Stochastic simulation algorithms for solving a nonlinear system of drift–diffusion-Poisson equations of semiconductors

Stochastic simulation algorithms for solving transient nonlinear drift diffusion recombination transport equations are developed. The governing system of equations includes two drift–diffusion equations coupled with a Poisson equation for the potential whose gradient forms the drift velocity. A stoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A Jg. 556; S. 124800
Hauptverfasser: Sabelfeld, Karl K., Kireeva, Anastasya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.10.2020
Schlagworte:
ISSN:0378-4371, 1873-2119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Stochastic simulation algorithms for solving transient nonlinear drift diffusion recombination transport equations are developed. The governing system of equations includes two drift–diffusion equations coupled with a Poisson equation for the potential whose gradient forms the drift velocity. A stochastic algorithm for solving nonlinear drift–diffusion equations is proposed here for the first time. In each time step, the method calculates the solution on a cloud of points using a new global Monte Carlo random walk and Cellular Automata algorithms. The Poisson equation is solved by a global version of the Random Walk on Spheres method which calculates both the solutions and the derivatives without using finite difference approximations. The method is also able to calculate fluxes to any desired part of the boundary, from arbitrary sources. For transient drift–diffusion equations we suggest a stochastic expansion from cell to cell algorithm for calculating the whole solution field. All new global random walk algorithms developed in this paper are validated by comparing the simulation results with exact solutions. Application of the developed method to solve a system of 2D transport equations for electrons and holes in a semiconductor is given. •A new Monte Carlo algorithm for nonlinear drift–diffusion-Poisson systems is developed.•The algorithm for drift calculation is meshless in space and time.•The accuracy and the cost of the algorithm are estimated and analyzed.•The performance of the algorithm is shown by solving transport problems in semiconductors.
AbstractList Stochastic simulation algorithms for solving transient nonlinear drift diffusion recombination transport equations are developed. The governing system of equations includes two drift–diffusion equations coupled with a Poisson equation for the potential whose gradient forms the drift velocity. A stochastic algorithm for solving nonlinear drift–diffusion equations is proposed here for the first time. In each time step, the method calculates the solution on a cloud of points using a new global Monte Carlo random walk and Cellular Automata algorithms. The Poisson equation is solved by a global version of the Random Walk on Spheres method which calculates both the solutions and the derivatives without using finite difference approximations. The method is also able to calculate fluxes to any desired part of the boundary, from arbitrary sources. For transient drift–diffusion equations we suggest a stochastic expansion from cell to cell algorithm for calculating the whole solution field. All new global random walk algorithms developed in this paper are validated by comparing the simulation results with exact solutions. Application of the developed method to solve a system of 2D transport equations for electrons and holes in a semiconductor is given. •A new Monte Carlo algorithm for nonlinear drift–diffusion-Poisson systems is developed.•The algorithm for drift calculation is meshless in space and time.•The accuracy and the cost of the algorithm are estimated and analyzed.•The performance of the algorithm is shown by solving transport problems in semiconductors.
ArticleNumber 124800
Author Kireeva, Anastasya
Sabelfeld, Karl K.
Author_xml – sequence: 1
  givenname: Karl K.
  surname: Sabelfeld
  fullname: Sabelfeld, Karl K.
  email: sabelfeld.karl@yahoo.de
– sequence: 2
  givenname: Anastasya
  surname: Kireeva
  fullname: Kireeva, Anastasya
  email: sharifulina@ssd.sscc.ru
BookMark eNqFkEtuGzEMhoUiAeI8TpDNXGBcvTyPRReF0TQFDLRAk7WgoaSYxszIFeWg3uUOvWFO0rHdVRbNigDB7yf5XbKzMY6esVvB54KL6uNmvl3vyc4ll1NH6obzD2wmmlqVUoj2jM24qptSq1pcsEuiDedc1ErO2O-fOcLaUkYoCIddbzPGsbD9U0yY1wMVIaaCYv-M41Nhi2lxj6O3U29P2Q9FDIVLGPLryx-HIexowssfEYmmGP9rd8yjwxj5ASGObgc5Jrpm58H25G_-1Sv2ePflYXlfrr5__bb8vCpBcZVLq21YLKRQsnUdaKmqwEHXHQgOzjU1aN92VQVdt9BSLGzrtOaiq9uqaiyESl2x9pQLKRIlHwxgPh6Vk8XeCG4OCs3GHBWag0JzUjix6g27TTjYtH-H-nSi_PTWM_pkCNCP4B0mD9m4iP_l_wL5gZNG
CitedBy_id crossref_primary_10_1515_mcma_2021_2097
crossref_primary_10_1016_j_jpdc_2021_08_006
crossref_primary_10_1515_mcma_2021_2092
Cites_doi 10.1016/S0021-9991(03)00073-1
10.1007/BF01450410
10.1007/s10825-017-1118-0
10.1002/zamm.19670470502
10.1016/j.spl.2016.10.006
10.1515/mcma-2019-2039
10.1016/j.camwa.2018.05.025
10.1007/s10910-014-0446-6
10.1515/mcma-2016-0118
10.1007/978-3-030-25636-4_27
10.1016/j.agrformet.2004.07.007
10.1134/S1064562418060108
10.1515/mcma-2019-2032
10.1214/aoap/1029962812
10.1515/rnam.1995.10.6.495
10.1515/mcma-2017-0113
10.1016/S0021-8502(00)00031-8
10.1007/BF00536914
10.1016/0167-2789(94)00093-X
10.1103/RevModPhys.15.1
10.1007/s11009-006-7292-3
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2020.124800
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2020_124800
S037843712030409X
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c303t-a4af5521329dbc4236f0c47bc10cdd87c4e9b66cbb54215a9d4401b79668acf63
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551669500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Sat Nov 29 07:16:50 EST 2025
Tue Nov 18 20:36:03 EST 2025
Fri Feb 23 02:47:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Drift–diffusion-Poisson equation
Transport of electrons and holes
Global random walk on spheres
Stochastic expansion from cell to cell algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-a4af5521329dbc4236f0c47bc10cdd87c4e9b66cbb54215a9d4401b79668acf63
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2020_124800
crossref_primary_10_1016_j_physa_2020_124800
elsevier_sciencedirect_doi_10_1016_j_physa_2020_124800
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ito, Mckean (b1) 1965
A.P. Prudnikov, Brychkov Yu. A., O.I. Marychev, Integrals and Series, vol. 1. Elementary Functions.
Vamos, Suciu, Vereecken (b26) 2003; 186
Medvedev (b16) 2010; vol. 6083
Sabelfeld (b6) 2017; 121
Buffoni, Cupini (b25) 2001; 6
Grebenkov (b8) 2014
Amann (b29) 1967; 47
Deaconu, Lejay (b7) 2006; 8
Milewski (b10) 2018; 76
Milstein, Tretyakov (b3) 1999; 9
Cheshkova (b30) 1995; 10
Polyanin (b27) 2002
Dimitrijev (b21) 2006
Khodadadian, Taghizadeh, Heitzinger (b5) 2018
Sabelfeld (b4) 1991
K. (b23) 2018; 98
Karl (b24) 2019; 25
Sabelfeld, Brandt, Kaganer (b22) 2015; 53
Chandrasekhar (b32) 1943; 15
Sabelfeld (b9) 2019; 25
Kireeva, Sabelfeld, Kireev (b19) 2019
Vesala, Rannik, Leclerc, Foken, Sabelfeld (b18) 2004; 127
Amann (b28) 1967; 8
Sabelfeld, Kireeva (b14) 2019
Karapiperis, Blankleider (b15) 1994; 78
Markowich, Ringhofer, Schmeiser (b20) 1990
Ermakov, Sipin (b2) 2009
Mikhailov, Cheshkova (b31) 1998; 38
Hertz (b34) 1909; 67
Sabelfeld (b13) 2019
Sabelfeld (b11) 2016; 22
Sabelfeld (b12) 2017; 23
Onischuk, Levykin, Strunun, Ushakova, Samoilova, Sabelfeld, Panfilov (b17) 2000; 31
Sabelfeld (10.1016/j.physa.2020.124800_b9) 2019; 25
10.1016/j.physa.2020.124800_b33
Sabelfeld (10.1016/j.physa.2020.124800_b4) 1991
Onischuk (10.1016/j.physa.2020.124800_b17) 2000; 31
Ito (10.1016/j.physa.2020.124800_b1) 1965
Milstein (10.1016/j.physa.2020.124800_b3) 1999; 9
Amann (10.1016/j.physa.2020.124800_b29) 1967; 47
Sabelfeld (10.1016/j.physa.2020.124800_b12) 2017; 23
Karapiperis (10.1016/j.physa.2020.124800_b15) 1994; 78
Deaconu (10.1016/j.physa.2020.124800_b7) 2006; 8
Sabelfeld (10.1016/j.physa.2020.124800_b6) 2017; 121
Ermakov (10.1016/j.physa.2020.124800_b2) 2009
Milewski (10.1016/j.physa.2020.124800_b10) 2018; 76
Sabelfeld (10.1016/j.physa.2020.124800_b11) 2016; 22
Hertz (10.1016/j.physa.2020.124800_b34) 1909; 67
Sabelfeld (10.1016/j.physa.2020.124800_b22) 2015; 53
Markowich (10.1016/j.physa.2020.124800_b20) 1990
Sabelfeld (10.1016/j.physa.2020.124800_b14) 2019
Polyanin (10.1016/j.physa.2020.124800_b27) 2002
Kireeva (10.1016/j.physa.2020.124800_b19) 2019
Buffoni (10.1016/j.physa.2020.124800_b25) 2001; 6
Karl (10.1016/j.physa.2020.124800_b24) 2019; 25
Khodadadian (10.1016/j.physa.2020.124800_b5) 2018
K. (10.1016/j.physa.2020.124800_b23) 2018; 98
Dimitrijev (10.1016/j.physa.2020.124800_b21) 2006
Amann (10.1016/j.physa.2020.124800_b28) 1967; 8
Vamos (10.1016/j.physa.2020.124800_b26) 2003; 186
Chandrasekhar (10.1016/j.physa.2020.124800_b32) 1943; 15
Vesala (10.1016/j.physa.2020.124800_b18) 2004; 127
Mikhailov (10.1016/j.physa.2020.124800_b31) 1998; 38
Grebenkov (10.1016/j.physa.2020.124800_b8) 2014
Sabelfeld (10.1016/j.physa.2020.124800_b13) 2019
Medvedev (10.1016/j.physa.2020.124800_b16) 2010; vol. 6083
Cheshkova (10.1016/j.physa.2020.124800_b30) 1995; 10
References_xml – volume: vol. 6083
  start-page: 204
  year: 2010
  end-page: 211
  ident: b16
  article-title: Multi-particle cellular-automata models for diffusion simulation
  publication-title: LNCS
– volume: 25
  start-page: 85
  year: 2019
  end-page: 96
  ident: b24
  article-title: Sabelfeld: A global random walk on spheres algorithm for transient heat equation and some extensions
  publication-title: Monte Carlo Methods Appl.
– volume: 15
  start-page: 1
  year: 1943
  end-page: 89
  ident: b32
  article-title: Stochastic problems in physics and astronomy
  publication-title: Rev. Modern Phys.
– year: 1990
  ident: b20
  article-title: Semiconductor Equations
– volume: 47
  start-page: 285
  year: 1967
  end-page: 299
  ident: b29
  article-title: Optimale anfangsverteilungen bei der Monte–Carlo–methode mit informationsspeicherung
  publication-title: Z. Angew. Math. Mech.
– volume: 98
  start-page: 435
  year: 2018
  end-page: 438
  ident: b23
  article-title: Sabelfeld: A mesh free stochastic algorithm for solving diffusion-convection-reaction equations on complicated domains
  publication-title: Dokl. Math.
– volume: 31
  start-page: 1263
  year: 2000
  end-page: 1281
  ident: b17
  article-title: Aggregate under homogeneous Silane thermal decomposition
  publication-title: J. Aerosol Sci.
– year: 1991
  ident: b4
  article-title: Monte Carlo Methods for Boundary Value Problems
– volume: 127
  start-page: 111
  year: 2004
  end-page: 116
  ident: b18
  article-title: Flux and concentration footprints
  publication-title: Agricult. Forest Meterol.
– reference: A.P. Prudnikov, Brychkov Yu. A., O.I. Marychev, Integrals and Series, vol. 1. Elementary Functions.
– year: 2019
  ident: b13
  article-title: Meshfree stochastic algorithms for systems of diffusion-advection-reaction equations and anisotropic diffusion flux calculations
  publication-title: Probabilistic Eng. Mech.
– year: 2014
  ident: b8
  article-title: Efficient Monte Carlo methods for simulating diffusion-reaction processes in complex systems
  publication-title: First-Passage Phenomena and their Applications
– volume: 121
  start-page: 6
  year: 2017
  end-page: 11
  ident: b6
  article-title: A mesh free floating random walk method for solving diffusion imaging problems
  publication-title: Statist. Probab. Lett.
– volume: 38
  start-page: 99
  year: 1998
  end-page: 106
  ident: b31
  article-title: Solution of the Dirichlet difference problem for the multidimensional Helmholtz equation by the Monte Carlo method
  publication-title: J. Comput. Math. Math. Phys.
– volume: 8
  start-page: 117
  year: 1967
  end-page: 130
  ident: b28
  article-title: Eine Monte–Carlo–methode mit informationsspeicherung zur Lösung yon elliptischen randwertproblemen
  publication-title: Z. Wahrscheinlichkeitstheor. Verwandte Geb.
– volume: 23
  start-page: 189
  year: 2017
  end-page: 212
  ident: b12
  article-title: Random walk on spheres algorithm for solving transient drift diffusion-reaction problems
  publication-title: Monte Carlo Methods Appl.
– volume: 78
  start-page: 30
  year: 1994
  end-page: 64
  ident: b15
  article-title: Cellular automation model of reaction-transport processes
  publication-title: Physica D
– volume: 6
  start-page: 9
  year: 2001
  end-page: 19
  ident: b25
  article-title: The adjoint advection-diffusion equation in stationary and time dependent problems: a reciprocity relation
  publication-title: Riv. Mat. Univ. Parma
– year: 2006
  ident: b21
  article-title: Principles of Semiconductor Devices
– start-page: 76
  year: 2018
  end-page: 89
  ident: b5
  article-title: Three-dimensional optimal multi-level Monte–Carlo approximation of the stochastic drift–diffusion–Poisson system in nanoscale devices
  publication-title: J. Comput. Electron.
– volume: 10
  start-page: 495
  year: 1995
  end-page: 510
  ident: b30
  article-title: Global estimate of the solution of the Dirichlet problem for the Helmholtz
  publication-title: Russian J. Numer. Anal. Math. Modelling
– volume: 8
  start-page: 135
  year: 2006
  ident: b7
  article-title: A random walk on rectangles algorithm
  publication-title: Methodol. Comput. Appl. Probab.
– volume: 25
  start-page: 131
  year: 2019
  end-page: 146
  ident: b9
  article-title: Random walk on rectangles and parallelepipeds algorithm for solving transient anisotropic drift-diffusion-reaction problems
  publication-title: Monte Carlo Methods Appl.
– volume: 186
  start-page: 527
  year: 2003
  end-page: 544
  ident: b26
  article-title: Generalized random walk algorithm for the numerical modeling of complex diffusion processes
  publication-title: J. Comput. Phys.
– start-page: 9
  year: 2009
  end-page: 18
  ident: b2
  article-title: The Random Walk on Semi-Spheres and Applications for Solving Boundary Value Problems
– volume: 9
  start-page: 732
  year: 1999
  end-page: 779
  ident: b3
  article-title: Simulation of a space–time bounded diffusion
  publication-title: Ann. Appl. Probab.
– year: 2002
  ident: b27
  article-title: Handbook of Linear Partial Differential Equations for Engineers and Scientists
– year: 1965
  ident: b1
  article-title: Diffusion Processes and their Sample Paths
– volume: 67
  start-page: 387
  year: 1909
  end-page: 398
  ident: b34
  article-title: Über den gegenseitigen durchschnittlichen Abstand von Pukten die mit bekannter mittlerer Dichte im Raume angeordnet sind
  publication-title: Math. Ann.
– volume: 76
  start-page: 854
  year: 2018
  end-page: 876
  ident: b10
  article-title: Combination of the meshless finite difference approach with the Monte Carlo random walk technique for solution of elliptic problems
  publication-title: Comput. Math. Appl.
– year: 2019
  ident: b14
  article-title: A meshless random walk on parallelepipeds algorithm for solving transient anisotropic diffusion-recombination equations and applications to cathodoluminescence imaging
  publication-title: Numer. Math.
– volume: 53
  start-page: 651
  year: 2015
  end-page: 669
  ident: b22
  article-title: Stochastic model for the fluctuation-limited reaction–diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations
  publication-title: J. Math. Chem.
– year: 2019
  ident: b19
  article-title: Synchronous multi-particle cellular automaton model of diffusion with self-annihilation
  publication-title: Lecture Notes in Comput. Sci.
– volume: 22
  start-page: 265
  year: 2016
  end-page: 281
  ident: b11
  article-title: Random walk on spheres method for solving drift-diffusion problems
  publication-title: Monte Carlo Methods Appl.
– year: 2019
  ident: 10.1016/j.physa.2020.124800_b13
  article-title: Meshfree stochastic algorithms for systems of diffusion-advection-reaction equations and anisotropic diffusion flux calculations
  publication-title: Probabilistic Eng. Mech.
– volume: 186
  start-page: 527
  year: 2003
  ident: 10.1016/j.physa.2020.124800_b26
  article-title: Generalized random walk algorithm for the numerical modeling of complex diffusion processes
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00073-1
– volume: 67
  start-page: 387
  year: 1909
  ident: 10.1016/j.physa.2020.124800_b34
  article-title: Über den gegenseitigen durchschnittlichen Abstand von Pukten die mit bekannter mittlerer Dichte im Raume angeordnet sind
  publication-title: Math. Ann.
  doi: 10.1007/BF01450410
– start-page: 76
  issue: 17
  year: 2018
  ident: 10.1016/j.physa.2020.124800_b5
  article-title: Three-dimensional optimal multi-level Monte–Carlo approximation of the stochastic drift–diffusion–Poisson system in nanoscale devices
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-017-1118-0
– volume: 47
  start-page: 285
  issue: 5
  year: 1967
  ident: 10.1016/j.physa.2020.124800_b29
  article-title: Optimale anfangsverteilungen bei der Monte–Carlo–methode mit informationsspeicherung
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19670470502
– volume: 38
  start-page: 99
  issue: 1
  year: 1998
  ident: 10.1016/j.physa.2020.124800_b31
  article-title: Solution of the Dirichlet difference problem for the multidimensional Helmholtz equation by the Monte Carlo method
  publication-title: J. Comput. Math. Math. Phys.
– volume: 121
  start-page: 6
  year: 2017
  ident: 10.1016/j.physa.2020.124800_b6
  article-title: A mesh free floating random walk method for solving diffusion imaging problems
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2016.10.006
– volume: 25
  start-page: 131
  issue: 2
  year: 2019
  ident: 10.1016/j.physa.2020.124800_b9
  article-title: Random walk on rectangles and parallelepipeds algorithm for solving transient anisotropic drift-diffusion-reaction problems
  publication-title: Monte Carlo Methods Appl.
  doi: 10.1515/mcma-2019-2039
– volume: 76
  start-page: 854
  issue: 4
  year: 2018
  ident: 10.1016/j.physa.2020.124800_b10
  article-title: Combination of the meshless finite difference approach with the Monte Carlo random walk technique for solution of elliptic problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.05.025
– volume: 53
  start-page: 651
  issue: 2
  year: 2015
  ident: 10.1016/j.physa.2020.124800_b22
  article-title: Stochastic model for the fluctuation-limited reaction–diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-014-0446-6
– volume: 22
  start-page: 265
  issue: 4
  year: 2016
  ident: 10.1016/j.physa.2020.124800_b11
  article-title: Random walk on spheres method for solving drift-diffusion problems
  publication-title: Monte Carlo Methods Appl.
  doi: 10.1515/mcma-2016-0118
– volume: vol. 6083
  start-page: 204
  year: 2010
  ident: 10.1016/j.physa.2020.124800_b16
  article-title: Multi-particle cellular-automata models for diffusion simulation
– year: 1965
  ident: 10.1016/j.physa.2020.124800_b1
– year: 2019
  ident: 10.1016/j.physa.2020.124800_b19
  article-title: Synchronous multi-particle cellular automaton model of diffusion with self-annihilation
  publication-title: Lecture Notes in Comput. Sci.
  doi: 10.1007/978-3-030-25636-4_27
– volume: 127
  start-page: 111
  issue: 3–4
  year: 2004
  ident: 10.1016/j.physa.2020.124800_b18
  article-title: Flux and concentration footprints
  publication-title: Agricult. Forest Meterol.
  doi: 10.1016/j.agrformet.2004.07.007
– year: 2006
  ident: 10.1016/j.physa.2020.124800_b21
– volume: 98
  start-page: 435
  issue: 2
  year: 2018
  ident: 10.1016/j.physa.2020.124800_b23
  article-title: Sabelfeld: A mesh free stochastic algorithm for solving diffusion-convection-reaction equations on complicated domains
  publication-title: Dokl. Math.
  doi: 10.1134/S1064562418060108
– volume: 6
  start-page: 9
  issue: 4
  year: 2001
  ident: 10.1016/j.physa.2020.124800_b25
  article-title: The adjoint advection-diffusion equation in stationary and time dependent problems: a reciprocity relation
  publication-title: Riv. Mat. Univ. Parma
– ident: 10.1016/j.physa.2020.124800_b33
– year: 2019
  ident: 10.1016/j.physa.2020.124800_b14
  article-title: A meshless random walk on parallelepipeds algorithm for solving transient anisotropic diffusion-recombination equations and applications to cathodoluminescence imaging
  publication-title: Numer. Math.
– volume: 25
  start-page: 85
  issue: 1
  year: 2019
  ident: 10.1016/j.physa.2020.124800_b24
  article-title: Sabelfeld: A global random walk on spheres algorithm for transient heat equation and some extensions
  publication-title: Monte Carlo Methods Appl.
  doi: 10.1515/mcma-2019-2032
– volume: 9
  start-page: 732
  issue: 3
  year: 1999
  ident: 10.1016/j.physa.2020.124800_b3
  article-title: Simulation of a space–time bounded diffusion
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1029962812
– year: 2014
  ident: 10.1016/j.physa.2020.124800_b8
  article-title: Efficient Monte Carlo methods for simulating diffusion-reaction processes in complex systems
– volume: 10
  start-page: 495
  issue: 6
  year: 1995
  ident: 10.1016/j.physa.2020.124800_b30
  article-title: Global estimate of the solution of the Dirichlet problem for the Helmholtz n-dimensional equation by the Monte Carlo method
  publication-title: Russian J. Numer. Anal. Math. Modelling
  doi: 10.1515/rnam.1995.10.6.495
– year: 1991
  ident: 10.1016/j.physa.2020.124800_b4
– start-page: 9
  year: 2009
  ident: 10.1016/j.physa.2020.124800_b2
– volume: 23
  start-page: 189
  issue: 3
  year: 2017
  ident: 10.1016/j.physa.2020.124800_b12
  article-title: Random walk on spheres algorithm for solving transient drift diffusion-reaction problems
  publication-title: Monte Carlo Methods Appl.
  doi: 10.1515/mcma-2017-0113
– volume: 31
  start-page: 1263
  issue: 11
  year: 2000
  ident: 10.1016/j.physa.2020.124800_b17
  article-title: Aggregate under homogeneous Silane thermal decomposition
  publication-title: J. Aerosol Sci.
  doi: 10.1016/S0021-8502(00)00031-8
– year: 1990
  ident: 10.1016/j.physa.2020.124800_b20
– volume: 8
  start-page: 117
  year: 1967
  ident: 10.1016/j.physa.2020.124800_b28
  article-title: Eine Monte–Carlo–methode mit informationsspeicherung zur Lösung yon elliptischen randwertproblemen
  publication-title: Z. Wahrscheinlichkeitstheor. Verwandte Geb.
  doi: 10.1007/BF00536914
– volume: 78
  start-page: 30
  issue: 1–2
  year: 1994
  ident: 10.1016/j.physa.2020.124800_b15
  article-title: Cellular automation model of reaction-transport processes
  publication-title: Physica D
  doi: 10.1016/0167-2789(94)00093-X
– volume: 15
  start-page: 1
  issue: 1
  year: 1943
  ident: 10.1016/j.physa.2020.124800_b32
  article-title: Stochastic problems in physics and astronomy
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.15.1
– volume: 8
  start-page: 135
  issue: 1
  year: 2006
  ident: 10.1016/j.physa.2020.124800_b7
  article-title: A random walk on rectangles algorithm
  publication-title: Methodol. Comput. Appl. Probab.
  doi: 10.1007/s11009-006-7292-3
– year: 2002
  ident: 10.1016/j.physa.2020.124800_b27
SSID ssj0001732
Score 2.3362012
Snippet Stochastic simulation algorithms for solving transient nonlinear drift diffusion recombination transport equations are developed. The governing system of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124800
SubjectTerms Drift–diffusion-Poisson equation
Global random walk on spheres
Stochastic expansion from cell to cell algorithm
Transport of electrons and holes
Title Stochastic simulation algorithms for solving a nonlinear system of drift–diffusion-Poisson equations of semiconductors
URI https://dx.doi.org/10.1016/j.physa.2020.124800
Volume 556
WOSCitedRecordID wos000551669500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWgBYkL4lOUL_nALaTajR07PlaoCKhUVWqR9hbZjk23WpKSZKvlxn_gH_JLGMdOsmXRih64RKvI8VqZl8mb8eQNQm8SoTiRExUrNtEx1czGItEkVjIRzMDjJ63smk3w4-NsNhP9jm7TtRPgZZmtVuLyv5oazoGx3aezNzD3MCmcgN9gdDiC2eH4T4Y_bSt9Lp38ctTMv4buXJFcfKnqeXvu9RciWEKXSZBR6bUyZC_q7NhjUc_BOYcyCOJ6qCxdUi0-qcBMMJn5thwr6BpXXl-VTje2CltDgeyeeAyM6dJTqczChp7YR7JeREf7YxFAbcyVz_KWsHzZfJfrKQmIP12FR7rmuQiEppT43iq9m03TdUcJtCLrJEo3fbhPJ1zsu9SOU4ZKnARGP_q6YvYfb7KhvrAvXbvIu0lyN0nuJ7mNdhOeCvDhuwcfD2efhtf2lBO_5RTW3ktUdcWAG2v5O41ZoyZnD9D9EFPgA4-Fh-iWKR-hu_7uN4_RakQEHhGBR0RgQAQOiMASD4jAHhG4srhDxK8fPzewgAcsuGHXsfAEfX5_ePbuQxwabsQamEwbSyptCnyOJKJQGog2sxNNudLTiS6KjGtqhGJMK5VSoIpSFBTCc8UhZM6ktow8RTuwRvMMYU6FhWiAKJIpCjGrMsYoNpXw6AstlN1DSX__ch3U6F1TlEW-xXZ76O1w0aUXY9k-nPWGyQOf9DwxB6htu_D5zf7nBbo3PgUv0U5bL80rdEdftfOmfh1w9htqHJ5D
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+simulation+algorithms+for+solving+a+nonlinear+system+of+drift%E2%80%93diffusion-Poisson+equations+of+semiconductors&rft.jtitle=Physica+A&rft.au=Sabelfeld%2C+Karl+K.&rft.au=Kireeva%2C+Anastasya&rft.date=2020-10-15&rft.issn=0378-4371&rft.volume=556&rft.spage=124800&rft_id=info:doi/10.1016%2Fj.physa.2020.124800&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2020_124800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon