Multi-strategy dynamic multi-objective evolutionary algorithm with hybrid environmental change responses

A key issue in evolutionary algorithms for dynamic multi-objective optimization problems (DMOPs) is how to detect and response environmental changes. Most existing evolutionary algorithms use a single strategy for this purpose. However, single strategy is not always effective. In this paper, we prop...

Full description

Saved in:
Bibliographic Details
Published in:Swarm and evolutionary computation Vol. 82; p. 101356
Main Authors: Peng, Hu, Mei, Changrong, Zhang, Sixiang, Luo, Zhongtian, Zhang, Qingfu, Wu, Zhijian
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2023
Subjects:
ISSN:2210-6502
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A key issue in evolutionary algorithms for dynamic multi-objective optimization problems (DMOPs) is how to detect and response environmental changes. Most existing evolutionary algorithms use a single strategy for this purpose. However, single strategy is not always effective. In this paper, we propose a multi-strategy dynamic multi-objective evolutionary algorithm with hybrid change response (MDMEA-HCR) to solve DMOPs. Our proposed algorithm not only provides a new way for handling dynamics in DMOPs, but also introduce a static multi-objective optimizer based on a multi-strategy evolutionary operator. More specifically, we propose a hybrid environmental change response mechanism to integrate several strategies for prediction and response adjustments. When the environment changes, the hybrid environmental change response strategy makes an initial response to the change, and then the response adjustment mechanism improves the quality of the response population and adjusts its optimization direction to achieve fast tracking of Pareto optimal sets and Pareto optimal fronts in the new environment. During the static optimal optimization phase, a variable neighbor-based multi-strategy evolutionary operator is used to generate new solutions, it is very helpful for both convergence and diversity preservation. MDMEA-HCR has been compared with some other advanced DMOEAs on 31 test instances. Experimental results show that MDMEA-HCR performs better than others on most instances.
AbstractList A key issue in evolutionary algorithms for dynamic multi-objective optimization problems (DMOPs) is how to detect and response environmental changes. Most existing evolutionary algorithms use a single strategy for this purpose. However, single strategy is not always effective. In this paper, we propose a multi-strategy dynamic multi-objective evolutionary algorithm with hybrid change response (MDMEA-HCR) to solve DMOPs. Our proposed algorithm not only provides a new way for handling dynamics in DMOPs, but also introduce a static multi-objective optimizer based on a multi-strategy evolutionary operator. More specifically, we propose a hybrid environmental change response mechanism to integrate several strategies for prediction and response adjustments. When the environment changes, the hybrid environmental change response strategy makes an initial response to the change, and then the response adjustment mechanism improves the quality of the response population and adjusts its optimization direction to achieve fast tracking of Pareto optimal sets and Pareto optimal fronts in the new environment. During the static optimal optimization phase, a variable neighbor-based multi-strategy evolutionary operator is used to generate new solutions, it is very helpful for both convergence and diversity preservation. MDMEA-HCR has been compared with some other advanced DMOEAs on 31 test instances. Experimental results show that MDMEA-HCR performs better than others on most instances.
ArticleNumber 101356
Author Mei, Changrong
Zhang, Sixiang
Wu, Zhijian
Zhang, Qingfu
Luo, Zhongtian
Peng, Hu
Author_xml – sequence: 1
  givenname: Hu
  surname: Peng
  fullname: Peng, Hu
  email: hu_peng@whu.edu.cn
  organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, China
– sequence: 2
  givenname: Changrong
  surname: Mei
  fullname: Mei, Changrong
  organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, China
– sequence: 3
  givenname: Sixiang
  surname: Zhang
  fullname: Zhang, Sixiang
  organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, China
– sequence: 4
  givenname: Zhongtian
  surname: Luo
  fullname: Luo, Zhongtian
  organization: School of Computer and Big Data Science, Jiujiang University, Jiujiang 332005, China
– sequence: 5
  givenname: Qingfu
  surname: Zhang
  fullname: Zhang, Qingfu
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, China
– sequence: 6
  givenname: Zhijian
  surname: Wu
  fullname: Wu, Zhijian
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
BookMark eNqFkL9uwyAQhxlSqWmaJ-jCCzjFEOx46FBF_Sel6tLOCONzjGVDBMSR37446dShZTikO32n-303aGasAYTuUrJKSZrdtyt_gsGuKKFs6jCezdCc0pQkGSf0Gi29b0l8GaGcF3PUvB-7oBMfnAywH3E1Gtlrhftz25YtqKAHwHFpdwzaGulGLLu9dTo0PT7FipuxdLrCYAbtrOnBBNlh1UizB-zAH6zx4G_RVS07D8uff4G-np8-t6_J7uPlbfu4SxQjLCRyA3nKaV5xkFRRzvIqU2wjWQVZvSZrmSqSrVXG6zipy4ICZRw2dZ4XvFYlsAUqLnuVs947qIXSQU6Xx4i6EykRkynRirMpMZkSF1ORZb_Yg9N9TPwP9XChIMYaNDjhlQajoNIu2hOV1X_y3540i70
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102012
crossref_primary_10_1016_j_eswa_2024_125610
crossref_primary_10_3390_biomimetics8060486
crossref_primary_10_1016_j_future_2024_07_028
crossref_primary_10_1007_s11227_025_07471_9
crossref_primary_10_1016_j_asoc_2025_113113
crossref_primary_10_1016_j_ins_2023_119627
crossref_primary_10_1016_j_ins_2024_121192
crossref_primary_10_1016_j_swevo_2025_101918
crossref_primary_10_1109_TETCI_2024_3451309
crossref_primary_10_1016_j_ins_2024_121690
crossref_primary_10_1016_j_swevo_2025_101876
crossref_primary_10_1007_s40747_024_01369_4
crossref_primary_10_1016_j_swevo_2024_101773
crossref_primary_10_1016_j_swevo_2025_102067
crossref_primary_10_1016_j_swevo_2025_102123
crossref_primary_10_1016_j_jhydrol_2024_131940
crossref_primary_10_1016_j_eswa_2025_129581
crossref_primary_10_1007_s11227_024_06547_2
crossref_primary_10_1016_j_ins_2024_120794
crossref_primary_10_1016_j_ins_2025_122018
crossref_primary_10_1016_j_swevo_2024_101621
crossref_primary_10_1016_j_eswa_2023_122452
crossref_primary_10_1109_TCYB_2023_3336369
crossref_primary_10_1016_j_swevo_2025_101981
crossref_primary_10_1016_j_ins_2024_120999
Cites_doi 10.1109/ICCCN.2013.6614105
10.1109/SSCI.2016.7849963
10.1007/s00500-014-1433-3
10.1080/0305215X.2013.846333
10.1109/ICEC.1995.489178
10.1109/TEVC.2008.920671
10.1109/TEVC.2008.925798
10.1109/TCYB.2013.2245892
10.1016/j.asoc.2020.106592
10.1016/j.asoc.2018.12.031
10.1016/j.ins.2021.08.065
10.1109/TCYB.2015.2490738
10.1109/TEVC.2017.2669638
10.1109/TCYB.2019.2960515
10.1109/TCYB.2013.2282503
10.1016/j.cor.2016.04.024
10.1109/TEVC.2011.2166159
10.1109/TCYB.2018.2842158
10.1016/j.asoc.2017.05.008
10.1109/TEVC.2019.2922834
10.1109/TEVC.2007.892759
10.1145/3319619.3326867
10.1109/SSCI.2018.8628655
10.1109/TEVC.2020.2985323
10.1109/TCYB.2016.2556742
10.1016/j.asoc.2017.01.056
10.1016/j.ins.2020.07.009
10.1016/j.knosys.2022.108691
10.1109/TEVC.2013.2281535
10.1109/TEVC.2004.831456
10.1109/TEVC.2016.2574621
10.1016/j.swevo.2020.100695
10.1109/TEVC.2007.894202
10.1016/j.ins.2020.02.071
10.1016/j.ins.2019.01.066
10.1109/TEVC.2019.2925722
10.1145/1143997.1144187
10.1007/s00500-017-2885-z
10.1016/j.swevo.2022.101164
10.1109/4235.996017
10.1007/s00500-008-0392-y
10.1109/TCYB.2016.2602561
10.1109/TEVC.2013.2248159
10.1016/j.ejor.2017.03.048
10.1145/3524495
10.1016/j.future.2022.01.011
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2023.101356
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2023_101356
S2210650223001293
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-a8e71527d5ea2c2537d6c38a3de6f404a1c064c65f37dfb92e235e8f7795fcbe3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001044955400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Wed Nov 05 20:58:08 EST 2025
Tue Nov 18 21:01:06 EST 2025
Fri Feb 23 02:35:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-strategy evolutionary operator
Decomposition
Hybrid environmental change response mechanism
Dynamic multi-objective optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-a8e71527d5ea2c2537d6c38a3de6f404a1c064c65f37dfb92e235e8f7795fcbe3
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2023_101356
crossref_primary_10_1016_j_swevo_2023_101356
elsevier_sciencedirect_doi_10_1016_j_swevo_2023_101356
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Lan, Zhao (b53) 2019; 23
Mavrovouniotis, Müller, Yang (b9) 2017; 47
Li, Yang, Li, Liu (b66) 2014; 44
Chen, Li, Yao (b43) 2018; 22
Wang, Li (b20) 2009
Zhang, Yang, Jiang, Wang, Li (b30) 2020; 24
Biswas, Das, Suganthan, Coello (b59) 2014
Liu, Li, fan, Mu, Jiao (b48) 2017; 261
Wang, Yen, Jiang (b25) 2020; 56
K. Liagkouras, K. Metaxiotis, An elitist polynomial mutation operator for improved performance of MOEAs in computer networks, in: Proceedings - International Conference on Computer Communications and Networks, ICCCN, ISBN: 978-1-4673-5774-6, 2013, pp. 1–5.
E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-Report, 103, 2001, pp. 95–100.
Nguyen, Zhang, Johnston, Tan (b8) 2014; 18
Richter (b38) 2009
Jiang, Zou, Yao (b14) 2022; 55
Muruganantham, Tan, Vadakkepat (b24) 2016; 46
Zhang, Shen, Liu, Yen (b35) 2020; 24
Azzouz, Bechikh, Ben Said (b21) 2015; 21
S. Zeng, G. Chen, L. Zheng, H. Shi, H. de Garis, L. Ding, L. Kang, A dynamic multi-objective evolutionary algorithm based on an orthogonal design, in: 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 573–580.
Khan Mashwani, Salhi, Yeniay, Hussian, Jan (b65) 2017; 56
Azzouz, Bechikh, Ben Said (b13) 2017; Vol. 20
Jiang, Yang, Yao, Tan, Kaiser, Krasnogor (b60) 2018
Agrawal, Deb, Agrawal (b58) 1994; 9
Trivedi, Srinivasan, Sanyal, Ghosh (b34) 2017; 21
Goh, Tan (b15) 2009; 13
Jiang, Yang (b36) 2017; 21
Wilcoxon (b61) 1945; 1
Wang, Liu, Jin (b11) 2017; 79
Farina, Deb, Amato (b33) 2004; 8
Deb (b55) 2001
S. Sahmoud, H. Topcuoglu, Hybrid techniques for detecting changes in less detectable dynamic multiobjective optimization problems, in: Genetic & Evolutionary Computation Conference Companion, 2019, pp. 1449–1456.
Ruan, Yu, Zheng, Zou, Yang (b18) 2017; 58
Zhang, Zhou, Jin (b32) 2008; 12
Li, Zhang (b31) 2009; 13
Gee, Tan, Alippi (b39) 2017; 47
Zhao, Suganthan, Zhang (b57) 2012; 16
García, Fernández, Luengo, Herrera (b62) 2009; 13
I. Hatzakis, D. Wallace, Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach, in: GECCO 2006 - Genetic and Evolutionary Computation Conference, Vol. 2, 2006, pp. 1201–1208.
Azevedo, Araújo (b42) 2011
Deb, Jain (b5) 2014; 18
Liang, Zheng, Zhu, Yang (b27) 2019; 485
Wang, Ma, Wang (b64) 2022; 75
Peng, Wang, Han, Xiao, Zhou, Wu (b12) 2022; 131
Cao, Xu, Goodman, Bao, Zhu (b16) 2020; 24
Cobb, Grefenstette (b44) 1993
Cao, Xu, Goodman, Li (b50) 2019; 76
Trivedi, Srinivasan, Sanyal, Ghosh (b2) 2017; 21
Hu, Zheng, Zou, Yang, Ou, Wang (b63) 2020; 523
Li, Zhang, Wong (b1) 2021; 51
Chen, Wang, Pan, Wang, Gan, Wang, Zhu (b49) 2022; 246
Zhou, Jin, Zhang, Sendhoff, Tsang (b17) 2007
Wang, Li, Liao, Yan (b26) 2020; 96
Zhang, Li (b6) 2007; 11
Zhou, Jin, Zhang (b23) 2014; 44
He, Peng, Deng, Dong, Wu, Guo (b7) 2022
Ma, Yang, Sun, Hu, Wei (b41) 2021; 545
S. Sahmoud, H.R. Topcuoglu, Sensor-based change detection schemes for dynamic multi-objective optimization problems, in: 2016 IEEE Symposium Series on Computational Intelligence, SSCI, 2016, pp. 1–8.
J. Zhou, J. Zou, S. Yang, G. Ruan, J. Ou, J. Zheng, An evolutionary dynamic multi-objective optimization algorithm based on center-point prediction and sub-population autonomous guidance, in: 2018 IEEE Symposium Series on Computational Intelligence, SSCI, 2018, pp. 2148–2154.
Rong, Gong, Zhang, Jin, Pedrycz (b46) 2019; 49
R. Hinterding, Gaussian mutation and self-adaption for numeric genetic algorithms, in: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Vol. 1, 1995, pp. 384–389.
Sahmoud, Topcuoglu (b19) 2016
Peng, Zheng, Zou, Liu (b51) 2014; 19
Chen, Tseng (b52) 2014; 46
Deb, Pratap, Agarwal, Meyarivan (b3) 2002; 6
Wang, Liao, Li, Wang (b28) 2021; 580
Deb, N, Sindhya (b10) 2007
Cao, Xu, Goodman, Li (b29) 2017
Ruan (10.1016/j.swevo.2023.101356_b18) 2017; 58
Jiang (10.1016/j.swevo.2023.101356_b60) 2018
Peng (10.1016/j.swevo.2023.101356_b12) 2022; 131
Zhou (10.1016/j.swevo.2023.101356_b23) 2014; 44
Cao (10.1016/j.swevo.2023.101356_b50) 2019; 76
Sun (10.1016/j.swevo.2023.101356_b53) 2019; 23
10.1016/j.swevo.2023.101356_b54
Farina (10.1016/j.swevo.2023.101356_b33) 2004; 8
Deb (10.1016/j.swevo.2023.101356_b5) 2014; 18
Sahmoud (10.1016/j.swevo.2023.101356_b19) 2016
Azzouz (10.1016/j.swevo.2023.101356_b21) 2015; 21
Deb (10.1016/j.swevo.2023.101356_b55) 2001
Wilcoxon (10.1016/j.swevo.2023.101356_b61) 1945; 1
10.1016/j.swevo.2023.101356_b45
Chen (10.1016/j.swevo.2023.101356_b52) 2014; 46
10.1016/j.swevo.2023.101356_b47
Ma (10.1016/j.swevo.2023.101356_b41) 2021; 545
Cao (10.1016/j.swevo.2023.101356_b29) 2017
Liang (10.1016/j.swevo.2023.101356_b27) 2019; 485
Chen (10.1016/j.swevo.2023.101356_b49) 2022; 246
Wang (10.1016/j.swevo.2023.101356_b20) 2009
Zhou (10.1016/j.swevo.2023.101356_b17) 2007
Li (10.1016/j.swevo.2023.101356_b1) 2021; 51
Li (10.1016/j.swevo.2023.101356_b31) 2009; 13
Azzouz (10.1016/j.swevo.2023.101356_b13) 2017; Vol. 20
García (10.1016/j.swevo.2023.101356_b62) 2009; 13
Peng (10.1016/j.swevo.2023.101356_b51) 2014; 19
Zhang (10.1016/j.swevo.2023.101356_b35) 2020; 24
Liu (10.1016/j.swevo.2023.101356_b48) 2017; 261
10.1016/j.swevo.2023.101356_b56
Azevedo (10.1016/j.swevo.2023.101356_b42) 2011
Deb (10.1016/j.swevo.2023.101356_b10) 2007
Wang (10.1016/j.swevo.2023.101356_b26) 2020; 96
Mavrovouniotis (10.1016/j.swevo.2023.101356_b9) 2017; 47
Wang (10.1016/j.swevo.2023.101356_b11) 2017; 79
Zhao (10.1016/j.swevo.2023.101356_b57) 2012; 16
Gee (10.1016/j.swevo.2023.101356_b39) 2017; 47
Agrawal (10.1016/j.swevo.2023.101356_b58) 1994; 9
Trivedi (10.1016/j.swevo.2023.101356_b2) 2017; 21
Cao (10.1016/j.swevo.2023.101356_b16) 2020; 24
Richter (10.1016/j.swevo.2023.101356_b38) 2009
Deb (10.1016/j.swevo.2023.101356_b3) 2002; 6
Goh (10.1016/j.swevo.2023.101356_b15) 2009; 13
10.1016/j.swevo.2023.101356_b22
Hu (10.1016/j.swevo.2023.101356_b63) 2020; 523
Li (10.1016/j.swevo.2023.101356_b66) 2014; 44
Nguyen (10.1016/j.swevo.2023.101356_b8) 2014; 18
10.1016/j.swevo.2023.101356_b40
Muruganantham (10.1016/j.swevo.2023.101356_b24) 2016; 46
10.1016/j.swevo.2023.101356_b4
Zhang (10.1016/j.swevo.2023.101356_b32) 2008; 12
Khan Mashwani (10.1016/j.swevo.2023.101356_b65) 2017; 56
Jiang (10.1016/j.swevo.2023.101356_b36) 2017; 21
Cobb (10.1016/j.swevo.2023.101356_b44) 1993
Rong (10.1016/j.swevo.2023.101356_b46) 2019; 49
Jiang (10.1016/j.swevo.2023.101356_b14) 2022; 55
Chen (10.1016/j.swevo.2023.101356_b43) 2018; 22
Wang (10.1016/j.swevo.2023.101356_b64) 2022; 75
Trivedi (10.1016/j.swevo.2023.101356_b34) 2017; 21
Biswas (10.1016/j.swevo.2023.101356_b59) 2014
Wang (10.1016/j.swevo.2023.101356_b25) 2020; 56
10.1016/j.swevo.2023.101356_b37
Zhang (10.1016/j.swevo.2023.101356_b30) 2020; 24
Zhang (10.1016/j.swevo.2023.101356_b6) 2007; 11
He (10.1016/j.swevo.2023.101356_b7) 2022
Wang (10.1016/j.swevo.2023.101356_b28) 2021; 580
References_xml – volume: 485
  start-page: 200
  year: 2019
  end-page: 218
  ident: b27
  article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization
  publication-title: Inf. Sci.
– volume: 23
  start-page: 1615
  year: 2019
  end-page: 1642
  ident: b53
  article-title: Differential evolution with Gaussian mutation and dynamic parameter adjustment
  publication-title: Soft Comput.
– start-page: 1
  year: 2018
  end-page: 18
  ident: b60
  article-title: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 51
  start-page: 5811
  year: 2021
  end-page: 5824
  ident: b1
  article-title: Multiobjective genome-wide RNA-Binding event identification from CLIP-Seq data
  publication-title: IEEE Trans. Cybern.
– volume: 18
  start-page: 193
  year: 2014
  end-page: 208
  ident: b8
  article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– volume: 24
  start-page: 974
  year: 2020
  end-page: 988
  ident: b35
  article-title: Multiobjective evolution strategy for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 261
  start-page: 1028
  year: 2017
  end-page: 1051
  ident: b48
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: European J. Oper. Res.
– volume: 131
  start-page: 59
  year: 2022
  end-page: 74
  ident: b12
  article-title: Micro multi-strategy multi-objective artificial bee colony algorithm for microgrid energy optimization
  publication-title: Future Gener. Comput. Syst.
– volume: 16
  start-page: 442
  year: 2012
  end-page: 446
  ident: b57
  article-title: Decomposition-based multiobjective evolutionary algorithm With an ensemble of neighborhood sizes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 79
  start-page: 279
  year: 2017
  end-page: 290
  ident: b11
  article-title: A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling
  publication-title: Comput. Oper. Res.
– volume: 21
  start-page: 440
  year: 2017
  end-page: 462
  ident: b34
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– year: 2001
  ident: b55
  article-title: Multiobjective Optimization Using Evolutionary Algorithms
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: b15
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 65
  year: 2017
  end-page: 82
  ident: b36
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 96
  year: 2020
  ident: b26
  article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 2633
  year: 2014
  end-page: 2653
  ident: b51
  article-title: Novel prediction and memory strategies for dynamic multiobjective optimization
  publication-title: Soft Comput.
– volume: 55
  start-page: 1
  year: 2022
  end-page: 47
  ident: b14
  article-title: Evolutionary dynamic multi-Objective optimisation: a survey
  publication-title: ACM Comput. Surv.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b6
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: Vol. 20
  start-page: 31
  year: 2017
  end-page: 70
  ident: b13
  article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey
  publication-title: Recent Advances in Evolutionary Multi-Objective Optimization
– volume: 46
  start-page: 2862
  year: 2016
  end-page: 2873
  ident: b24
  article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction
  publication-title: IEEE Trans. Cybern.
– volume: 1
  start-page: 196
  year: 1945
  end-page: 202
  ident: b61
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
– volume: 545
  start-page: 1
  year: 2021
  end-page: 24
  ident: b41
  article-title: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Inform. Sci.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b31
  article-title: Multiobjective optimization problems With complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 523
  year: 1993
  end-page: 530
  ident: b44
  article-title: Genetic algorithms for tracking changing environments
  publication-title: Proceedings of the 5th International Conference on Genetic Algorithms
– start-page: 803
  year: 2007
  end-page: 817
  ident: b10
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling
– volume: 75
  year: 2022
  ident: b64
  article-title: A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy
  publication-title: Swarm Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b3
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b5
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems With box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 1430
  year: 2014
  end-page: 1445
  ident: b52
  article-title: An improved version of the multiple trajectory search for real value multi-objective optimization problems
  publication-title: Eng. Optim.
– volume: 24
  start-page: 305
  year: 2020
  end-page: 319
  ident: b16
  article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor
  publication-title: IEEE Trans. Evol. Comput.
– reference: S. Sahmoud, H. Topcuoglu, Hybrid techniques for detecting changes in less detectable dynamic multiobjective optimization problems, in: Genetic & Evolutionary Computation Conference Companion, 2019, pp. 1449–1456.
– volume: 21
  start-page: 440
  year: 2017
  end-page: 462
  ident: b2
  article-title: A Survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 959
  year: 2009
  end-page: 977
  ident: b62
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
  publication-title: Soft Comput.
– start-page: 630
  year: 2009
  end-page: 637
  ident: b20
  article-title: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment
  publication-title: 2009 IEEE Congress on Evolutionary Computation
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: b33
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
– reference: E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-Report, 103, 2001, pp. 95–100.
– reference: S. Sahmoud, H.R. Topcuoglu, Sensor-based change detection schemes for dynamic multi-objective optimization problems, in: 2016 IEEE Symposium Series on Computational Intelligence, SSCI, 2016, pp. 1–8.
– volume: 523
  start-page: 49
  year: 2020
  end-page: 62
  ident: b63
  article-title: A dynamic multi-objective evolutionary algorithm based on intensity of environmental change
  publication-title: Inform. Sci.
– reference: I. Hatzakis, D. Wallace, Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach, in: GECCO 2006 - Genetic and Evolutionary Computation Conference, Vol. 2, 2006, pp. 1201–1208.
– volume: 580
  start-page: 331
  year: 2021
  end-page: 351
  ident: b28
  article-title: A new prediction strategy for dynamic multi-objective optimization using gaussian mixture model
  publication-title: Inform. Sci.
– start-page: 832
  year: 2007
  end-page: 846
  ident: b17
  publication-title: Prediction-Based Population Re-Initialization for Evolutionary Dynamic Multi-Objective Optimization
– start-page: 296
  year: 2016
  end-page: 310
  ident: b19
  publication-title: A Memory-Based NSGA-II Algorithm for Dynamic Multi-Objective Optimization Problems
– volume: 44
  start-page: 1295
  year: 2014
  end-page: 1313
  ident: b66
  article-title: Evolutionary algorithms with segment-based search for multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 56
  year: 2020
  ident: b25
  article-title: A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Swarm Evol. Comput.
– reference: R. Hinterding, Gaussian mutation and self-adaption for numeric genetic algorithms, in: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Vol. 1, 1995, pp. 384–389.
– start-page: 3192
  year: 2014
  end-page: 3199
  ident: b59
  article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions
  publication-title: 2014 IEEE Congress on Evolutionary Computation
– volume: 58
  start-page: 631
  year: 2017
  end-page: 647
  ident: b18
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 115
  year: 1994
  end-page: 148
  ident: b58
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 47
  start-page: 4223
  year: 2017
  end-page: 4234
  ident: b39
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach
  publication-title: IEEE Trans. Cybern.
– start-page: 644
  year: 2017
  end-page: 655
  ident: b29
  article-title: A First-Order Difference Model-Based Evolutionary Dynamic Multiobjective Optimization
– reference: S. Zeng, G. Chen, L. Zheng, H. Shi, H. de Garis, L. Ding, L. Kang, A dynamic multi-objective evolutionary algorithm based on an orthogonal design, in: 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 573–580.
– volume: 246
  year: 2022
  ident: b49
  article-title: Dynamic multiobjective evolutionary algorithm with adaptive response mechanism selection strategy
  publication-title: Knowl.-Based Syst.
– start-page: 1613
  year: 2009
  end-page: 1620
  ident: b38
  article-title: Detecting change in dynamic fitness landscapes
  publication-title: 2009 IEEE Congress on Evolutionary Computation
– volume: 22
  start-page: 157
  year: 2018
  end-page: 171
  ident: b43
  article-title: Dynamic multiobjectives optimization With a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 40
  year: 2014
  end-page: 53
  ident: b23
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– reference: J. Zhou, J. Zou, S. Yang, G. Ruan, J. Ou, J. Zheng, An evolutionary dynamic multi-objective optimization algorithm based on center-point prediction and sub-population autonomous guidance, in: 2018 IEEE Symposium Series on Computational Intelligence, SSCI, 2018, pp. 2148–2154.
– reference: K. Liagkouras, K. Metaxiotis, An elitist polynomial mutation operator for improved performance of MOEAs in computer networks, in: Proceedings - International Conference on Computer Communications and Networks, ICCCN, ISBN: 978-1-4673-5774-6, 2013, pp. 1–5.
– start-page: 2033
  year: 2011
  end-page: 2040
  ident: b42
  article-title: Generalized immigration schemes for dynamic evolutionary multiobjective optimization
  publication-title: 2011 IEEE Congress of Evolutionary Computation
– start-page: 1
  year: 2022
  end-page: 22
  ident: b7
  article-title: Reference point reconstruction-based firefly algorithm for irregular multi-objective optimization
  publication-title: Appl. Intell.
– volume: 12
  start-page: 41
  year: 2008
  end-page: 63
  ident: b32
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 49
  start-page: 3362
  year: 2019
  end-page: 3374
  ident: b46
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 24
  start-page: 260
  year: 2020
  end-page: 274
  ident: b30
  article-title: Novel prediction strategies for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 76
  start-page: 473
  year: 2019
  end-page: 490
  ident: b50
  article-title: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 1
  year: 2015
  end-page: 22
  ident: b21
  article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy
  publication-title: Soft Comput.
– volume: 56
  start-page: 1
  year: 2017
  end-page: 18
  ident: b65
  article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection
  publication-title: Appl. Soft Comput.
– volume: 47
  start-page: 1743
  year: 2017
  end-page: 1756
  ident: b9
  article-title: Ant colony optimization With local search for dynamic traveling salesman problems
  publication-title: IEEE Trans. Cybern.
– ident: 10.1016/j.swevo.2023.101356_b56
  doi: 10.1109/ICCCN.2013.6614105
– ident: 10.1016/j.swevo.2023.101356_b37
  doi: 10.1109/SSCI.2016.7849963
– volume: 19
  start-page: 2633
  year: 2014
  ident: 10.1016/j.swevo.2023.101356_b51
  article-title: Novel prediction and memory strategies for dynamic multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1433-3
– start-page: 296
  year: 2016
  ident: 10.1016/j.swevo.2023.101356_b19
– volume: 46
  start-page: 1430
  issue: 10
  year: 2014
  ident: 10.1016/j.swevo.2023.101356_b52
  article-title: An improved version of the multiple trajectory search for real value multi-objective optimization problems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.846333
– ident: 10.1016/j.swevo.2023.101356_b54
  doi: 10.1109/ICEC.1995.489178
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.swevo.2023.101356_b15
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.swevo.2023.101356_b31
  article-title: Multiobjective optimization problems With complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2023.101356_b23
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– volume: 96
  year: 2020
  ident: 10.1016/j.swevo.2023.101356_b26
  article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106592
– volume: 76
  start-page: 473
  year: 2019
  ident: 10.1016/j.swevo.2023.101356_b50
  article-title: Decomposition-based evolutionary dynamic multiobjective optimization using a difference model
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.12.031
– ident: 10.1016/j.swevo.2023.101356_b4
– volume: 580
  start-page: 331
  year: 2021
  ident: 10.1016/j.swevo.2023.101356_b28
  article-title: A new prediction strategy for dynamic multi-objective optimization using gaussian mixture model
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.08.065
– volume: 46
  start-page: 2862
  issue: 12
  year: 2016
  ident: 10.1016/j.swevo.2023.101356_b24
  article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490738
– volume: 22
  start-page: 157
  issue: 1
  year: 2018
  ident: 10.1016/j.swevo.2023.101356_b43
  article-title: Dynamic multiobjectives optimization With a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669638
– volume: 51
  start-page: 5811
  issue: 12
  year: 2021
  ident: 10.1016/j.swevo.2023.101356_b1
  article-title: Multiobjective genome-wide RNA-Binding event identification from CLIP-Seq data
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2960515
– volume: 44
  start-page: 1295
  issue: 8
  year: 2014
  ident: 10.1016/j.swevo.2023.101356_b66
  article-title: Evolutionary algorithms with segment-based search for multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2282503
– volume: 79
  start-page: 279
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b11
  article-title: A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.04.024
– year: 2001
  ident: 10.1016/j.swevo.2023.101356_b55
– volume: 16
  start-page: 442
  issue: 3
  year: 2012
  ident: 10.1016/j.swevo.2023.101356_b57
  article-title: Decomposition-based multiobjective evolutionary algorithm With an ensemble of neighborhood sizes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2166159
– volume: 49
  start-page: 3362
  issue: 9
  year: 2019
  ident: 10.1016/j.swevo.2023.101356_b46
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2842158
– start-page: 644
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b29
– volume: 58
  start-page: 631
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b18
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.008
– volume: 24
  start-page: 260
  issue: 2
  year: 2020
  ident: 10.1016/j.swevo.2023.101356_b30
  article-title: Novel prediction strategies for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2922834
– start-page: 832
  year: 2007
  ident: 10.1016/j.swevo.2023.101356_b17
– start-page: 2033
  year: 2011
  ident: 10.1016/j.swevo.2023.101356_b42
  article-title: Generalized immigration schemes for dynamic evolutionary multiobjective optimization
– volume: Vol. 20
  start-page: 31
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b13
  article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey
– start-page: 1
  year: 2022
  ident: 10.1016/j.swevo.2023.101356_b7
  article-title: Reference point reconstruction-based firefly algorithm for irregular multi-objective optimization
  publication-title: Appl. Intell.
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2023.101356_b6
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: 10.1016/j.swevo.2023.101356_b40
  doi: 10.1145/3319619.3326867
– start-page: 1613
  year: 2009
  ident: 10.1016/j.swevo.2023.101356_b38
  article-title: Detecting change in dynamic fitness landscapes
– start-page: 523
  year: 1993
  ident: 10.1016/j.swevo.2023.101356_b44
  article-title: Genetic algorithms for tracking changing environments
– ident: 10.1016/j.swevo.2023.101356_b47
  doi: 10.1109/SSCI.2018.8628655
– start-page: 1
  year: 2018
  ident: 10.1016/j.swevo.2023.101356_b60
  article-title: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation
– start-page: 803
  year: 2007
  ident: 10.1016/j.swevo.2023.101356_b10
– volume: 24
  start-page: 974
  issue: 5
  year: 2020
  ident: 10.1016/j.swevo.2023.101356_b35
  article-title: Multiobjective evolution strategy for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2985323
– volume: 47
  start-page: 1743
  issue: 7
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b9
  article-title: Ant colony optimization With local search for dynamic traveling salesman problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2556742
– volume: 56
  start-page: 1
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b65
  article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.056
– start-page: 630
  year: 2009
  ident: 10.1016/j.swevo.2023.101356_b20
  article-title: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment
– volume: 545
  start-page: 1
  year: 2021
  ident: 10.1016/j.swevo.2023.101356_b41
  article-title: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.07.009
– volume: 21
  start-page: 440
  issue: 3
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b2
  article-title: A Survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 246
  year: 2022
  ident: 10.1016/j.swevo.2023.101356_b49
  article-title: Dynamic multiobjective evolutionary algorithm with adaptive response mechanism selection strategy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108691
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2023.101356_b5
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems With box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.swevo.2023.101356_b33
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b36
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2574621
– volume: 21
  start-page: 1
  year: 2015
  ident: 10.1016/j.swevo.2023.101356_b21
  article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy
  publication-title: Soft Comput.
– volume: 56
  year: 2020
  ident: 10.1016/j.swevo.2023.101356_b25
  article-title: A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100695
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.swevo.2023.101356_b32
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.894202
– volume: 9
  start-page: 115
  year: 1994
  ident: 10.1016/j.swevo.2023.101356_b58
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– ident: 10.1016/j.swevo.2023.101356_b45
– volume: 523
  start-page: 49
  year: 2020
  ident: 10.1016/j.swevo.2023.101356_b63
  article-title: A dynamic multi-objective evolutionary algorithm based on intensity of environmental change
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.02.071
– volume: 485
  start-page: 200
  year: 2019
  ident: 10.1016/j.swevo.2023.101356_b27
  article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.01.066
– volume: 24
  start-page: 305
  issue: 2
  year: 2020
  ident: 10.1016/j.swevo.2023.101356_b16
  article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2925722
– ident: 10.1016/j.swevo.2023.101356_b22
  doi: 10.1145/1143997.1144187
– volume: 23
  start-page: 1615
  issue: 5
  year: 2019
  ident: 10.1016/j.swevo.2023.101356_b53
  article-title: Differential evolution with Gaussian mutation and dynamic parameter adjustment
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2885-z
– volume: 75
  year: 2022
  ident: 10.1016/j.swevo.2023.101356_b64
  article-title: A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101164
– start-page: 3192
  year: 2014
  ident: 10.1016/j.swevo.2023.101356_b59
  article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2023.101356_b3
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 13
  start-page: 959
  issue: 10
  year: 2009
  ident: 10.1016/j.swevo.2023.101356_b62
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0392-y
– volume: 47
  start-page: 4223
  issue: 12
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b39
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: an inverse modeling approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2602561
– volume: 18
  start-page: 193
  issue: 2
  year: 2014
  ident: 10.1016/j.swevo.2023.101356_b8
  article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2248159
– volume: 21
  start-page: 440
  issue: 3
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b34
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 196
  year: 1945
  ident: 10.1016/j.swevo.2023.101356_b61
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
– volume: 261
  start-page: 1028
  issue: 3
  year: 2017
  ident: 10.1016/j.swevo.2023.101356_b48
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.03.048
– volume: 55
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.swevo.2023.101356_b14
  article-title: Evolutionary dynamic multi-Objective optimisation: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3524495
– volume: 131
  start-page: 59
  year: 2022
  ident: 10.1016/j.swevo.2023.101356_b12
  article-title: Micro multi-strategy multi-objective artificial bee colony algorithm for microgrid energy optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2022.01.011
SSID ssj0000602559
Score 2.4427602
Snippet A key issue in evolutionary algorithms for dynamic multi-objective optimization problems (DMOPs) is how to detect and response environmental changes. Most...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101356
SubjectTerms Decomposition
Dynamic multi-objective optimization
Hybrid environmental change response mechanism
Multi-strategy evolutionary operator
Title Multi-strategy dynamic multi-objective evolutionary algorithm with hybrid environmental change responses
URI https://dx.doi.org/10.1016/j.swevo.2023.101356
Volume 82
WOSCitedRecordID wos001044955400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgMvbHyJMUB-4K24WpwmTh4nNLShaZrEkCpeIte1-6GSTmnadX8E_zNnn5M2K6rYAy9R5DgXJ_fL5e5yH4R86jtbJ06Y0gIMFCMNg4-wYgpsA1fhjEvH6UtxdZX0eul1q_W7yoVZTkWeJ6tVevtfWQ1jwGybOvsIdtdEYQD2gemwBbbD9p8Y71Jq2Ryrzt63B9hyHiMH2aw_QQnX1ku_Chs2J6fDWTEuR7_QLzu6t3lcm0lwtoqIy0NoFxhU60MPvVr7_U4W2GujQVa5lhGNf_3XGoXL-aJmtR77__75EK423HZlj1eA4Xr8cuG8uz9HMLeswO39FnwdAefFGwdjk4F-2JDF2IjIC1OQFiFWHd-S8-hymHTmd3BbHUu-s57drKr94GtXxyBW4W2TzBHJLJEMiTwh-1xEKQjJ_dOLs9632ml3EjsTzDYsrFZfVbJyMYNby_m7trOhwdwckufe9KCnCJkXpKXzl-SgautBvZR_RUZNBFGPIPoAQXST1bRGELUIoogg2kAQRQTRGkGvyY-vZzdfzplvyMEUaDolkwm80BEXg0hLrngUikGswkSGAx2b7klXBgo0XBVHBo6Yfso1DyOdGCHSyKi-Dt-QvXyW67eEikgIq9urQARdwbWMDTxwUByCQBmh5RHh1YPLlK9Wb5umTLMdfDsin-uTbrFYy-7pccWRzOubqEdmALNdJ7573HWOybP1C_Ce7JXFQn8gT9WyHM-Ljx5jfwCEIKlO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-strategy+dynamic+multi-objective+evolutionary+algorithm+with+hybrid+environmental+change+responses&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Peng%2C+Hu&rft.au=Mei%2C+Changrong&rft.au=Zhang%2C+Sixiang&rft.au=Luo%2C+Zhongtian&rft.date=2023-10-01&rft.issn=2210-6502&rft.volume=82&rft.spage=101356&rft_id=info:doi/10.1016%2Fj.swevo.2023.101356&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2023_101356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon