Multi-strategy dynamic multi-objective evolutionary algorithm with hybrid environmental change responses
A key issue in evolutionary algorithms for dynamic multi-objective optimization problems (DMOPs) is how to detect and response environmental changes. Most existing evolutionary algorithms use a single strategy for this purpose. However, single strategy is not always effective. In this paper, we prop...
Saved in:
| Published in: | Swarm and evolutionary computation Vol. 82; p. 101356 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2023
|
| Subjects: | |
| ISSN: | 2210-6502 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A key issue in evolutionary algorithms for dynamic multi-objective optimization problems (DMOPs) is how to detect and response environmental changes. Most existing evolutionary algorithms use a single strategy for this purpose. However, single strategy is not always effective. In this paper, we propose a multi-strategy dynamic multi-objective evolutionary algorithm with hybrid change response (MDMEA-HCR) to solve DMOPs. Our proposed algorithm not only provides a new way for handling dynamics in DMOPs, but also introduce a static multi-objective optimizer based on a multi-strategy evolutionary operator. More specifically, we propose a hybrid environmental change response mechanism to integrate several strategies for prediction and response adjustments. When the environment changes, the hybrid environmental change response strategy makes an initial response to the change, and then the response adjustment mechanism improves the quality of the response population and adjusts its optimization direction to achieve fast tracking of Pareto optimal sets and Pareto optimal fronts in the new environment. During the static optimal optimization phase, a variable neighbor-based multi-strategy evolutionary operator is used to generate new solutions, it is very helpful for both convergence and diversity preservation. MDMEA-HCR has been compared with some other advanced DMOEAs on 31 test instances. Experimental results show that MDMEA-HCR performs better than others on most instances. |
|---|---|
| AbstractList | A key issue in evolutionary algorithms for dynamic multi-objective optimization problems (DMOPs) is how to detect and response environmental changes. Most existing evolutionary algorithms use a single strategy for this purpose. However, single strategy is not always effective. In this paper, we propose a multi-strategy dynamic multi-objective evolutionary algorithm with hybrid change response (MDMEA-HCR) to solve DMOPs. Our proposed algorithm not only provides a new way for handling dynamics in DMOPs, but also introduce a static multi-objective optimizer based on a multi-strategy evolutionary operator. More specifically, we propose a hybrid environmental change response mechanism to integrate several strategies for prediction and response adjustments. When the environment changes, the hybrid environmental change response strategy makes an initial response to the change, and then the response adjustment mechanism improves the quality of the response population and adjusts its optimization direction to achieve fast tracking of Pareto optimal sets and Pareto optimal fronts in the new environment. During the static optimal optimization phase, a variable neighbor-based multi-strategy evolutionary operator is used to generate new solutions, it is very helpful for both convergence and diversity preservation. MDMEA-HCR has been compared with some other advanced DMOEAs on 31 test instances. Experimental results show that MDMEA-HCR performs better than others on most instances. |
| ArticleNumber | 101356 |
| Author | Mei, Changrong Zhang, Sixiang Wu, Zhijian Zhang, Qingfu Luo, Zhongtian Peng, Hu |
| Author_xml | – sequence: 1 givenname: Hu surname: Peng fullname: Peng, Hu email: hu_peng@whu.edu.cn organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, China – sequence: 2 givenname: Changrong surname: Mei fullname: Mei, Changrong organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, China – sequence: 3 givenname: Sixiang surname: Zhang fullname: Zhang, Sixiang organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, China – sequence: 4 givenname: Zhongtian surname: Luo fullname: Luo, Zhongtian organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, China – sequence: 5 givenname: Qingfu surname: Zhang fullname: Zhang, Qingfu organization: Department of Computer Science, City University of Hong Kong, Hong Kong, China – sequence: 6 givenname: Zhijian surname: Wu fullname: Wu, Zhijian organization: School of Computer Science, Wuhan University, Wuhan 430072, China |
| BookMark | eNqFkL9uwyAQhxlSqWmaJ-jCCzjFEOx46FBF_Sel6tLOCONzjGVDBMSR37446dShZTikO32n-303aGasAYTuUrJKSZrdtyt_gsGuKKFs6jCezdCc0pQkGSf0Gi29b0l8GaGcF3PUvB-7oBMfnAywH3E1Gtlrhftz25YtqKAHwHFpdwzaGulGLLu9dTo0PT7FipuxdLrCYAbtrOnBBNlh1UizB-zAH6zx4G_RVS07D8uff4G-np8-t6_J7uPlbfu4SxQjLCRyA3nKaV5xkFRRzvIqU2wjWQVZvSZrmSqSrVXG6zipy4ICZRw2dZ4XvFYlsAUqLnuVs947qIXSQU6Xx4i6EykRkynRirMpMZkSF1ORZb_Yg9N9TPwP9XChIMYaNDjhlQajoNIu2hOV1X_y3540i70 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102012 crossref_primary_10_1016_j_eswa_2024_125610 crossref_primary_10_3390_biomimetics8060486 crossref_primary_10_1016_j_future_2024_07_028 crossref_primary_10_1007_s11227_025_07471_9 crossref_primary_10_1016_j_asoc_2025_113113 crossref_primary_10_1016_j_ins_2023_119627 crossref_primary_10_1016_j_ins_2024_121192 crossref_primary_10_1016_j_swevo_2025_101918 crossref_primary_10_1109_TETCI_2024_3451309 crossref_primary_10_1016_j_ins_2024_121690 crossref_primary_10_1016_j_swevo_2025_101876 crossref_primary_10_1007_s40747_024_01369_4 crossref_primary_10_1016_j_swevo_2024_101773 crossref_primary_10_1016_j_swevo_2025_102067 crossref_primary_10_1016_j_swevo_2025_102123 crossref_primary_10_1016_j_jhydrol_2024_131940 crossref_primary_10_1016_j_eswa_2025_129581 crossref_primary_10_1007_s11227_024_06547_2 crossref_primary_10_1016_j_ins_2024_120794 crossref_primary_10_1016_j_ins_2025_122018 crossref_primary_10_1016_j_swevo_2024_101621 crossref_primary_10_1016_j_eswa_2023_122452 crossref_primary_10_1109_TCYB_2023_3336369 crossref_primary_10_1016_j_swevo_2025_101981 crossref_primary_10_1016_j_ins_2024_120999 |
| Cites_doi | 10.1109/ICCCN.2013.6614105 10.1109/SSCI.2016.7849963 10.1007/s00500-014-1433-3 10.1080/0305215X.2013.846333 10.1109/ICEC.1995.489178 10.1109/TEVC.2008.920671 10.1109/TEVC.2008.925798 10.1109/TCYB.2013.2245892 10.1016/j.asoc.2020.106592 10.1016/j.asoc.2018.12.031 10.1016/j.ins.2021.08.065 10.1109/TCYB.2015.2490738 10.1109/TEVC.2017.2669638 10.1109/TCYB.2019.2960515 10.1109/TCYB.2013.2282503 10.1016/j.cor.2016.04.024 10.1109/TEVC.2011.2166159 10.1109/TCYB.2018.2842158 10.1016/j.asoc.2017.05.008 10.1109/TEVC.2019.2922834 10.1109/TEVC.2007.892759 10.1145/3319619.3326867 10.1109/SSCI.2018.8628655 10.1109/TEVC.2020.2985323 10.1109/TCYB.2016.2556742 10.1016/j.asoc.2017.01.056 10.1016/j.ins.2020.07.009 10.1016/j.knosys.2022.108691 10.1109/TEVC.2013.2281535 10.1109/TEVC.2004.831456 10.1109/TEVC.2016.2574621 10.1016/j.swevo.2020.100695 10.1109/TEVC.2007.894202 10.1016/j.ins.2020.02.071 10.1016/j.ins.2019.01.066 10.1109/TEVC.2019.2925722 10.1145/1143997.1144187 10.1007/s00500-017-2885-z 10.1016/j.swevo.2022.101164 10.1109/4235.996017 10.1007/s00500-008-0392-y 10.1109/TCYB.2016.2602561 10.1109/TEVC.2013.2248159 10.1016/j.ejor.2017.03.048 10.1145/3524495 10.1016/j.future.2022.01.011 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2023.101356 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2023_101356 S2210650223001293 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-a8e71527d5ea2c2537d6c38a3de6f404a1c064c65f37dfb92e235e8f7795fcbe3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001044955400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Wed Nov 05 20:58:08 EST 2025 Tue Nov 18 21:01:06 EST 2025 Fri Feb 23 02:35:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-strategy evolutionary operator Decomposition Hybrid environmental change response mechanism Dynamic multi-objective optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-a8e71527d5ea2c2537d6c38a3de6f404a1c064c65f37dfb92e235e8f7795fcbe3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_swevo_2023_101356 crossref_primary_10_1016_j_swevo_2023_101356 elsevier_sciencedirect_doi_10_1016_j_swevo_2023_101356 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sun, Lan, Zhao (b53) 2019; 23 Mavrovouniotis, Müller, Yang (b9) 2017; 47 Li, Yang, Li, Liu (b66) 2014; 44 Chen, Li, Yao (b43) 2018; 22 Wang, Li (b20) 2009 Zhang, Yang, Jiang, Wang, Li (b30) 2020; 24 Biswas, Das, Suganthan, Coello (b59) 2014 Liu, Li, fan, Mu, Jiao (b48) 2017; 261 Wang, Yen, Jiang (b25) 2020; 56 K. Liagkouras, K. Metaxiotis, An elitist polynomial mutation operator for improved performance of MOEAs in computer networks, in: Proceedings - International Conference on Computer Communications and Networks, ICCCN, ISBN: 978-1-4673-5774-6, 2013, pp. 1–5. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-Report, 103, 2001, pp. 95–100. Nguyen, Zhang, Johnston, Tan (b8) 2014; 18 Richter (b38) 2009 Jiang, Zou, Yao (b14) 2022; 55 Muruganantham, Tan, Vadakkepat (b24) 2016; 46 Zhang, Shen, Liu, Yen (b35) 2020; 24 Azzouz, Bechikh, Ben Said (b21) 2015; 21 S. Zeng, G. Chen, L. Zheng, H. Shi, H. de Garis, L. Ding, L. Kang, A dynamic multi-objective evolutionary algorithm based on an orthogonal design, in: 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 573–580. Khan Mashwani, Salhi, Yeniay, Hussian, Jan (b65) 2017; 56 Azzouz, Bechikh, Ben Said (b13) 2017; Vol. 20 Jiang, Yang, Yao, Tan, Kaiser, Krasnogor (b60) 2018 Agrawal, Deb, Agrawal (b58) 1994; 9 Trivedi, Srinivasan, Sanyal, Ghosh (b34) 2017; 21 Goh, Tan (b15) 2009; 13 Jiang, Yang (b36) 2017; 21 Wilcoxon (b61) 1945; 1 Wang, Liu, Jin (b11) 2017; 79 Farina, Deb, Amato (b33) 2004; 8 Deb (b55) 2001 S. Sahmoud, H. Topcuoglu, Hybrid techniques for detecting changes in less detectable dynamic multiobjective optimization problems, in: Genetic & Evolutionary Computation Conference Companion, 2019, pp. 1449–1456. Ruan, Yu, Zheng, Zou, Yang (b18) 2017; 58 Zhang, Zhou, Jin (b32) 2008; 12 Li, Zhang (b31) 2009; 13 Gee, Tan, Alippi (b39) 2017; 47 Zhao, Suganthan, Zhang (b57) 2012; 16 García, Fernández, Luengo, Herrera (b62) 2009; 13 I. Hatzakis, D. Wallace, Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach, in: GECCO 2006 - Genetic and Evolutionary Computation Conference, Vol. 2, 2006, pp. 1201–1208. Azevedo, Araújo (b42) 2011 Deb, Jain (b5) 2014; 18 Liang, Zheng, Zhu, Yang (b27) 2019; 485 Wang, Ma, Wang (b64) 2022; 75 Peng, Wang, Han, Xiao, Zhou, Wu (b12) 2022; 131 Cao, Xu, Goodman, Bao, Zhu (b16) 2020; 24 Cobb, Grefenstette (b44) 1993 Cao, Xu, Goodman, Li (b50) 2019; 76 Trivedi, Srinivasan, Sanyal, Ghosh (b2) 2017; 21 Hu, Zheng, Zou, Yang, Ou, Wang (b63) 2020; 523 Li, Zhang, Wong (b1) 2021; 51 Chen, Wang, Pan, Wang, Gan, Wang, Zhu (b49) 2022; 246 Zhou, Jin, Zhang, Sendhoff, Tsang (b17) 2007 Wang, Li, Liao, Yan (b26) 2020; 96 Zhang, Li (b6) 2007; 11 Zhou, Jin, Zhang (b23) 2014; 44 He, Peng, Deng, Dong, Wu, Guo (b7) 2022 Ma, Yang, Sun, Hu, Wei (b41) 2021; 545 S. Sahmoud, H.R. Topcuoglu, Sensor-based change detection schemes for dynamic multi-objective optimization problems, in: 2016 IEEE Symposium Series on Computational Intelligence, SSCI, 2016, pp. 1–8. J. Zhou, J. Zou, S. Yang, G. Ruan, J. Ou, J. Zheng, An evolutionary dynamic multi-objective optimization algorithm based on center-point prediction and sub-population autonomous guidance, in: 2018 IEEE Symposium Series on Computational Intelligence, SSCI, 2018, pp. 2148–2154. Rong, Gong, Zhang, Jin, Pedrycz (b46) 2019; 49 R. Hinterding, Gaussian mutation and self-adaption for numeric genetic algorithms, in: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Vol. 1, 1995, pp. 384–389. Sahmoud, Topcuoglu (b19) 2016 Peng, Zheng, Zou, Liu (b51) 2014; 19 Chen, Tseng (b52) 2014; 46 Deb, Pratap, Agarwal, Meyarivan (b3) 2002; 6 Wang, Liao, Li, Wang (b28) 2021; 580 Deb, N, Sindhya (b10) 2007 Cao, Xu, Goodman, Li (b29) 2017 Ruan (10.1016/j.swevo.2023.101356_b18) 2017; 58 Jiang (10.1016/j.swevo.2023.101356_b60) 2018 Peng (10.1016/j.swevo.2023.101356_b12) 2022; 131 Zhou (10.1016/j.swevo.2023.101356_b23) 2014; 44 Cao (10.1016/j.swevo.2023.101356_b50) 2019; 76 Sun (10.1016/j.swevo.2023.101356_b53) 2019; 23 10.1016/j.swevo.2023.101356_b54 Farina (10.1016/j.swevo.2023.101356_b33) 2004; 8 Deb (10.1016/j.swevo.2023.101356_b5) 2014; 18 Sahmoud (10.1016/j.swevo.2023.101356_b19) 2016 Azzouz (10.1016/j.swevo.2023.101356_b21) 2015; 21 Deb (10.1016/j.swevo.2023.101356_b55) 2001 Wilcoxon (10.1016/j.swevo.2023.101356_b61) 1945; 1 10.1016/j.swevo.2023.101356_b45 Chen (10.1016/j.swevo.2023.101356_b52) 2014; 46 10.1016/j.swevo.2023.101356_b47 Ma (10.1016/j.swevo.2023.101356_b41) 2021; 545 Cao (10.1016/j.swevo.2023.101356_b29) 2017 Liang (10.1016/j.swevo.2023.101356_b27) 2019; 485 Chen (10.1016/j.swevo.2023.101356_b49) 2022; 246 Wang (10.1016/j.swevo.2023.101356_b20) 2009 Zhou (10.1016/j.swevo.2023.101356_b17) 2007 Li (10.1016/j.swevo.2023.101356_b1) 2021; 51 Li (10.1016/j.swevo.2023.101356_b31) 2009; 13 Azzouz (10.1016/j.swevo.2023.101356_b13) 2017; Vol. 20 García (10.1016/j.swevo.2023.101356_b62) 2009; 13 Peng (10.1016/j.swevo.2023.101356_b51) 2014; 19 Zhang (10.1016/j.swevo.2023.101356_b35) 2020; 24 Liu (10.1016/j.swevo.2023.101356_b48) 2017; 261 10.1016/j.swevo.2023.101356_b56 Azevedo (10.1016/j.swevo.2023.101356_b42) 2011 Deb (10.1016/j.swevo.2023.101356_b10) 2007 Wang (10.1016/j.swevo.2023.101356_b26) 2020; 96 Mavrovouniotis (10.1016/j.swevo.2023.101356_b9) 2017; 47 Wang (10.1016/j.swevo.2023.101356_b11) 2017; 79 Zhao (10.1016/j.swevo.2023.101356_b57) 2012; 16 Gee (10.1016/j.swevo.2023.101356_b39) 2017; 47 Agrawal (10.1016/j.swevo.2023.101356_b58) 1994; 9 Trivedi (10.1016/j.swevo.2023.101356_b2) 2017; 21 Cao (10.1016/j.swevo.2023.101356_b16) 2020; 24 Richter (10.1016/j.swevo.2023.101356_b38) 2009 Deb (10.1016/j.swevo.2023.101356_b3) 2002; 6 Goh (10.1016/j.swevo.2023.101356_b15) 2009; 13 10.1016/j.swevo.2023.101356_b22 Hu (10.1016/j.swevo.2023.101356_b63) 2020; 523 Li (10.1016/j.swevo.2023.101356_b66) 2014; 44 Nguyen (10.1016/j.swevo.2023.101356_b8) 2014; 18 10.1016/j.swevo.2023.101356_b40 Muruganantham (10.1016/j.swevo.2023.101356_b24) 2016; 46 10.1016/j.swevo.2023.101356_b4 Zhang (10.1016/j.swevo.2023.101356_b32) 2008; 12 Khan Mashwani (10.1016/j.swevo.2023.101356_b65) 2017; 56 Jiang (10.1016/j.swevo.2023.101356_b36) 2017; 21 Cobb (10.1016/j.swevo.2023.101356_b44) 1993 Rong (10.1016/j.swevo.2023.101356_b46) 2019; 49 Jiang (10.1016/j.swevo.2023.101356_b14) 2022; 55 Chen (10.1016/j.swevo.2023.101356_b43) 2018; 22 Wang (10.1016/j.swevo.2023.101356_b64) 2022; 75 Trivedi (10.1016/j.swevo.2023.101356_b34) 2017; 21 Biswas (10.1016/j.swevo.2023.101356_b59) 2014 Wang (10.1016/j.swevo.2023.101356_b25) 2020; 56 10.1016/j.swevo.2023.101356_b37 Zhang (10.1016/j.swevo.2023.101356_b30) 2020; 24 Zhang (10.1016/j.swevo.2023.101356_b6) 2007; 11 He (10.1016/j.swevo.2023.101356_b7) 2022 Wang (10.1016/j.swevo.2023.101356_b28) 2021; 580 |
| References_xml | – volume: 485 start-page: 200 year: 2019 end-page: 218 ident: b27 article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization publication-title: Inf. Sci. – volume: 23 start-page: 1615 year: 2019 end-page: 1642 ident: b53 article-title: Differential evolution with Gaussian mutation and dynamic parameter adjustment publication-title: Soft Comput. – start-page: 1 year: 2018 end-page: 18 ident: b60 article-title: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 51 start-page: 5811 year: 2021 end-page: 5824 ident: b1 article-title: Multiobjective genome-wide RNA-Binding event identification from CLIP-Seq data publication-title: IEEE Trans. Cybern. – volume: 18 start-page: 193 year: 2014 end-page: 208 ident: b8 article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming publication-title: IEEE Trans. Evol. Comput. – volume: 24 start-page: 974 year: 2020 end-page: 988 ident: b35 article-title: Multiobjective evolution strategy for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 261 start-page: 1028 year: 2017 end-page: 1051 ident: b48 article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization publication-title: European J. Oper. Res. – volume: 131 start-page: 59 year: 2022 end-page: 74 ident: b12 article-title: Micro multi-strategy multi-objective artificial bee colony algorithm for microgrid energy optimization publication-title: Future Gener. Comput. Syst. – volume: 16 start-page: 442 year: 2012 end-page: 446 ident: b57 article-title: Decomposition-based multiobjective evolutionary algorithm With an ensemble of neighborhood sizes publication-title: IEEE Trans. Evol. Comput. – volume: 79 start-page: 279 year: 2017 end-page: 290 ident: b11 article-title: A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling publication-title: Comput. Oper. Res. – volume: 21 start-page: 440 year: 2017 end-page: 462 ident: b34 article-title: A survey of multiobjective evolutionary algorithms based on decomposition publication-title: IEEE Trans. Evol. Comput. – year: 2001 ident: b55 article-title: Multiobjective Optimization Using Evolutionary Algorithms – volume: 13 start-page: 103 year: 2009 end-page: 127 ident: b15 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 65 year: 2017 end-page: 82 ident: b36 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 96 year: 2020 ident: b26 article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 19 start-page: 2633 year: 2014 end-page: 2653 ident: b51 article-title: Novel prediction and memory strategies for dynamic multiobjective optimization publication-title: Soft Comput. – volume: 55 start-page: 1 year: 2022 end-page: 47 ident: b14 article-title: Evolutionary dynamic multi-Objective optimisation: a survey publication-title: ACM Comput. Surv. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b6 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: Vol. 20 start-page: 31 year: 2017 end-page: 70 ident: b13 article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey publication-title: Recent Advances in Evolutionary Multi-Objective Optimization – volume: 46 start-page: 2862 year: 2016 end-page: 2873 ident: b24 article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction publication-title: IEEE Trans. Cybern. – volume: 1 start-page: 196 year: 1945 end-page: 202 ident: b61 article-title: Individual comparisons by ranking methods publication-title: Biometrics – volume: 545 start-page: 1 year: 2021 end-page: 24 ident: b41 article-title: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization publication-title: Inform. Sci. – volume: 13 start-page: 284 year: 2009 end-page: 302 ident: b31 article-title: Multiobjective optimization problems With complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. – start-page: 523 year: 1993 end-page: 530 ident: b44 article-title: Genetic algorithms for tracking changing environments publication-title: Proceedings of the 5th International Conference on Genetic Algorithms – start-page: 803 year: 2007 end-page: 817 ident: b10 article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling – volume: 75 year: 2022 ident: b64 article-title: A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy publication-title: Swarm Evol. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b3 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: b5 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems With box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 1430 year: 2014 end-page: 1445 ident: b52 article-title: An improved version of the multiple trajectory search for real value multi-objective optimization problems publication-title: Eng. Optim. – volume: 24 start-page: 305 year: 2020 end-page: 319 ident: b16 article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor publication-title: IEEE Trans. Evol. Comput. – reference: S. Sahmoud, H. Topcuoglu, Hybrid techniques for detecting changes in less detectable dynamic multiobjective optimization problems, in: Genetic & Evolutionary Computation Conference Companion, 2019, pp. 1449–1456. – volume: 21 start-page: 440 year: 2017 end-page: 462 ident: b2 article-title: A Survey of multiobjective evolutionary algorithms based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 959 year: 2009 end-page: 977 ident: b62 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Comput. – start-page: 630 year: 2009 end-page: 637 ident: b20 article-title: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment publication-title: 2009 IEEE Congress on Evolutionary Computation – volume: 8 start-page: 425 year: 2004 end-page: 442 ident: b33 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. – reference: E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-Report, 103, 2001, pp. 95–100. – reference: S. Sahmoud, H.R. Topcuoglu, Sensor-based change detection schemes for dynamic multi-objective optimization problems, in: 2016 IEEE Symposium Series on Computational Intelligence, SSCI, 2016, pp. 1–8. – volume: 523 start-page: 49 year: 2020 end-page: 62 ident: b63 article-title: A dynamic multi-objective evolutionary algorithm based on intensity of environmental change publication-title: Inform. Sci. – reference: I. Hatzakis, D. Wallace, Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach, in: GECCO 2006 - Genetic and Evolutionary Computation Conference, Vol. 2, 2006, pp. 1201–1208. – volume: 580 start-page: 331 year: 2021 end-page: 351 ident: b28 article-title: A new prediction strategy for dynamic multi-objective optimization using gaussian mixture model publication-title: Inform. Sci. – start-page: 832 year: 2007 end-page: 846 ident: b17 publication-title: Prediction-Based Population Re-Initialization for Evolutionary Dynamic Multi-Objective Optimization – start-page: 296 year: 2016 end-page: 310 ident: b19 publication-title: A Memory-Based NSGA-II Algorithm for Dynamic Multi-Objective Optimization Problems – volume: 44 start-page: 1295 year: 2014 end-page: 1313 ident: b66 article-title: Evolutionary algorithms with segment-based search for multiobjective optimization problems publication-title: IEEE Trans. Cybern. – volume: 56 year: 2020 ident: b25 article-title: A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization publication-title: Swarm Evol. Comput. – reference: R. Hinterding, Gaussian mutation and self-adaption for numeric genetic algorithms, in: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Vol. 1, 1995, pp. 384–389. – start-page: 3192 year: 2014 end-page: 3199 ident: b59 article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions publication-title: 2014 IEEE Congress on Evolutionary Computation – volume: 58 start-page: 631 year: 2017 end-page: 647 ident: b18 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 9 start-page: 115 year: 1994 end-page: 148 ident: b58 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – volume: 47 start-page: 4223 year: 2017 end-page: 4234 ident: b39 article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach publication-title: IEEE Trans. Cybern. – start-page: 644 year: 2017 end-page: 655 ident: b29 article-title: A First-Order Difference Model-Based Evolutionary Dynamic Multiobjective Optimization – reference: S. Zeng, G. Chen, L. Zheng, H. Shi, H. de Garis, L. Ding, L. Kang, A dynamic multi-objective evolutionary algorithm based on an orthogonal design, in: 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 573–580. – volume: 246 year: 2022 ident: b49 article-title: Dynamic multiobjective evolutionary algorithm with adaptive response mechanism selection strategy publication-title: Knowl.-Based Syst. – start-page: 1613 year: 2009 end-page: 1620 ident: b38 article-title: Detecting change in dynamic fitness landscapes publication-title: 2009 IEEE Congress on Evolutionary Computation – volume: 22 start-page: 157 year: 2018 end-page: 171 ident: b43 article-title: Dynamic multiobjectives optimization With a changing number of objectives publication-title: IEEE Trans. Evol. Comput. – volume: 44 start-page: 40 year: 2014 end-page: 53 ident: b23 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – reference: J. Zhou, J. Zou, S. Yang, G. Ruan, J. Ou, J. Zheng, An evolutionary dynamic multi-objective optimization algorithm based on center-point prediction and sub-population autonomous guidance, in: 2018 IEEE Symposium Series on Computational Intelligence, SSCI, 2018, pp. 2148–2154. – reference: K. Liagkouras, K. Metaxiotis, An elitist polynomial mutation operator for improved performance of MOEAs in computer networks, in: Proceedings - International Conference on Computer Communications and Networks, ICCCN, ISBN: 978-1-4673-5774-6, 2013, pp. 1–5. – start-page: 2033 year: 2011 end-page: 2040 ident: b42 article-title: Generalized immigration schemes for dynamic evolutionary multiobjective optimization publication-title: 2011 IEEE Congress of Evolutionary Computation – start-page: 1 year: 2022 end-page: 22 ident: b7 article-title: Reference point reconstruction-based firefly algorithm for irregular multi-objective optimization publication-title: Appl. Intell. – volume: 12 start-page: 41 year: 2008 end-page: 63 ident: b32 article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 49 start-page: 3362 year: 2019 end-page: 3374 ident: b46 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. – volume: 24 start-page: 260 year: 2020 end-page: 274 ident: b30 article-title: Novel prediction strategies for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 76 start-page: 473 year: 2019 end-page: 490 ident: b50 article-title: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model publication-title: Appl. Soft Comput. – volume: 21 start-page: 1 year: 2015 end-page: 22 ident: b21 article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy publication-title: Soft Comput. – volume: 56 start-page: 1 year: 2017 end-page: 18 ident: b65 article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection publication-title: Appl. Soft Comput. – volume: 47 start-page: 1743 year: 2017 end-page: 1756 ident: b9 article-title: Ant colony optimization With local search for dynamic traveling salesman problems publication-title: IEEE Trans. Cybern. – ident: 10.1016/j.swevo.2023.101356_b56 doi: 10.1109/ICCCN.2013.6614105 – ident: 10.1016/j.swevo.2023.101356_b37 doi: 10.1109/SSCI.2016.7849963 – volume: 19 start-page: 2633 year: 2014 ident: 10.1016/j.swevo.2023.101356_b51 article-title: Novel prediction and memory strategies for dynamic multiobjective optimization publication-title: Soft Comput. doi: 10.1007/s00500-014-1433-3 – start-page: 296 year: 2016 ident: 10.1016/j.swevo.2023.101356_b19 – volume: 46 start-page: 1430 issue: 10 year: 2014 ident: 10.1016/j.swevo.2023.101356_b52 article-title: An improved version of the multiple trajectory search for real value multi-objective optimization problems publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.846333 – ident: 10.1016/j.swevo.2023.101356_b54 doi: 10.1109/ICEC.1995.489178 – volume: 13 start-page: 103 issue: 1 year: 2009 ident: 10.1016/j.swevo.2023.101356_b15 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.920671 – volume: 13 start-page: 284 issue: 2 year: 2009 ident: 10.1016/j.swevo.2023.101356_b31 article-title: Multiobjective optimization problems With complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.925798 – volume: 44 start-page: 40 issue: 1 year: 2014 ident: 10.1016/j.swevo.2023.101356_b23 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2245892 – volume: 96 year: 2020 ident: 10.1016/j.swevo.2023.101356_b26 article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106592 – volume: 76 start-page: 473 year: 2019 ident: 10.1016/j.swevo.2023.101356_b50 article-title: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.12.031 – ident: 10.1016/j.swevo.2023.101356_b4 – volume: 580 start-page: 331 year: 2021 ident: 10.1016/j.swevo.2023.101356_b28 article-title: A new prediction strategy for dynamic multi-objective optimization using gaussian mixture model publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.08.065 – volume: 46 start-page: 2862 issue: 12 year: 2016 ident: 10.1016/j.swevo.2023.101356_b24 article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2490738 – volume: 22 start-page: 157 issue: 1 year: 2018 ident: 10.1016/j.swevo.2023.101356_b43 article-title: Dynamic multiobjectives optimization With a changing number of objectives publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2669638 – volume: 51 start-page: 5811 issue: 12 year: 2021 ident: 10.1016/j.swevo.2023.101356_b1 article-title: Multiobjective genome-wide RNA-Binding event identification from CLIP-Seq data publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2960515 – volume: 44 start-page: 1295 issue: 8 year: 2014 ident: 10.1016/j.swevo.2023.101356_b66 article-title: Evolutionary algorithms with segment-based search for multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2282503 – volume: 79 start-page: 279 year: 2017 ident: 10.1016/j.swevo.2023.101356_b11 article-title: A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.04.024 – year: 2001 ident: 10.1016/j.swevo.2023.101356_b55 – volume: 16 start-page: 442 issue: 3 year: 2012 ident: 10.1016/j.swevo.2023.101356_b57 article-title: Decomposition-based multiobjective evolutionary algorithm With an ensemble of neighborhood sizes publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2166159 – volume: 49 start-page: 3362 issue: 9 year: 2019 ident: 10.1016/j.swevo.2023.101356_b46 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2842158 – start-page: 644 year: 2017 ident: 10.1016/j.swevo.2023.101356_b29 – volume: 58 start-page: 631 year: 2017 ident: 10.1016/j.swevo.2023.101356_b18 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.008 – volume: 24 start-page: 260 issue: 2 year: 2020 ident: 10.1016/j.swevo.2023.101356_b30 article-title: Novel prediction strategies for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2922834 – start-page: 832 year: 2007 ident: 10.1016/j.swevo.2023.101356_b17 – start-page: 2033 year: 2011 ident: 10.1016/j.swevo.2023.101356_b42 article-title: Generalized immigration schemes for dynamic evolutionary multiobjective optimization – volume: Vol. 20 start-page: 31 year: 2017 ident: 10.1016/j.swevo.2023.101356_b13 article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey – start-page: 1 year: 2022 ident: 10.1016/j.swevo.2023.101356_b7 article-title: Reference point reconstruction-based firefly algorithm for irregular multi-objective optimization publication-title: Appl. Intell. – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.swevo.2023.101356_b6 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – ident: 10.1016/j.swevo.2023.101356_b40 doi: 10.1145/3319619.3326867 – start-page: 1613 year: 2009 ident: 10.1016/j.swevo.2023.101356_b38 article-title: Detecting change in dynamic fitness landscapes – start-page: 523 year: 1993 ident: 10.1016/j.swevo.2023.101356_b44 article-title: Genetic algorithms for tracking changing environments – ident: 10.1016/j.swevo.2023.101356_b47 doi: 10.1109/SSCI.2018.8628655 – start-page: 1 year: 2018 ident: 10.1016/j.swevo.2023.101356_b60 article-title: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation – start-page: 803 year: 2007 ident: 10.1016/j.swevo.2023.101356_b10 – volume: 24 start-page: 974 issue: 5 year: 2020 ident: 10.1016/j.swevo.2023.101356_b35 article-title: Multiobjective evolution strategy for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2985323 – volume: 47 start-page: 1743 issue: 7 year: 2017 ident: 10.1016/j.swevo.2023.101356_b9 article-title: Ant colony optimization With local search for dynamic traveling salesman problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2556742 – volume: 56 start-page: 1 year: 2017 ident: 10.1016/j.swevo.2023.101356_b65 article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.056 – start-page: 630 year: 2009 ident: 10.1016/j.swevo.2023.101356_b20 article-title: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment – volume: 545 start-page: 1 year: 2021 ident: 10.1016/j.swevo.2023.101356_b41 article-title: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.07.009 – volume: 21 start-page: 440 issue: 3 year: 2017 ident: 10.1016/j.swevo.2023.101356_b2 article-title: A Survey of multiobjective evolutionary algorithms based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 246 year: 2022 ident: 10.1016/j.swevo.2023.101356_b49 article-title: Dynamic multiobjective evolutionary algorithm with adaptive response mechanism selection strategy publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108691 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.swevo.2023.101356_b5 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems With box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 10.1016/j.swevo.2023.101356_b33 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.831456 – volume: 21 start-page: 65 issue: 1 year: 2017 ident: 10.1016/j.swevo.2023.101356_b36 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2574621 – volume: 21 start-page: 1 year: 2015 ident: 10.1016/j.swevo.2023.101356_b21 article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy publication-title: Soft Comput. – volume: 56 year: 2020 ident: 10.1016/j.swevo.2023.101356_b25 article-title: A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100695 – volume: 12 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.swevo.2023.101356_b32 article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.894202 – volume: 9 start-page: 115 year: 1994 ident: 10.1016/j.swevo.2023.101356_b58 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – ident: 10.1016/j.swevo.2023.101356_b45 – volume: 523 start-page: 49 year: 2020 ident: 10.1016/j.swevo.2023.101356_b63 article-title: A dynamic multi-objective evolutionary algorithm based on intensity of environmental change publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.02.071 – volume: 485 start-page: 200 year: 2019 ident: 10.1016/j.swevo.2023.101356_b27 article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.01.066 – volume: 24 start-page: 305 issue: 2 year: 2020 ident: 10.1016/j.swevo.2023.101356_b16 article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2925722 – ident: 10.1016/j.swevo.2023.101356_b22 doi: 10.1145/1143997.1144187 – volume: 23 start-page: 1615 issue: 5 year: 2019 ident: 10.1016/j.swevo.2023.101356_b53 article-title: Differential evolution with Gaussian mutation and dynamic parameter adjustment publication-title: Soft Comput. doi: 10.1007/s00500-017-2885-z – volume: 75 year: 2022 ident: 10.1016/j.swevo.2023.101356_b64 article-title: A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101164 – start-page: 3192 year: 2014 ident: 10.1016/j.swevo.2023.101356_b59 article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.swevo.2023.101356_b3 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 13 start-page: 959 issue: 10 year: 2009 ident: 10.1016/j.swevo.2023.101356_b62 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Comput. doi: 10.1007/s00500-008-0392-y – volume: 47 start-page: 4223 issue: 12 year: 2017 ident: 10.1016/j.swevo.2023.101356_b39 article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2602561 – volume: 18 start-page: 193 issue: 2 year: 2014 ident: 10.1016/j.swevo.2023.101356_b8 article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2248159 – volume: 21 start-page: 440 issue: 3 year: 2017 ident: 10.1016/j.swevo.2023.101356_b34 article-title: A survey of multiobjective evolutionary algorithms based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 1 start-page: 196 year: 1945 ident: 10.1016/j.swevo.2023.101356_b61 article-title: Individual comparisons by ranking methods publication-title: Biometrics – volume: 261 start-page: 1028 issue: 3 year: 2017 ident: 10.1016/j.swevo.2023.101356_b48 article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.03.048 – volume: 55 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.swevo.2023.101356_b14 article-title: Evolutionary dynamic multi-Objective optimisation: a survey publication-title: ACM Comput. Surv. doi: 10.1145/3524495 – volume: 131 start-page: 59 year: 2022 ident: 10.1016/j.swevo.2023.101356_b12 article-title: Micro multi-strategy multi-objective artificial bee colony algorithm for microgrid energy optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.01.011 |
| SSID | ssj0000602559 |
| Score | 2.4427602 |
| Snippet | A key issue in evolutionary algorithms for dynamic multi-objective optimization problems (DMOPs) is how to detect and response environmental changes. Most... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101356 |
| SubjectTerms | Decomposition Dynamic multi-objective optimization Hybrid environmental change response mechanism Multi-strategy evolutionary operator |
| Title | Multi-strategy dynamic multi-objective evolutionary algorithm with hybrid environmental change responses |
| URI | https://dx.doi.org/10.1016/j.swevo.2023.101356 |
| Volume | 82 |
| WOSCitedRecordID | wos001044955400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgMvbHyJMUB-4K24WpwmTh4nNLShaZrEkCpeIte1-6GSTmnadX8E_zNnn5M2K6rYAy9R5DgXJ_fL5e5yH4R86jtbJ06Y0gIMFCMNg4-wYgpsA1fhjEvH6UtxdZX0eul1q_W7yoVZTkWeJ6tVevtfWQ1jwGybOvsIdtdEYQD2gemwBbbD9p8Y71Jq2Ryrzt63B9hyHiMH2aw_QQnX1ku_Chs2J6fDWTEuR7_QLzu6t3lcm0lwtoqIy0NoFxhU60MPvVr7_U4W2GujQVa5lhGNf_3XGoXL-aJmtR77__75EK423HZlj1eA4Xr8cuG8uz9HMLeswO39FnwdAefFGwdjk4F-2JDF2IjIC1OQFiFWHd-S8-hymHTmd3BbHUu-s57drKr94GtXxyBW4W2TzBHJLJEMiTwh-1xEKQjJ_dOLs9632ml3EjsTzDYsrFZfVbJyMYNby_m7trOhwdwckufe9KCnCJkXpKXzl-SgautBvZR_RUZNBFGPIPoAQXST1bRGELUIoogg2kAQRQTRGkGvyY-vZzdfzplvyMEUaDolkwm80BEXg0hLrngUikGswkSGAx2b7klXBgo0XBVHBo6Yfso1DyOdGCHSyKi-Dt-QvXyW67eEikgIq9urQARdwbWMDTxwUByCQBmh5RHh1YPLlK9Wb5umTLMdfDsin-uTbrFYy-7pccWRzOubqEdmALNdJ7573HWOybP1C_Ce7JXFQn8gT9WyHM-Ljx5jfwCEIKlO |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-strategy+dynamic+multi-objective+evolutionary+algorithm+with+hybrid+environmental+change+responses&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Peng%2C+Hu&rft.au=Mei%2C+Changrong&rft.au=Zhang%2C+Sixiang&rft.au=Luo%2C+Zhongtian&rft.date=2023-10-01&rft.issn=2210-6502&rft.volume=82&rft.spage=101356&rft_id=info:doi/10.1016%2Fj.swevo.2023.101356&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2023_101356 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |