Multistate fault diagnosis strategy for bearings based on an improved convolutional sparse coding with priori periodic filter group

[Display omitted] •A multistate fault diagnosis model for bearings based on PPFG/ICSC is proposed.•The construction and parameter selection method of PPFG is proposed.•Multistate fault components can be extracted by the PPFG/ICSC.•Experimental studies on bearing multistate fault signals are carried...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing Jg. 188; S. 109995
Hauptverfasser: Han, Changkun, Lu, Wei, Wang, Huaqing, Song, Liuyang, Cui, Lingli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2023
Schlagworte:
ISSN:0888-3270
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •A multistate fault diagnosis model for bearings based on PPFG/ICSC is proposed.•The construction and parameter selection method of PPFG is proposed.•Multistate fault components can be extracted by the PPFG/ICSC.•Experimental studies on bearing multistate fault signals are carried out. Bearings are a critical component of rotating machines; when they fail, critical equipment becomes unavailable, damage may occur beyond the bearing itself, and safety concerns arise. Determining that a bearing structure is compromised before catastrophic failure permits the protection of plant, people, and productivity. When bearings malfunction, the features of single and multiple faults are masked and accompanied by noise and other signal degrading artifacts affecting the signals from the vibrational sensors. In these circumstances, detection and diagnosis of multistate bearing faults is difficult. To overcome these challenges, an improved convolutional sparse coding (ICSC) model, based on a priori periodic filter groups (PPFG), is proposed to respond to the multistate fault problems of bearings. A Laplace wavelet is constructed with one-sided decay related to the vibration pattern of the signal. The best-matched wavelet is optimally determined by correlation analysis of the signal frequency domain parameters and the time domain damping parameters. The best-matched wavelet and the kurtosis criterion are used to construct a PPFG based on the theoretical period of the fault. The ICSC based on the PPFG obtains mapping coefficients characterizing different vibrational features of the signal. The envelope spectrum analysis of the various mapping coefficients identifies and confirms the fault-revealing components in the multistate signal. The ICSC results have a relatively good sparse time domain, and the fault-identifying features in the envelope spectrum are enhanced. Multiple faults can be easily identified. The effectiveness and robustness of the PPFG/ICSC are demonstrated through a complete experimental analysis of simulated, single-fault, and multifault signals, as well as a comparative analysis of the previous methods – Fast SK, CBPDN, and VMD-ICA – which verifies that the PPFG/ICSC is more robust, accurate, and efficient than the previous methods.
AbstractList [Display omitted] •A multistate fault diagnosis model for bearings based on PPFG/ICSC is proposed.•The construction and parameter selection method of PPFG is proposed.•Multistate fault components can be extracted by the PPFG/ICSC.•Experimental studies on bearing multistate fault signals are carried out. Bearings are a critical component of rotating machines; when they fail, critical equipment becomes unavailable, damage may occur beyond the bearing itself, and safety concerns arise. Determining that a bearing structure is compromised before catastrophic failure permits the protection of plant, people, and productivity. When bearings malfunction, the features of single and multiple faults are masked and accompanied by noise and other signal degrading artifacts affecting the signals from the vibrational sensors. In these circumstances, detection and diagnosis of multistate bearing faults is difficult. To overcome these challenges, an improved convolutional sparse coding (ICSC) model, based on a priori periodic filter groups (PPFG), is proposed to respond to the multistate fault problems of bearings. A Laplace wavelet is constructed with one-sided decay related to the vibration pattern of the signal. The best-matched wavelet is optimally determined by correlation analysis of the signal frequency domain parameters and the time domain damping parameters. The best-matched wavelet and the kurtosis criterion are used to construct a PPFG based on the theoretical period of the fault. The ICSC based on the PPFG obtains mapping coefficients characterizing different vibrational features of the signal. The envelope spectrum analysis of the various mapping coefficients identifies and confirms the fault-revealing components in the multistate signal. The ICSC results have a relatively good sparse time domain, and the fault-identifying features in the envelope spectrum are enhanced. Multiple faults can be easily identified. The effectiveness and robustness of the PPFG/ICSC are demonstrated through a complete experimental analysis of simulated, single-fault, and multifault signals, as well as a comparative analysis of the previous methods – Fast SK, CBPDN, and VMD-ICA – which verifies that the PPFG/ICSC is more robust, accurate, and efficient than the previous methods.
ArticleNumber 109995
Author Lu, Wei
Wang, Huaqing
Song, Liuyang
Cui, Lingli
Han, Changkun
Author_xml – sequence: 1
  givenname: Changkun
  surname: Han
  fullname: Han, Changkun
  organization: College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 2
  givenname: Wei
  surname: Lu
  fullname: Lu, Wei
  organization: Institute of Engineering Technology, Sinopec Catalyst Company Limited, Tongzhou District, Beijing 101100, China
– sequence: 3
  givenname: Huaqing
  orcidid: 0000-0001-5333-0829
  surname: Wang
  fullname: Wang, Huaqing
  email: hqwang@mail.buct.edu.cn
  organization: College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 4
  givenname: Liuyang
  surname: Song
  fullname: Song, Liuyang
  email: xq_0703@163.com
  organization: Key Laboratory of Health Monitoring and Self-recovery for High-end Mechanical Equipment, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 5
  givenname: Lingli
  surname: Cui
  fullname: Cui, Lingli
  organization: Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
BookMark eNqFkLtOAzEQRV0EiSTwBTT-gQ3e9WYfBQWKeElBNFBbfswuE23sle0EpebHcQgVBVQzc6UzmjkzMrHOAiFXOVvkLK-uN4vDNoRxUbCiSEnbtssJmbKmaTJe1OyczELYMMbaklVT8vm8GyKGKCPQTqaeGpS9dQEDDdGnuD_QznmqQHq0faBKBjDUWSotxe3o3T6N2tm9G3YRnZUDDaP0AVJoEkE_ML7T0aPzSEdI1aCmHQ4RPO29240X5KyTQ4DLnzonb_d3r6vHbP3y8LS6XWeaMx4zWRQ5SG4KUF1Vc563ilfGdG1tGlCsKZliZV0r3eRKlzmvtGpUt6ybJZO8Llo-J_y0V3sXgodOpKu20h9EzsTRndiIb3fi6E6c3CWq_UVpTLrSp0kPDv-wNycW0lt7BC-CRrAaDHrQURiHf_Jf_7OUmQ
CitedBy_id crossref_primary_10_1016_j_measurement_2024_116025
crossref_primary_10_1016_j_measurement_2024_115830
crossref_primary_10_1016_j_oceaneng_2023_116275
crossref_primary_10_1016_j_aei_2024_102833
crossref_primary_10_1016_j_engappai_2023_107082
crossref_primary_10_1016_j_ymssp_2023_110846
crossref_primary_10_1016_j_ymssp_2024_111118
crossref_primary_10_1016_j_ymssp_2024_111679
crossref_primary_10_1109_JSEN_2024_3365105
crossref_primary_10_1016_j_ress_2024_110567
crossref_primary_10_1109_TIM_2025_3548239
crossref_primary_10_1088_1361_6501_ad1708
crossref_primary_10_1088_1361_6501_ad204b
crossref_primary_10_1109_JSEN_2025_3560461
crossref_primary_10_1109_JSEN_2025_3581287
crossref_primary_10_1109_TIM_2024_3436126
crossref_primary_10_3390_s23042137
crossref_primary_10_1088_1361_6501_acf1ba
crossref_primary_10_1016_j_ymssp_2023_110917
crossref_primary_10_1109_JSEN_2023_3326112
crossref_primary_10_1016_j_measurement_2024_115608
crossref_primary_10_1109_JSEN_2024_3356605
crossref_primary_10_1109_TII_2024_3399916
crossref_primary_10_1109_TIM_2025_3565055
crossref_primary_10_1088_1361_6501_acc753
crossref_primary_10_1016_j_aei_2024_102524
crossref_primary_10_3390_act13100401
crossref_primary_10_3390_s24216801
crossref_primary_10_1016_j_ymssp_2024_111544
crossref_primary_10_1109_TIM_2023_3277964
crossref_primary_10_1016_j_ymssp_2024_112275
crossref_primary_10_1016_j_engappai_2025_111306
crossref_primary_10_1109_ACCESS_2023_3328906
Cites_doi 10.3901/CJME.2014.1103.166
10.1016/j.ymssp.2021.108576
10.1016/j.measurement.2018.10.098
10.1016/j.knosys.2021.107892
10.1016/j.isatra.2019.08.042
10.1109/TIM.2019.2906334
10.1016/j.ymssp.2022.109399
10.1109/TIE.2020.2970571
10.1016/j.ymssp.2022.108964
10.1016/j.ymssp.2004.09.001
10.1109/TSP.2014.2329274
10.1016/j.apacoust.2022.108732
10.1016/j.ymssp.2013.06.035
10.1016/j.aei.2021.101404
10.1109/TIE.2018.2793271
10.1016/j.sigpro.2018.07.029
10.1016/j.ymssp.2018.02.028
10.1016/j.sigpro.2016.05.036
10.1016/j.matpr.2022.02.550
10.1016/j.cja.2020.06.013
10.1109/TII.2017.2662215
10.1016/j.ymssp.2021.108733
10.1016/j.ymssp.2020.107334
10.1016/j.neucom.2021.01.099
10.1016/j.measurement.2011.06.011
10.1016/j.aei.2021.101320
10.1109/SSIAI.2016.7459174
10.1016/j.ymssp.2021.108155
10.3390/e21050445
10.1016/j.measurement.2021.110360
10.1109/TIP.2015.2495260
10.1109/TMECH.2019.2951589
10.1016/j.sigpro.2010.02.004
10.1088/1361-6501/ac607f
10.1016/j.measurement.2022.111360
10.1109/TIM.2006.864246
10.1109/JPROC.2010.2040551
10.1016/j.measurement.2022.110969
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2022.109995
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ymssp_2022_109995
S0888327022010639
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSH
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
9DU
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
ID FETCH-LOGICAL-c303t-a221ea3d2ebf673319b36ddf97d8eb0840b0477bc81bc4136cb8bf57850a37293
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904641100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Sat Nov 29 07:16:18 EST 2025
Tue Nov 18 21:33:05 EST 2025
Sun Apr 06 06:53:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multistate fault diagnosis
Laplace wavelet
Improved convolutional sparse coding
ADMM
Priori period filter group
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-a221ea3d2ebf673319b36ddf97d8eb0840b0477bc81bc4136cb8bf57850a37293
ORCID 0000-0001-5333-0829
ParticipantIDs crossref_primary_10_1016_j_ymssp_2022_109995
crossref_citationtrail_10_1016_j_ymssp_2022_109995
elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_109995
PublicationCentury 2000
PublicationDate 2023-04-01
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dong, An, Li, Wu (b0045) Apr. 2022; 192
Han, Lu, Wang, Song, Wang (b0130) Jan. 2022; 187
Wang, Selesnick, Cai, Feng, Sui, Chen (b0150) Sep. 2018; 65
Wohlberg (b0190) Jan. 2016; 25
Ma, Li, Lu, Gong, Yu (b0035) May 2022; 194
‘Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers | Now Foundations and Trends books | IEEE Xplore’. https://ieeexplore.ieee.org/document/8186925 (accessed Jul. 04, 2022).
Yucesan, Dourado, Viana (b0005) Oct. 2021; 50
Sahoo, Makur (b0125) Dec. 2016; 129
Li, Li, Ding, Cheng, Meng (b0165) Apr. 2022; 169
Feng, Jiang, He, Qin (b0185) Nov. 2011; 44
Antoni (b0200) Feb. 2006; 20
K. Zhao, H. Jiang, C. Liu, Y. Wang, and K. Zhu, ‘A new data generation approach with modified Wasserstein auto-encoder for rotating machinery fault diagnosis with limited fault data’
Li, Liu, Liao, Wang (b0085) Jul. 2022; 198
Zhou, Feng, Xu, Wang, Lv (b0080) Jan. 2022; 163
Hao, Song, Ren, Wang, Cui (b0110) Dec. 2019; 24
Wang, Ren, Song, Cui (b0145) Mar. 2020; 69
vol. 151, p. 107334, Apr. 2021, 10.1016/j.ymssp.2020.107334.
Lu, Gao, Hong, Sun (b0065) Aug. 2021; 49
Zhao, Li, Cheng, Wen (b0015) Jul. 2022
Yu, Lin, Wang, Li (b0050) Feb. 2021; 68
Gao, Liang, Chen, Xu (b0100) Jan. 2015; 28
Rebollo-Neira, Xu (b0120) Jul. 2010; 90
B. Wohlberg, ‘Convolutional sparse representation of color images’, in
Cai, Chen, He (b0070) Dec. 2013; 41
Rubinstein, Bruckstein, Elad (b0155) Jun. 2010; 98
J. Prakash Kumar, P. S. Chauhan, and P. Prakash Pandit, ‘Time domain vibration analysis techniques for condition monitoring of rolling element bearing: A review’
Cui, Geng, Wang, Cheng (b0205) Nov. 2022; 179
Hao, Song, Cui, Wang (b0105) Feb. 2019; 134
Yang, Liu, Chen (b0135) Jun. 2017; 13
C. Han, W. Lu, P. Wang, L. Song, H. Wang, ‘A time-frequency sparse strategy based on optimal flux atom and scale lp approximation operator - IOPscience’. https://iopscience.iop.org/article/10.1088/1361-6501/ac607f (accessed Sep. 25, 2022).
vol. 238, p. 107892, Feb. 2022, 10.1016/j.knosys.2021.107892.
Chen, Selesnick (b0160) Jul. 2014; 62
Nuruzzaman, Boyraz, Jalali (b0055) Apr. 2006; 55
Park, Kim, Choi (b0060) Aug. 2018; 108
Jiang, Zhang, Wei, Zhang (b0175) Jun. 2022
C. Li, S. Li, A. Zhang, and Q. He, ‘Meta-Learning for Few-Shot Bearing Fault Diagnosis under Complex Working Conditions’
An, Zhao, Wang, Chen, Chen (b0115) Mar. 2020; 98
Zhang (b0010) Mar. 2022; 167
Santa Fe, NM, USA, Mar. 2016, pp. 57–60. 10.1109/SSIAI.2016.7459174.
Wang, Wang, Li, Song, Hao (b0095) Apr. 2019; 21
Wang, Yang, Guo (b0020) Jun. 2022; 172
Li, Wang, Song (b0075) Jul. 2021; 34
A. Rohani Bastami and S. Vahid, ‘A comprehensive evaluation of the effect of defect size in rolling element bearings on the statistical features of the vibration signal’
Gepshtein, Keller (b0090) Feb. 2019; 155
vol. 62, pp. 6336–6340, Jan. 2022, 10.1016/j.matpr.2022.02.550.
vol. 439, no. 2, 2021, 10.1016/j.neucom.2021.01.099.
Wang (10.1016/j.ymssp.2022.109995_b0095) 2019; 21
Wang (10.1016/j.ymssp.2022.109995_b0145) 2020; 69
Wohlberg (10.1016/j.ymssp.2022.109995_b0190) 2016; 25
Rubinstein (10.1016/j.ymssp.2022.109995_b0155) 2010; 98
Lu (10.1016/j.ymssp.2022.109995_b0065) 2021; 49
Yucesan (10.1016/j.ymssp.2022.109995_b0005) 2021; 50
Wang (10.1016/j.ymssp.2022.109995_b0150) 2018; 65
Nuruzzaman (10.1016/j.ymssp.2022.109995_b0055) 2006; 55
Gepshtein (10.1016/j.ymssp.2022.109995_b0090) 2019; 155
10.1016/j.ymssp.2022.109995_b0170
Li (10.1016/j.ymssp.2022.109995_b0165) 2022; 169
Li (10.1016/j.ymssp.2022.109995_b0075) 2021; 34
Rebollo-Neira (10.1016/j.ymssp.2022.109995_b0120) 2010; 90
Wang (10.1016/j.ymssp.2022.109995_b0020) 2022; 172
An (10.1016/j.ymssp.2022.109995_b0115) 2020; 98
10.1016/j.ymssp.2022.109995_b0030
10.1016/j.ymssp.2022.109995_b0195
Dong (10.1016/j.ymssp.2022.109995_b0045) 2022; 192
Jiang (10.1016/j.ymssp.2022.109995_b0175) 2022
Feng (10.1016/j.ymssp.2022.109995_b0185) 2011; 44
Yu (10.1016/j.ymssp.2022.109995_b0050) 2021; 68
Zhou (10.1016/j.ymssp.2022.109995_b0080) 2022; 163
Zhao (10.1016/j.ymssp.2022.109995_b0015) 2022
Hao (10.1016/j.ymssp.2022.109995_b0110) 2019; 24
Yang (10.1016/j.ymssp.2022.109995_b0135) 2017; 13
Sahoo (10.1016/j.ymssp.2022.109995_b0125) 2016; 129
Cui (10.1016/j.ymssp.2022.109995_b0205) 2022; 179
Cai (10.1016/j.ymssp.2022.109995_b0070) 2013; 41
Zhang (10.1016/j.ymssp.2022.109995_b0010) 2022; 167
10.1016/j.ymssp.2022.109995_b0180
Han (10.1016/j.ymssp.2022.109995_b0130) 2022; 187
Park (10.1016/j.ymssp.2022.109995_b0060) 2018; 108
Hao (10.1016/j.ymssp.2022.109995_b0105) 2019; 134
Gao (10.1016/j.ymssp.2022.109995_b0100) 2015; 28
Ma (10.1016/j.ymssp.2022.109995_b0035) 2022; 194
10.1016/j.ymssp.2022.109995_b0025
Chen (10.1016/j.ymssp.2022.109995_b0160) 2014; 62
10.1016/j.ymssp.2022.109995_b0140
10.1016/j.ymssp.2022.109995_b0040
Li (10.1016/j.ymssp.2022.109995_b0085) 2022; 198
Antoni (10.1016/j.ymssp.2022.109995_b0200) 2006; 20
References_xml – volume: 134
  start-page: 480
  year: Feb. 2019
  end-page: 491
  ident: b0105
  article-title: A three-dimensional geometric features-based SCA algorithm for compound faults diagnosis
  publication-title: Measurement
– volume: 172
  year: Jun. 2022
  ident: b0020
  article-title: Unknown fault feature extraction of rolling bearings under variable speed conditions based on statistical complexity measures
  publication-title: Mech. Syst. Signal Process.
– reference: A. Rohani Bastami and S. Vahid, ‘A comprehensive evaluation of the effect of defect size in rolling element bearings on the statistical features of the vibration signal’,
– volume: 90
  start-page: 2308
  year: Jul. 2010
  end-page: 2313
  ident: b0120
  article-title: Sparse signal representation by adaptive non-uniform B-spline dictionaries on a compact interval
  publication-title: Signal Process.
– volume: 49
  year: Aug. 2021
  ident: b0065
  article-title: A newly-designed fault diagnostic method for transformers via improved empirical wavelet transform and kernel extreme learning machine
  publication-title: Adv. Eng. Inform.
– volume: 55
  start-page: 598
  year: Apr. 2006
  end-page: 602
  ident: b0055
  article-title: Time-Stretched Short-Time Fourier Transform
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 129
  start-page: 62
  year: Dec. 2016
  end-page: 66
  ident: b0125
  article-title: Sparse Sequential Generalization of K-means for dictionary training on noisy signals
  publication-title: Signal Process.
– volume: 65
  start-page: 7332
  year: Sep. 2018
  end-page: 7342
  ident: b0150
  article-title: Nonconvex Sparse Regularization and Convex Optimization for Bearing Fault Diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– reference: K. Zhao, H. Jiang, C. Liu, Y. Wang, and K. Zhu, ‘A new data generation approach with modified Wasserstein auto-encoder for rotating machinery fault diagnosis with limited fault data’,
– volume: 194
  year: May 2022
  ident: b0035
  article-title: Impulsive wavelet based probability sparse coding model for bearing fault diagnosis
  publication-title: Measurement
– volume: 192
  year: Apr. 2022
  ident: b0045
  article-title: Hilbert spectrum analysis method of blast vibration signal based on HHT instantaneous phase optimization
  publication-title: Appl. Acoust.
– volume: 25
  start-page: 301
  year: Jan. 2016
  end-page: 315
  ident: b0190
  article-title: Efficient Algorithms for Convolutional Sparse Representations
  publication-title: IEEE Trans. Image Process.
– volume: 187
  year: Jan. 2022
  ident: b0130
  article-title: A recursive sparse representation strategy for bearing fault diagnosis
  publication-title: Measurement
– reference: , vol. 151, p. 107334, Apr. 2021, 10.1016/j.ymssp.2020.107334.
– volume: 155
  start-page: 368
  year: Feb. 2019
  end-page: 376
  ident: b0090
  article-title: Iterative spectral independent component analysis
  publication-title: Signal Process.
– volume: 198
  year: Jul. 2022
  ident: b0085
  article-title: A VME method based on the convergent tendency of VMD and its application in multi-fault diagnosis of rolling bearings
  publication-title: Measurement
– reference: , vol. 62, pp. 6336–6340, Jan. 2022, 10.1016/j.matpr.2022.02.550.
– reference: ‘Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers | Now Foundations and Trends books | IEEE Xplore’. https://ieeexplore.ieee.org/document/8186925 (accessed Jul. 04, 2022).
– volume: 21
  start-page: 445
  year: Apr. 2019
  ident: b0095
  article-title: A Novel Signal Separation Method Based on Improved Sparse Non-Negative Matrix Factorization
  publication-title: Entropy
– volume: 169
  year: Apr. 2022
  ident: b0165
  article-title: A sparsity-enhanced periodic OGS model for weak feature extraction of rolling bearing faults
  publication-title: Mech. Syst. Signal Process.
– volume: 98
  start-page: 338
  year: Mar. 2020
  end-page: 348
  ident: b0115
  article-title: Sparsity-assisted bearing fault diagnosis using multiscale period group lasso
  publication-title: ISA Trans.
– reference: , Santa Fe, NM, USA, Mar. 2016, pp. 57–60. 10.1109/SSIAI.2016.7459174.
– volume: 24
  start-page: 2477
  year: Dec. 2019
  end-page: 2487
  ident: b0110
  article-title: Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA
  publication-title: IEEEASME Trans. Mechatron.
– reference: , vol. 238, p. 107892, Feb. 2022, 10.1016/j.knosys.2021.107892.
– volume: 44
  start-page: 1582
  year: Nov. 2011
  end-page: 1591
  ident: b0185
  article-title: Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet
  publication-title: Measurement
– reference: J. Prakash Kumar, P. S. Chauhan, and P. Prakash Pandit, ‘Time domain vibration analysis techniques for condition monitoring of rolling element bearing: A review’,
– volume: 179
  year: Nov. 2022
  ident: b0205
  article-title: Study of the amplitude modulation method for kurtosis control purposes
  publication-title: Mech. Syst. Signal Process.
– volume: 163
  year: Jan. 2022
  ident: b0080
  article-title: Empirical Fourier decomposition: An accurate signal decomposition method for nonlinear and non-stationary time series analysis
  publication-title: Mech. Syst. Signal Process.
– volume: 41
  start-page: 34
  year: Dec. 2013
  end-page: 53
  ident: b0070
  article-title: Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox
  publication-title: Mech. Syst. Signal Process.
– reference: C. Han, W. Lu, P. Wang, L. Song, H. Wang, ‘A time-frequency sparse strategy based on optimal flux atom and scale lp approximation operator - IOPscience’. https://iopscience.iop.org/article/10.1088/1361-6501/ac607f (accessed Sep. 25, 2022).
– year: Jul. 2022
  ident: b0015
  article-title: Bearing multi-fault diagnosis with iterative generalized demodulation guided by enhanced rotational frequency matching under time-varying speed conditions
  publication-title: ISA Trans.
– year: Jun. 2022
  ident: b0175
  article-title: Variational multi-harmonic mode extraction for characterising impulse envelope of bearing failures
  publication-title: ISA Trans.
– volume: 167
  year: Mar. 2022
  ident: b0010
  article-title: Bearing fault diagnosis via generalized logarithm sparse regularization
  publication-title: Mech. Syst. Signal Process.
– volume: 13
  start-page: 1321
  year: Jun. 2017
  end-page: 1331
  ident: b0135
  article-title: Fault Diagnosis for a Wind Turbine Generator Bearing via Sparse Representation and Shift-Invariant K-SVD
  publication-title: IEEE Trans. Ind. Inform.
– volume: 28
  start-page: 96
  year: Jan. 2015
  end-page: 105
  ident: b0100
  article-title: Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization
  publication-title: Chin. J. Mech. Eng.
– volume: 62
  start-page: 3464
  year: Jul. 2014
  end-page: 3478
  ident: b0160
  article-title: Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 34
  start-page: 157
  year: Jul. 2021
  end-page: 169
  ident: b0075
  article-title: A novel sparse feature extraction method based on sparse signal via dual-channel self-adaptive TQWT
  publication-title: Chin. J. Aeronaut.
– volume: 69
  start-page: 712
  year: Mar. 2020
  end-page: 720
  ident: b0145
  article-title: A Novel Weighted Sparse Representation Classification Strategy Based on Dictionary Learning for Rotating Machinery
  publication-title: IEEE Trans. Instrum. Meas.
– reference: C. Li, S. Li, A. Zhang, and Q. He, ‘Meta-Learning for Few-Shot Bearing Fault Diagnosis under Complex Working Conditions’,
– reference: , vol. 439, no. 2, 2021, 10.1016/j.neucom.2021.01.099.
– volume: 108
  start-page: 262
  year: Aug. 2018
  end-page: 275
  ident: b0060
  article-title: Gear fault diagnosis using transmission error and ensemble empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
– volume: 98
  start-page: 1045
  year: Jun. 2010
  end-page: 1057
  ident: b0155
  article-title: Dictionaries for Sparse Representation Modeling
  publication-title: Proc. IEEE
– reference: B. Wohlberg, ‘Convolutional sparse representation of color images’, in
– volume: 20
  start-page: 282
  year: Feb. 2006
  end-page: 307
  ident: b0200
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Signal Process.
– volume: 50
  year: Oct. 2021
  ident: b0005
  article-title: A survey of modeling for prognosis and health management of industrial equipment
  publication-title: Adv. Eng. Inform.
– volume: 68
  start-page: 1486
  year: Feb. 2021
  end-page: 1496
  ident: b0050
  article-title: Time-Reassigned Multisynchrosqueezing Transform for Bearing Fault Diagnosis of Rotating Machinery
  publication-title: IEEE Trans. Ind. Electron.
– volume: 28
  start-page: 96
  issue: 1
  year: 2015
  ident: 10.1016/j.ymssp.2022.109995_b0100
  article-title: Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization
  publication-title: Chin. J. Mech. Eng.
  doi: 10.3901/CJME.2014.1103.166
– volume: 167
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0010
  article-title: Bearing fault diagnosis via generalized logarithm sparse regularization
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108576
– volume: 134
  start-page: 480
  year: 2019
  ident: 10.1016/j.ymssp.2022.109995_b0105
  article-title: A three-dimensional geometric features-based SCA algorithm for compound faults diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.10.098
– ident: 10.1016/j.ymssp.2022.109995_b0025
  doi: 10.1016/j.knosys.2021.107892
– volume: 98
  start-page: 338
  year: 2020
  ident: 10.1016/j.ymssp.2022.109995_b0115
  article-title: Sparsity-assisted bearing fault diagnosis using multiscale period group lasso
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.08.042
– volume: 69
  start-page: 712
  issue: 3
  year: 2020
  ident: 10.1016/j.ymssp.2022.109995_b0145
  article-title: A Novel Weighted Sparse Representation Classification Strategy Based on Dictionary Learning for Rotating Machinery
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2906334
– year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0175
  article-title: Variational multi-harmonic mode extraction for characterising impulse envelope of bearing failures
  publication-title: ISA Trans.
– volume: 179
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0205
  article-title: Study of the amplitude modulation method for kurtosis control purposes
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109399
– year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0015
  article-title: Bearing multi-fault diagnosis with iterative generalized demodulation guided by enhanced rotational frequency matching under time-varying speed conditions
  publication-title: ISA Trans.
– volume: 68
  start-page: 1486
  issue: 2
  year: 2021
  ident: 10.1016/j.ymssp.2022.109995_b0050
  article-title: Time-Reassigned Multisynchrosqueezing Transform for Bearing Fault Diagnosis of Rotating Machinery
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2970571
– volume: 172
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0020
  article-title: Unknown fault feature extraction of rolling bearings under variable speed conditions based on statistical complexity measures
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.108964
– volume: 20
  start-page: 282
  issue: 2
  year: 2006
  ident: 10.1016/j.ymssp.2022.109995_b0200
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.09.001
– volume: 62
  start-page: 3464
  issue: 13
  year: 2014
  ident: 10.1016/j.ymssp.2022.109995_b0160
  article-title: Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2329274
– volume: 192
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0045
  article-title: Hilbert spectrum analysis method of blast vibration signal based on HHT instantaneous phase optimization
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2022.108732
– volume: 41
  start-page: 34
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ymssp.2022.109995_b0070
  article-title: Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.06.035
– volume: 50
  year: 2021
  ident: 10.1016/j.ymssp.2022.109995_b0005
  article-title: A survey of modeling for prognosis and health management of industrial equipment
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101404
– volume: 65
  start-page: 7332
  issue: 9
  year: 2018
  ident: 10.1016/j.ymssp.2022.109995_b0150
  article-title: Nonconvex Sparse Regularization and Convex Optimization for Bearing Fault Diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2793271
– volume: 155
  start-page: 368
  year: 2019
  ident: 10.1016/j.ymssp.2022.109995_b0090
  article-title: Iterative spectral independent component analysis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.07.029
– volume: 108
  start-page: 262
  year: 2018
  ident: 10.1016/j.ymssp.2022.109995_b0060
  article-title: Gear fault diagnosis using transmission error and ensemble empirical mode decomposition
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.028
– volume: 129
  start-page: 62
  year: 2016
  ident: 10.1016/j.ymssp.2022.109995_b0125
  article-title: Sparse Sequential Generalization of K-means for dictionary training on noisy signals
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.05.036
– ident: 10.1016/j.ymssp.2022.109995_b0180
  doi: 10.1016/j.matpr.2022.02.550
– volume: 34
  start-page: 157
  issue: 7
  year: 2021
  ident: 10.1016/j.ymssp.2022.109995_b0075
  article-title: A novel sparse feature extraction method based on sparse signal via dual-channel self-adaptive TQWT
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.06.013
– volume: 13
  start-page: 1321
  issue: 3
  year: 2017
  ident: 10.1016/j.ymssp.2022.109995_b0135
  article-title: Fault Diagnosis for a Wind Turbine Generator Bearing via Sparse Representation and Shift-Invariant K-SVD
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2662215
– volume: 169
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0165
  article-title: A sparsity-enhanced periodic OGS model for weak feature extraction of rolling bearing faults
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108733
– ident: 10.1016/j.ymssp.2022.109995_b0040
  doi: 10.1016/j.ymssp.2020.107334
– ident: 10.1016/j.ymssp.2022.109995_b0030
  doi: 10.1016/j.neucom.2021.01.099
– volume: 44
  start-page: 1582
  issue: 9
  year: 2011
  ident: 10.1016/j.ymssp.2022.109995_b0185
  article-title: Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet
  publication-title: Measurement
  doi: 10.1016/j.measurement.2011.06.011
– ident: 10.1016/j.ymssp.2022.109995_b0195
– volume: 49
  year: 2021
  ident: 10.1016/j.ymssp.2022.109995_b0065
  article-title: A newly-designed fault diagnostic method for transformers via improved empirical wavelet transform and kernel extreme learning machine
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101320
– ident: 10.1016/j.ymssp.2022.109995_b0170
  doi: 10.1109/SSIAI.2016.7459174
– volume: 163
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0080
  article-title: Empirical Fourier decomposition: An accurate signal decomposition method for nonlinear and non-stationary time series analysis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108155
– volume: 21
  start-page: 445
  issue: 5
  year: 2019
  ident: 10.1016/j.ymssp.2022.109995_b0095
  article-title: A Novel Signal Separation Method Based on Improved Sparse Non-Negative Matrix Factorization
  publication-title: Entropy
  doi: 10.3390/e21050445
– volume: 187
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0130
  article-title: A recursive sparse representation strategy for bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110360
– volume: 25
  start-page: 301
  issue: 1
  year: 2016
  ident: 10.1016/j.ymssp.2022.109995_b0190
  article-title: Efficient Algorithms for Convolutional Sparse Representations
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2495260
– volume: 24
  start-page: 2477
  issue: 6
  year: 2019
  ident: 10.1016/j.ymssp.2022.109995_b0110
  article-title: Step-by-Step Compound Faults Diagnosis Method for Equipment Based on Majorization-Minimization and Constraint SCA
  publication-title: IEEEASME Trans. Mechatron.
  doi: 10.1109/TMECH.2019.2951589
– volume: 90
  start-page: 2308
  issue: 7
  year: 2010
  ident: 10.1016/j.ymssp.2022.109995_b0120
  article-title: Sparse signal representation by adaptive non-uniform B-spline dictionaries on a compact interval
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2010.02.004
– ident: 10.1016/j.ymssp.2022.109995_b0140
  doi: 10.1088/1361-6501/ac607f
– volume: 198
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0085
  article-title: A VME method based on the convergent tendency of VMD and its application in multi-fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111360
– volume: 55
  start-page: 598
  issue: 2
  year: 2006
  ident: 10.1016/j.ymssp.2022.109995_b0055
  article-title: Time-Stretched Short-Time Fourier Transform
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2006.864246
– volume: 98
  start-page: 1045
  issue: 6
  year: 2010
  ident: 10.1016/j.ymssp.2022.109995_b0155
  article-title: Dictionaries for Sparse Representation Modeling
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2040551
– volume: 194
  year: 2022
  ident: 10.1016/j.ymssp.2022.109995_b0035
  article-title: Impulsive wavelet based probability sparse coding model for bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110969
SSID ssj0009406
Score 2.5379145
Snippet [Display omitted] •A multistate fault diagnosis model for bearings based on PPFG/ICSC is proposed.•The construction and parameter selection method of PPFG is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109995
SubjectTerms ADMM
Improved convolutional sparse coding
Laplace wavelet
Multistate fault diagnosis
Priori period filter group
Title Multistate fault diagnosis strategy for bearings based on an improved convolutional sparse coding with priori periodic filter group
URI https://dx.doi.org/10.1016/j.ymssp.2022.109995
Volume 188
WOSCitedRecordID wos000904641100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0009406
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXpoDtyUo64Q4OVaoqKCqQmqR9hbZjlOllOySbVbtmTu_mRk_kgWqCpC4RJG19mZ3vtjj8TffMPYyywwuqoZCYFJEaS0KfKUKFRl0XdMZLklKW3X9A3F4mM_nxcfJ5HvIhVmfibbNLy6K5X81NbahsSl19i_MPQyKDXiPRscrmh2vf2R4m1Jr84SmtcR7Cq8Sm65ZTVdOitZzNPGH25qdtJBVU8tKpqTJbrE2lWWj-8ekjJIl7n-J114Nsdtl1yy6hmSPG2zVJPBEeosnQywrlIkylFvski-dOro9ryDeCCWBuTyFsH7aqTDQANqTz_1IGOotG9A04wmAm6X2e_l1o_uRpxgfNP2l9M0-qMGTDS6MjbSFbJuR2uQmxDxKuCs0Ms7e-ZUrgQtKnL6-_LJakS4p56ScVbiKnr9IbB_RyDQwJ24A-mw32DYXbwqc6Ld33-_NP4wyzqmt1jo8SdCxsozB377qal9nw385vsvu-I0H7DrA3GMT095ntzfkKB-wbyN0wEIHBuhAgA4gdCBAByx0YNGCbCFAB36CDjjogIMOEHTAQQcCdMBBByx0HrJP7_aO3-5HvkhHpNH7OY8k5zMjk4obVWdUALRQSVZVdSGq3Kg4T2MVp0IojfsjjR5TplWuapJYiiUdGSeP2Fa7aM1jBoXkOo5rqaSo00QapUVFMcqZEELHiu8wHv7OUnsFeyqkclYGquJpaW1Qkg1KZ4Md9mrotHQCLtd_PAt2Kr0P6nzLEoF1Xccn_9rxKbs1vgHP2NZ515vn7KZeo8G7Fx6APwDANrZS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistate+fault+diagnosis+strategy+for+bearings+based+on+an+improved+convolutional+sparse+coding+with+priori+periodic+filter+group&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Han%2C+Changkun&rft.au=Lu%2C+Wei&rft.au=Wang%2C+Huaqing&rft.au=Song%2C+Liuyang&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.volume=188&rft_id=info:doi/10.1016%2Fj.ymssp.2022.109995&rft.externalDocID=S0888327022010639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon