multi-Objective Swarm Intelligent Systems
– volume: 61
  start-page: 806
  year: 2017
  end-page: 818
  ident: bib13
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– start-page: 803
  year: 2007
  end-page: 817
  ident: bib16
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 24
  start-page: 66
  year: 2013
  end-page: 75
  ident: bib38
  article-title: Dynamic multiobjective optimization using evolutionary algorithm with Kalman filter
  publication-title: Procedia Comput. Sci.
– volume: 15
  start-page: 1891
  year: 2018
  end-page: 1903
  ident: bib4
  article-title: Robust dynamic multi-objective vehicle routing optimization method
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinform
– volume: 22
  start-page: 157
  year: 2018
  end-page: 171
  ident: bib25
  article-title: Dynamic multiobjectives optimization with a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 41
  year: 2016
  end-page: 53
  ident: bib39
  article-title: Ensemble classification and regression-recent developments, applications and future directions
  publication-title: IEEE Comput. Intell. Mag.
– volume: 14
  start-page: 31
  year: 2014
  end-page: 47
  ident: bib8
  article-title: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimisation problems
  publication-title: Swarm Evol. Comput.
– volume: 2
  start-page: 87
  year: 2010
  end-page: 110
  ident: bib28
  article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment
  publication-title: Memetic Comput.
– start-page: 1528
  year: 2014
  end-page: 1535
  ident: bib33
  article-title: Find robust solutions over time by two-layer multi-objective optimization method
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib48
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 247
  year: 2019
  end-page: 259
  ident: bib20
  article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model
  publication-title: Swarm Evol. Comput.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: bib49
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: bib11
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
– volume: 7
  start-page: 376
  year: 2017 March 23
  end-page: 386
  ident: bib53
  article-title: A PSO-based multi-objective multilabel feature selection method in classification
  publication-title: Sci. Rep.
– start-page: 1
  year: 2010
  end-page: 6
  ident: bib32
  article-title: Robust optimization over time a new perspective on dynamic optimization problems
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: bib23
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 3221
  year: 2015
  end-page: 3235
  ident: bib30
  article-title: A directed search strategy for evolutionary dynamic multiobjective optimization
  publication-title: Soft Comput.
– start-page: 33
  year: 2013
  end-page: 40
  ident: bib19
  article-title: Crowding-based local differential evolution with speciation-based memory archive for dynamic multimodal optimization
  publication-title: Proceedings of the 15th Conference on Genetic and Evolutionary Computation
– start-page: 1
  year: 2017
  end-page: 14
  ident: bib40
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Trans. Cybern.
– volume: 30
  start-page: 709
  year: 2018
  end-page: 722
  ident: bib10
  article-title: Interval multi-objective quantum-inspired cultural algorithms
  publication-title: Neural Comput. Appl.
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib45
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 5
  start-page: 3
  year: 2013
  end-page: 18
  ident: bib34
  article-title: A framework for finding robust optimal solutions over time
  publication-title: Memetic Comput.
– volume: 44
  start-page: 40
  year: 2014
  end-page: 53
  ident: bib29
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– year: 2005
  ident: bib43
  article-title: Statistical Forecasting and Decision-Making
– start-page: 85
  year: 2013
  end-page: 106
  ident: bib22
  article-title: Dynamic multi-objective optimization: a survey of the state-of-the-art
  publication-title: Evolutionary Computation for Dynamic Optimization Problems
– year: 2009
  ident: bib50
  article-title: Evolutionary Multi-Objective Optimization in Uncertain Environments - Issues and Algorithms
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib47
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 16
  start-page: 769
  year: 2012
  end-page: 786
  ident: bib7
  article-title: Continuous dynamic constrained optimizationThe challenges
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 4223
  year: 2017
  end-page: 4234
  ident: bib24
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach
  publication-title: IEEE Trans. Cybern.
– volume: 33
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib3
  article-title: A survey of swarm intelligence for dynamic optimization: algorithms and applications
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2018
  end-page: 16
  ident: bib9
  article-title: Firework-based software project scheduling method considering the learning and forgetting effect
  publication-title: Soft Comput.
– volume: 58
  start-page: 631
  year: 2017
  end-page: 647
  ident: bib15
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 261
  start-page: 1028
  year: 2017
  end-page: 1051
  ident: bib14
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: Eur. J. Oper. Res.
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib52
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
– volume: 33
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib21
  article-title: A survey of swarm intelligence for dynamic optimization: algorithms and applications
  publication-title: Swarm Evol. Comput.
– volume: 43
  start-page: 2014
  year: 2017
  end-page: 2032
  ident: bib44
  article-title: A novel dynamic multi-objective robust evolutionary optimization method
  publication-title: Acta Autom. Sin.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib36
  article-title: The evolutionary algorithm to find robust Pareto-optimal solutions over time
  publication-title: Math. Probl Eng.
– volume: 15
  start-page: 1877
  year: 2018
  end-page: 1890
  ident: bib6
  article-title: Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinform
– start-page: 103
  year: 2001
  ident: bib46
  article-title: SPEA2: Improving the Strength Pareto Evolutionary Algorithm
– start-page: 616
  year: 2013
  end-page: 625
  ident: bib35
  article-title: Finding robust solutions to dynamic optimization problems
  publication-title: European Conference on the Applications of Evolutionary Computation
– volume: 8
  start-page: 959
  year: 2008
  end-page: 971
  ident: bib2
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 1571
  year: 2013
  end-page: 1588
  ident: bib27
  article-title: Memory enhanced dynamic multi-objective evolutionary algorithm based on decomposition
  publication-title: Ruan Jian Xue Bao/J. Software
– start-page: 803
  year: 2007
  ident: 10.1016/j.swevo.2019.03.015_bib16
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling
– volume: 8
  start-page: 959
  issue: 2
  year: 2008
  ident: 10.1016/j.swevo.2019.03.015_bib2
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.07.005
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.swevo.2019.03.015_bib52
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– start-page: 1
  year: 2010
  ident: 10.1016/j.swevo.2019.03.015_bib32
  article-title: Robust optimization over time a new perspective on dynamic optimization problems
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.swevo.2019.03.015_bib49
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2019.03.015_bib47
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 33
  start-page: 1
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib21
  article-title: A survey of swarm intelligence for dynamic optimization: algorithms and applications
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.12.005
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.swevo.2019.03.015_bib23
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– volume: 9
  start-page: 303
  issue: 3
  year: 2005
  ident: 10.1016/j.swevo.2019.03.015_bib26
  article-title: Evolutionary optimization in uncertain environments-a survey
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.846356
– year: 2005
  ident: 10.1016/j.swevo.2019.03.015_bib43
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.swevo.2019.03.015_bib41
  article-title: Chaotic krill herd algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.123
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.swevo.2019.03.015_bib1
  article-title: Evolutionary dynamic optimization: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.05.001
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2019.03.015_bib48
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 5
  start-page: 3
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2019.03.015_bib34
  article-title: A framework for finding robust optimal solutions over time
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-012-0090-2
– volume: 15
  start-page: 1877
  issue: 6
  year: 2018
  ident: 10.1016/j.swevo.2019.03.015_bib6
  article-title: Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2017.2652453
– start-page: 85
  year: 2013
  ident: 10.1016/j.swevo.2019.03.015_bib22
  article-title: Dynamic multi-objective optimization: a survey of the state-of-the-art
– volume: 22
  start-page: 157
  issue: 1
  year: 2018
  ident: 10.1016/j.swevo.2019.03.015_bib25
  article-title: Dynamic multiobjectives optimization with a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669638
– volume: 47
  start-page: 4223
  issue: 12
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib24
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2602561
– volume: 2015
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.swevo.2019.03.015_bib36
  article-title: The evolutionary algorithm to find robust Pareto-optimal solutions over time
  publication-title: Math. Probl Eng.
– start-page: 103
  year: 2001
  ident: 10.1016/j.swevo.2019.03.015_bib46
– volume: 2
  start-page: 87
  issue: 2
  year: 2010
  ident: 10.1016/j.swevo.2019.03.015_bib28
  article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-009-0026-7
– volume: 7
  start-page: 376
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib53
  article-title: A PSO-based multi-objective multilabel feature selection method in classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00416-0
– volume: 16
  start-page: 769
  issue: 6
  year: 2012
  ident: 10.1016/j.swevo.2019.03.015_bib7
  article-title: Continuous dynamic constrained optimizationThe challenges
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2180533
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2019.03.015_bib29
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– volume: 24
  start-page: 66
  year: 2013
  ident: 10.1016/j.swevo.2019.03.015_bib38
  article-title: Dynamic multiobjective optimization using evolutionary algorithm with Kalman filter
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.10.028
– start-page: 105
  year: 2010
  ident: 10.1016/j.swevo.2019.03.015_bib12
  article-title: Dynamic multi-objective optimisation using PSO
– volume: 14
  start-page: 31
  year: 2014
  ident: 10.1016/j.swevo.2019.03.015_bib8
  article-title: Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimisation problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.08.004
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.swevo.2019.03.015_bib18
  article-title: Evolutionary dynamic optimization: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.05.001
– start-page: 616
  year: 2013
  ident: 10.1016/j.swevo.2019.03.015_bib35
  article-title: Finding robust solutions to dynamic optimization problems
– volume: 15
  start-page: 1891
  issue: 6
  year: 2018
  ident: 10.1016/j.swevo.2019.03.015_bib4
  article-title: Robust dynamic multi-objective vehicle routing optimization method
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2017.2685320
– volume: 261
  start-page: 1028
  issue: 3
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib14
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.03.048
– volume: 30
  start-page: 709
  issue: 3
  year: 2018
  ident: 10.1016/j.swevo.2019.03.015_bib10
  article-title: Interval multi-objective quantum-inspired cultural algorithms
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2572-5
– volume: 61
  start-page: 806
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib13
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.004
– start-page: 33
  year: 2013
  ident: 10.1016/j.swevo.2019.03.015_bib19
  article-title: Crowding-based local differential evolution with speciation-based memory archive for dynamic multimodal optimization
– start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib40
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Trans. Cybern.
– start-page: 3192
  year: 2014
  ident: 10.1016/j.swevo.2019.03.015_bib51
  article-title: Evolutionary multiobjective optimization in dynamic environments: a set of novel benchmark functions
– start-page: 1
  year: 2018
  ident: 10.1016/j.swevo.2019.03.015_bib9
  article-title: Firework-based software project scheduling method considering the learning and forgetting effect
  publication-title: Soft Comput.
– start-page: 1201
  year: 2006
  ident: 10.1016/j.swevo.2019.03.015_bib37
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach
– volume: 394
  start-page: 183
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib31
  article-title: A multi-objective approach to robust optimization over time considering switching cost
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.029
– volume: 11
  start-page: 41
  issue: 1
  year: 2016
  ident: 10.1016/j.swevo.2019.03.015_bib39
  article-title: Ensemble classification and regression-recent developments, applications and future directions
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2015.2471235
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.swevo.2019.03.015_bib11
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– start-page: 629
  year: 2015
  ident: 10.1016/j.swevo.2019.03.015_bib5
  article-title: Evolutionary computation for dynamic optimization problems
– volume: 33
  start-page: 1
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib3
  article-title: A survey of swarm intelligence for dynamic optimization: algorithms and applications
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.12.005
– volume: 44
  start-page: 247
  year: 2019
  ident: 10.1016/j.swevo.2019.03.015_bib20
  article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.010
– volume: 44
  start-page: 2221
  issue: 11
  year: 2014
  ident: 10.1016/j.swevo.2019.03.015_bib17
  article-title: Active robust optimization: enhancing robustness to uncertain environments
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2304475
– volume: 24
  start-page: 1571
  issue: 7
  year: 2013
  ident: 10.1016/j.swevo.2019.03.015_bib27
  article-title: Memory enhanced dynamic multi-objective evolutionary algorithm based on decomposition
  publication-title: Ruan Jian Xue Bao/J. Software
– volume: 58
  start-page: 631
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib15
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.008
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.swevo.2019.03.015_bib45
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826067
– volume: 19
  start-page: 3221
  issue: 11
  year: 2015
  ident: 10.1016/j.swevo.2019.03.015_bib30
  article-title: A directed search strategy for evolutionary dynamic multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1477-4
– year: 1994
  ident: 10.1016/j.swevo.2019.03.015_bib42
– volume: 43
  start-page: 2014
  issue: 11
  year: 2017
  ident: 10.1016/j.swevo.2019.03.015_bib44
  article-title: A novel dynamic multi-objective robust evolutionary optimization method
  publication-title: Acta Autom. Sin.
– start-page: 1528
  year: 2014
  ident: 10.1016/j.swevo.2019.03.015_bib33
  article-title: Find robust solutions over time by two-layer multi-objective optimization method
– year: 2009
  ident: 10.1016/j.swevo.2019.03.015_bib50
SSID ssj0000602559
Score 2.4983656
Snippet Many real-world multi-objective optimization problems are subject to environmental changes over time, resulting in changing Pareto-optima. Wide studies on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms Dynamic multi-objective optimization problem
Ensemble prediction
Evolutionary algorithm
Robust Pareto-optimum over time
Title Ensemble prediction-based dynamic robust multi-objective optimization methods
URI https://dx.doi.org/10.1016/j.swevo.2019.03.015
Volume 48
WOSCitedRecordID wos000473374800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbQxoELgwFigyEfdiue8sOJ7eM0dQzEJqQNqTtFduwiqi2tknbbn897sdNlLZoAiUtUWXXd2J-ePz-_9z5C9oEDGKETzoyzjsEOnTMJtJVJJzjwZdiSbKta8lWcncnRSH0LN_hNKycgqkre3anZf11qaIPFxtTZv1ju5Y9CA3yGRYcnLDs8_2jhh1XjrjEfalbjJQwOxHCvsgPr1ecH9dQsmrmPJWRTM_E2bzAF63Ed0jKDsnTT567nt7r2ghruJrwBhtyVrS7Egwv9T4vWAXuJUTZLsxIc0yeL-7ajkBpy6jDZ7ke_2ccJd9gNbgnMhJJ9t8R6vgyatAQOmAw44QP76yttBgMaZ3lvL469PMuamfceh8lBcwsvjPF5vlKtTwxdqZ99joPimDGWOhOoSL2ZiEyBCdw8_DwcfVm65KK8PWChHGH3P7s6VW1E4Npov-cyPX5y8YI8DwcLeugB8ZI8cdU22epEO2iw4a_IaYcPuooPGvBBPT7oCj5oHx804OM1-X48vDg6YUFTg5VAVuZM2ywzWNPPxVJxPY5FyU0qy0QC9XcmjU02jjScuCKtDNA5YXMLlFrn1hiu7Th9QzaqaeXeEppxA-zaRZorznWaqtKIsbS5tk7FJlc7JOlmpyhDwXnUPbkqusjCSdFOaYFTWkRpAVO6Qz4uO818vZXHv553014EyuipYAFQeazj7r92fEee3cP9PdmY1wu3R56WN_OfTf0hQOoXEPKUvQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+prediction-based+dynamic+robust+multi-objective+optimization+methods&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Guo%2C+Yinan&rft.au=Yang%2C+Huan&rft.au=Chen%2C+Meirong&rft.au=Cheng%2C+Jian&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=48&rft.spage=156&rft.epage=171&rft_id=info:doi/10.1016%2Fj.swevo.2019.03.015&rft.externalDocID=S2210650218302712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon