Primal-dual fixed point algorithm based on adapted metric method for solving convex minimization problem with application
Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz continuous gradient, one is composed of a linear operator and the other is proximity friendly. The primal-dual fixed point algorithm is a simple...
Gespeichert in:
| Veröffentlicht in: | Applied numerical mathematics Jg. 157; S. 236 - 254 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.11.2020
|
| Schlagworte: | |
| ISSN: | 0168-9274, 1873-5460 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz continuous gradient, one is composed of a linear operator and the other is proximity friendly. The primal-dual fixed point algorithm is a simple and effective algorithm for such problems. To exploit the second-order derivatives information of the objective function, we propose a primal-dual fixed point algorithm with an adapted metric method. The proposed algorithm is derived from the idea of establishing a generally fixed point formulation for the solution of the considered problem. Under mild conditions on the iterative parameters, we prove the convergence of the proposed algorithm. Further, we establish the ergodic convergence rate in the sense of primal-dual gap and also derive the linear convergence rate with additional conditions. Numerical experiments on image deblurring problems show that the proposed algorithm outperforms other state-of-the-art primal-dual algorithms in terms of the number of iterations. |
|---|---|
| AbstractList | Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz continuous gradient, one is composed of a linear operator and the other is proximity friendly. The primal-dual fixed point algorithm is a simple and effective algorithm for such problems. To exploit the second-order derivatives information of the objective function, we propose a primal-dual fixed point algorithm with an adapted metric method. The proposed algorithm is derived from the idea of establishing a generally fixed point formulation for the solution of the considered problem. Under mild conditions on the iterative parameters, we prove the convergence of the proposed algorithm. Further, we establish the ergodic convergence rate in the sense of primal-dual gap and also derive the linear convergence rate with additional conditions. Numerical experiments on image deblurring problems show that the proposed algorithm outperforms other state-of-the-art primal-dual algorithms in terms of the number of iterations. |
| Author | Tang, Yuchao Huang, Wenli |
| Author_xml | – sequence: 1 givenname: Wenli surname: Huang fullname: Huang, Wenli email: 1105515702@qq.com – sequence: 2 givenname: Yuchao surname: Tang fullname: Tang, Yuchao email: hhaaoo1331@163.com |
| BookMark | eNqFkM1OwzAMgCM0JDbgCbjkBVrStU2bAwc08SdNggOcozQ_m6c2qdJsbDw96caJA5xs2f4s-5uhiXVWI3STkTQjGb3dpKK32y6dkzlJCU0JKc_QNKurPCkLSiZoGqfqhM2r4gLNhmFD4kRZkCk6vHnoRJuorWixgb1WuHdgAxbtynkI6w43YohVZ7FQog8x7XTwIMewdgob5_Hg2h3YFZbO7vQed2Chgy8RIFK9d02rO_wZl2HR9y3IY-MKnRvRDvr6J16ij8eH98Vzsnx9elncLxOZkzwkTGiVNxWtGSvrXDSVqEpSSpYzWktTGqUMa3RDi4xpQoXJVNUYFetS0qZiRX6J2Gmv9G4YvDZcQjheELyAlmeEjw75hh8d8tEhJ5RHQ5HNf7H9qMsf_qHuTpSOb-1Aez5I0FZqBV7LwJWDP_lv10WTKQ |
| CitedBy_id | crossref_primary_10_1007_s43069_025_00438_9 crossref_primary_10_1109_TCNS_2021_3065653 crossref_primary_10_1109_TNNLS_2021_3110295 crossref_primary_10_1007_s10915_022_01958_w crossref_primary_10_1109_TAC_2024_3470841 |
| Cites_doi | 10.1360/SCM-2017-0313 10.1007/s10851-011-0298-7 10.1007/s10957-019-01524-9 10.1007/s11228-011-0191-y 10.1007/s10444-016-9462-3 10.1109/MSP.2014.2377273 10.1007/s00245-019-09597-8 10.1137/S0363012998338806 10.1080/02331934.2012.733883 10.1007/s10114-016-5625-x 10.1088/0266-5611/29/2/025011 10.1016/j.jmaa.2017.02.068 10.1007/s11075-015-0007-5 10.1155/2017/3694525 10.1007/s10444-011-9254-8 10.1007/s11045-018-0615-z 10.1109/TSP.2017.2691661 10.1088/0266-5611/27/4/045009 10.1137/17M1120099 10.1007/s10851-014-0523-2 10.1016/j.orl.2015.02.001 10.1137/09076934X 10.1007/s10915-018-0680-3 10.1007/s11590-018-1272-8 10.1007/s10851-010-0251-1 10.1137/100814494 10.1137/050626090 10.1007/s11228-017-0421-z 10.1016/j.jmaa.2014.11.044 10.1007/s10107-018-1321-1 10.1016/j.acha.2015.11.004 10.1007/s10957-012-0245-9 10.1007/s10957-019-01601-z 10.1109/TIP.2003.819861 10.4067/S0719-06462014000300007 10.1088/0266-5611/28/11/115005 10.1007/s10444-018-9619-3 10.1088/0266-5611/27/12/125007 10.3390/sym10110563 10.1007/s10107-015-0957-3 10.1016/j.neucom.2017.12.056 10.1137/10081602X 10.1186/s13663-016-0543-2 10.3390/math7020131 10.1007/s10589-017-9909-6 10.1017/S096249291600009X |
| ContentType | Journal Article |
| Copyright | 2020 IMACS |
| Copyright_xml | – notice: 2020 IMACS |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apnum.2020.06.005 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1873-5460 |
| EndPage | 254 |
| ExternalDocumentID | 10_1016_j_apnum_2020_06_005 S0168927420301872 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMJ HVGLF HZ~ IHE J1W KOM M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SME SPC SPCBC SSW SSZ T5K TN5 VH1 VOH WH7 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-9aed3b76899583ab7a7505c93968cf5fddf9beb6419e06af1d7bfd5fdcc6b7943 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564648400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-9274 |
| IngestDate | Sat Nov 29 07:26:02 EST 2025 Tue Nov 18 21:56:04 EST 2025 Fri Feb 23 02:48:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Primal-dual algorithm Forward-backward splitting algorithm Adapted metric method Proximity operator |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-9aed3b76899583ab7a7505c93968cf5fddf9beb6419e06af1d7bfd5fdcc6b7943 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apnum_2020_06_005 crossref_primary_10_1016_j_apnum_2020_06_005 elsevier_sciencedirect_doi_10_1016_j_apnum_2020_06_005 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied numerical mathematics |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Combettes, Vũ (br0120) 2014; 63 Condat (br0040) 2013; 158 Tseng (br0020) 2000; 38 Li, Zhang (br0440) 2016; 41 Combettes, Pesquet (br0010) 2012; 20 Chen, Zhou, Song (br0240) 2016; 42 Moudafi (br0480) 2014; 16 Combettes, Yamada (br0380) 2015; 425 Wen, Tang, Cui, Peng (br0310) 2019; 30 Komodakis, Pesquet (br0400) 2015; 32 Tang, Wu, Zhu (br0360) 2019; 49 Raguet (br0330) 2019; 13 Chambolle, Pock (br0060) 2011; 40 Briceño-Arias, Combettes (br0030) 2011; 21 Csetnek, Malitsky, Tam (br0160) 2019; 80 Rieger, Tam (br0200) 2020 Boţ, Csetnek (br0460) 2016; 71 Tang, Zhu, Wen, Peng (br0550) 2017; 33 Yan (br0320) 2018; 76 Zong, Tang, Cho (br0390) 2018; 10 Malitsky, Tam (br0150) 2018 Moreau (br0520) 1962; 255 Chen, Tang (br0490) 2019; 2019 Zhu, Yao, Xu, Huang, Zhang (br0530) 2018; 289 Drori, Sabach, Teboulle (br0280) 2015; 43 Chen, Huang, Zhang (br0110) 2013; 29 Ryu, Vu (br0190) 2020; 184 Connor, Vandenberghe (br0470) 2020; 179 Chen, Huang, Zhang (br0220) 2016; 2016 Pock, Chambolle (br0410) 2011 Latafat, Patrinos (br0130) 2017; 68 Wang, Bovik, Sheikh, Simoncelli (br0560) 2004; 13 Boţ, Csetnek (br0180) 2019; 45 Chen, Zhang, Cheng (br0260) 2012; 43 Briceño-Arias, Davis (br0140) 2018; 28 Davis, Yin (br0350) 2017; 25 Beck (br0510) 2017 Bauschke, Combettes (br0500) 2017 Lorenz, Pock (br0430) 2015; 51 Yang, Tang, Zhu (br0270) 2019; 7 Wen, Peng, Tang, Zhu, Yue (br0450) 2017; 2017 Argyriou, Micchelli, Pontil, Shen, Xu (br0250) April 2011 Loris, Verhoeven (br0230) 2011; 27 Vũ (br0050) 2013; 38 Luke, Shefi (br0300) 2018; 457 Molinari, Liang, Fadili (br0340) 2019; 182 Esser, Zhang, Chan (br0070) 2010; 3 Chambolle, Pock (br0080) 2016; 159 Combettes, Condat, Pesquet, Vu (br0100) 2014 Krol, Li, Shen, Xu (br0210) 2012; 28 Gu, Dogandžić (br0290) 2017; 65 Cevher, Vu (br0170) 2019 Chambolle, Pock (br0090) 2016; 25 Micchelli, Shen, Xu (br0540) 2011; 27 He, Yuan (br0420) 2012; 5 Combettes, Wajs (br0370) 2005; 4 Pock (10.1016/j.apnum.2020.06.005_br0410) 2011 Komodakis (10.1016/j.apnum.2020.06.005_br0400) 2015; 32 Davis (10.1016/j.apnum.2020.06.005_br0350) 2017; 25 Rieger (10.1016/j.apnum.2020.06.005_br0200) Yang (10.1016/j.apnum.2020.06.005_br0270) 2019; 7 Condat (10.1016/j.apnum.2020.06.005_br0040) 2013; 158 Ryu (10.1016/j.apnum.2020.06.005_br0190) 2020; 184 Vũ (10.1016/j.apnum.2020.06.005_br0050) 2013; 38 Argyriou (10.1016/j.apnum.2020.06.005_br0250) Micchelli (10.1016/j.apnum.2020.06.005_br0540) 2011; 27 Chen (10.1016/j.apnum.2020.06.005_br0490) 2019; 2019 Wen (10.1016/j.apnum.2020.06.005_br0450) 2017; 2017 Combettes (10.1016/j.apnum.2020.06.005_br0120) 2014; 63 Combettes (10.1016/j.apnum.2020.06.005_br0380) 2015; 425 Wen (10.1016/j.apnum.2020.06.005_br0310) 2019; 30 Connor (10.1016/j.apnum.2020.06.005_br0470) 2020; 179 Krol (10.1016/j.apnum.2020.06.005_br0210) 2012; 28 Chambolle (10.1016/j.apnum.2020.06.005_br0080) 2016; 159 Boţ (10.1016/j.apnum.2020.06.005_br0460) 2016; 71 Chambolle (10.1016/j.apnum.2020.06.005_br0090) 2016; 25 Yan (10.1016/j.apnum.2020.06.005_br0320) 2018; 76 Boţ (10.1016/j.apnum.2020.06.005_br0180) 2019; 45 Bauschke (10.1016/j.apnum.2020.06.005_br0500) 2017 Wang (10.1016/j.apnum.2020.06.005_br0560) 2004; 13 Briceño-Arias (10.1016/j.apnum.2020.06.005_br0030) 2011; 21 Briceño-Arias (10.1016/j.apnum.2020.06.005_br0140) 2018; 28 Chen (10.1016/j.apnum.2020.06.005_br0110) 2013; 29 Esser (10.1016/j.apnum.2020.06.005_br0070) 2010; 3 Latafat (10.1016/j.apnum.2020.06.005_br0130) 2017; 68 Combettes (10.1016/j.apnum.2020.06.005_br0370) 2005; 4 Moreau (10.1016/j.apnum.2020.06.005_br0520) 1962; 255 Raguet (10.1016/j.apnum.2020.06.005_br0330) 2019; 13 Gu (10.1016/j.apnum.2020.06.005_br0290) 2017; 65 Chen (10.1016/j.apnum.2020.06.005_br0240) 2016; 42 Loris (10.1016/j.apnum.2020.06.005_br0230) 2011; 27 Combettes (10.1016/j.apnum.2020.06.005_br0010) 2012; 20 Drori (10.1016/j.apnum.2020.06.005_br0280) 2015; 43 Tang (10.1016/j.apnum.2020.06.005_br0360) 2019; 49 Zong (10.1016/j.apnum.2020.06.005_br0390) 2018; 10 Li (10.1016/j.apnum.2020.06.005_br0440) 2016; 41 Lorenz (10.1016/j.apnum.2020.06.005_br0430) 2015; 51 Molinari (10.1016/j.apnum.2020.06.005_br0340) 2019; 182 Chambolle (10.1016/j.apnum.2020.06.005_br0060) 2011; 40 Beck (10.1016/j.apnum.2020.06.005_br0510) 2017 Moudafi (10.1016/j.apnum.2020.06.005_br0480) 2014; 16 Chen (10.1016/j.apnum.2020.06.005_br0260) 2012; 43 Luke (10.1016/j.apnum.2020.06.005_br0300) 2018; 457 Tang (10.1016/j.apnum.2020.06.005_br0550) 2017; 33 He (10.1016/j.apnum.2020.06.005_br0420) 2012; 5 Cevher (10.1016/j.apnum.2020.06.005_br0170) Zhu (10.1016/j.apnum.2020.06.005_br0530) 2018; 289 Chen (10.1016/j.apnum.2020.06.005_br0220) 2016; 2016 Tseng (10.1016/j.apnum.2020.06.005_br0020) 2000; 38 Csetnek (10.1016/j.apnum.2020.06.005_br0160) 2019; 80 Malitsky (10.1016/j.apnum.2020.06.005_br0150) Combettes (10.1016/j.apnum.2020.06.005_br0100) 2014 |
| References_xml | – volume: 182 start-page: 606 year: 2019 end-page: 639 ident: br0340 article-title: Convergence rates of forward-douglas-rachford splitting method publication-title: J. Optim. Theory Appl. – year: 2018 ident: br0150 article-title: A forward-backward splitting method for monotone inclusions without cocoercivity – volume: 45 start-page: 327 year: 2019 end-page: 359 ident: br0180 article-title: Admm for monotone operators: convergence analysis and rates publication-title: Adv. Comput. Math. – volume: 3 start-page: 1015 year: 2010 end-page: 1046 ident: br0070 article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science publication-title: SIAM J. Imaging Sci. – volume: 2019 year: 2019 ident: br0490 article-title: Iteative methods for computing the resolvent of the sum of a maximal monotone operator and composite operator with applications publication-title: Math. Probl. Eng. – year: 2020 ident: br0200 article-title: Backward-forward-reflected-backward splitting for three operator monotone inclusions – volume: 158 start-page: 460 year: 2013 end-page: 479 ident: br0040 article-title: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms publication-title: J. Optim. Theory Appl. – volume: 38 start-page: 431 year: 2000 end-page: 446 ident: br0020 article-title: A modified forward-backward splitting method for maximal monotone mappings publication-title: SIAM J. Control Optim. – volume: 20 start-page: 307 year: 2012 end-page: 330 ident: br0010 article-title: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and paralle-sum type monotone operators publication-title: Set-Valued Var. Anal. – volume: 65 start-page: 3510 year: 2017 end-page: 3525 ident: br0290 article-title: Projected Nesterov's proximal-gradient algorithm for sparse signal recovery publication-title: IEEE Trans. Signal Process. – year: 2019 ident: br0170 article-title: A refected foward-backward splitting method for monotone inlcusions involving Lipschitzian operators – volume: 457 start-page: 1568 year: 2018 end-page: 1590 ident: br0300 article-title: A globally linearly convergent method for pointwise quadratically supportable convex-concave saddle point problems publication-title: J. Math. Anal. Appl. – year: April 2011 ident: br0250 article-title: Efficient first order methods for linear composite regularizers – volume: 2016 start-page: 54 year: 2016 ident: br0220 article-title: A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions publication-title: Fixed Point Theory Appl. – volume: 28 start-page: 2839 year: 2018 end-page: 2871 ident: br0140 article-title: Forward-backward-half forward algorithm for solving monotone inclusions publication-title: SIAM J. Optim. – volume: 25 start-page: 829 year: 2017 end-page: 858 ident: br0350 article-title: A three-operator splitting scheme and its optimization applications publication-title: Set-Valued Var. Anal. – volume: 2017 year: 2017 ident: br0450 article-title: A preconditioning technique for first-order primal-dual splitting method in convex optimization publication-title: Math. Probl. Eng. – volume: 255 start-page: 2897 year: 1962 end-page: 2899 ident: br0520 article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien publication-title: C. R. Acad. Sci., Paris Ser. A Math – start-page: 1762 year: 2011 end-page: 1769 ident: br0410 article-title: Diagonal preconditioning for first order primal-dual algorithms in convex optimization publication-title: IEEE International Conference on Computer Vision (ICCV) – volume: 27 year: 2011 ident: br0230 article-title: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty publication-title: Inverse Probl. – volume: 63 start-page: 1289 year: 2014 end-page: 1318 ident: br0120 article-title: Variable metric forward-backward splitting with applications to monotone inclusions in duality publication-title: Optimization – volume: 13 start-page: 717 year: 2019 end-page: 740 ident: br0330 article-title: A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization publication-title: Optim. Lett. – volume: 51 start-page: 311 year: 2015 end-page: 325 ident: br0430 article-title: An inertial forward-backward algorithm for monotone inclusions publication-title: J. Math. Imaging Vis. – volume: 159 start-page: 253 year: 2016 end-page: 287 ident: br0080 article-title: On the ergodic convergence rates of a first-order primal-dual algorithm publication-title: Math. Program. – volume: 32 start-page: 31 year: 2015 end-page: 54 ident: br0400 article-title: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems publication-title: IEEE Signal Process. Mag. – volume: 29 year: 2013 ident: br0110 article-title: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration publication-title: Inverse Probl. – volume: 10 start-page: 563 year: 2018 ident: br0390 article-title: Convergence analysis of an inexact three-operator splitting algorithm publication-title: Symmetry – year: 2017 ident: br0510 article-title: First-Order Methods in Optimization – volume: 179 start-page: 85 year: 2020 end-page: 108 ident: br0470 article-title: On the equivalence of the primal-dual hybrid gradient method and Douglas-Rachford splitting publication-title: Math. Program. – volume: 184 start-page: 858 year: 2020 end-page: 876 ident: br0190 article-title: Finding the forward-Douglas-Rachford-foward method publication-title: J. Optim. Theory Appl. – volume: 76 start-page: 1698 year: 2018 end-page: 1717 ident: br0320 article-title: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator publication-title: J. Sci. Comput. – volume: 80 start-page: 665 year: 2019 end-page: 678 ident: br0160 article-title: Shadow Dougla-Rachford splitting for monotone inclusions publication-title: Appl. Math. Optim. – volume: 7 start-page: 131 year: 2019 ident: br0270 article-title: Iterative methods for computing the resolvent of composed operators in Hilbert spaces publication-title: Mathematics – volume: 25 start-page: 161 year: 2016 end-page: 319 ident: br0090 article-title: An introduction to continuous optimization for imaging publication-title: Acta Numer. – volume: 28 year: 2012 ident: br0210 article-title: Preconditioned alternating projection algorithms for maximum a posterior ect reconstruction publication-title: Inverse Probl. – volume: 38 start-page: 667 year: 2013 end-page: 681 ident: br0050 article-title: A splitting algorithm for dual monotone inclusions involving cocoercive operators publication-title: Adv. Comput. Math. – volume: 21 start-page: 1230 year: 2011 end-page: 1250 ident: br0030 article-title: A monotone+skew splitting model for composite monotone inclusions in duality publication-title: SIAM J. Control Optim. – volume: 41 start-page: 491 year: 2016 end-page: 517 ident: br0440 article-title: Fast proximity-gradient algorithms for structured convex optimization problems publication-title: Appl. Comput. Harmon. Anal. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: br0560 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 27 year: 2011 ident: br0540 article-title: Proximity algorithms for image models: denoising publication-title: Inverse Probl. – volume: 289 start-page: 1 year: 2018 end-page: 12 ident: br0530 article-title: A simple primal-dual algorithm for nuclear norm and total variation regularization publication-title: Neurocomputing – volume: 49 start-page: 831 year: 2019 end-page: 858 ident: br0360 article-title: An inner-outer iteration method for solving convex optimization problems involving the sum of three convex functions publication-title: Sci. Sin., Math. – volume: 68 start-page: 57 year: 2017 end-page: 93 ident: br0130 article-title: Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators publication-title: Comput. Optim. Appl. – volume: 33 start-page: 868 year: 2017 end-page: 886 ident: br0550 article-title: A splitting primal-dual proximity algorithm for solving composite optimization problems publication-title: Acta Math. Sin. Engl. Ser. – volume: 5 start-page: 119 year: 2012 end-page: 149 ident: br0420 article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective publication-title: SIAM J. Imaging Sci. – volume: 43 start-page: 167 year: 2012 end-page: 179 ident: br0260 article-title: A fast fixed point algorithm for total variation deblurring and segmentation publication-title: J. Math. Imaging Vis. – year: 2017 ident: br0500 article-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces – volume: 425 start-page: 55 year: 2015 end-page: 70 ident: br0380 article-title: Compositions and convex combinations of averaged nonexpansive operators publication-title: J. Math. Anal. Appl. – volume: 4 start-page: 1168 year: 2005 end-page: 1200 ident: br0370 article-title: Signal recovery by proximal forward-backward splitting publication-title: Multiscale Model. Simul. – volume: 42 start-page: 1287 year: 2016 end-page: 1310 ident: br0240 article-title: Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring publication-title: Adv. Comput. Math. – volume: 40 start-page: 120 year: 2011 end-page: 145 ident: br0060 article-title: A first-order primal-dual algorithm for convex problems with applications to imaging publication-title: J. Math. Imaging Vis. – volume: 16 start-page: 87 year: 2014 end-page: 96 ident: br0480 article-title: Computing the resolvent of composite operators publication-title: CUBO – volume: 30 start-page: 1531 year: 2019 end-page: 1544 ident: br0310 article-title: Efficient primal-dual fixed point algorithms with dynamic stepsize for composite convex optimization problems publication-title: Multidimens. Syst. Signal Process. – volume: 43 start-page: 209 year: 2015 end-page: 214 ident: br0280 article-title: A simple algorithm for a class of nonsmooth convex-concave saddle-point problems publication-title: Oper. Res. Lett. – start-page: 4141 year: 2014 end-page: 4145 ident: br0100 article-title: A forward-backward view of some primal-dual optimization methods in image recovery publication-title: Proceedings of 2014 IEEE International Conference on Image Processing – volume: 71 start-page: 519 year: 2016 end-page: 540 ident: br0460 article-title: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems publication-title: Numer. Algorithms – volume: 49 start-page: 831 year: 2019 ident: 10.1016/j.apnum.2020.06.005_br0360 article-title: An inner-outer iteration method for solving convex optimization problems involving the sum of three convex functions publication-title: Sci. Sin., Math. doi: 10.1360/SCM-2017-0313 – volume: 43 start-page: 167 issue: 3 year: 2012 ident: 10.1016/j.apnum.2020.06.005_br0260 article-title: A fast fixed point algorithm for total variation deblurring and segmentation publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-011-0298-7 – volume: 182 start-page: 606 year: 2019 ident: 10.1016/j.apnum.2020.06.005_br0340 article-title: Convergence rates of forward-douglas-rachford splitting method publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01524-9 – volume: 20 start-page: 307 issue: 2 year: 2012 ident: 10.1016/j.apnum.2020.06.005_br0010 article-title: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and paralle-sum type monotone operators publication-title: Set-Valued Var. Anal. doi: 10.1007/s11228-011-0191-y – volume: 42 start-page: 1287 issue: 6 year: 2016 ident: 10.1016/j.apnum.2020.06.005_br0240 article-title: Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring publication-title: Adv. Comput. Math. doi: 10.1007/s10444-016-9462-3 – volume: 32 start-page: 31 year: 2015 ident: 10.1016/j.apnum.2020.06.005_br0400 article-title: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2377273 – volume: 80 start-page: 665 year: 2019 ident: 10.1016/j.apnum.2020.06.005_br0160 article-title: Shadow Dougla-Rachford splitting for monotone inclusions publication-title: Appl. Math. Optim. doi: 10.1007/s00245-019-09597-8 – volume: 38 start-page: 431 issue: 2 year: 2000 ident: 10.1016/j.apnum.2020.06.005_br0020 article-title: A modified forward-backward splitting method for maximal monotone mappings publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012998338806 – year: 2017 ident: 10.1016/j.apnum.2020.06.005_br0510 – volume: 63 start-page: 1289 issue: 9 year: 2014 ident: 10.1016/j.apnum.2020.06.005_br0120 article-title: Variable metric forward-backward splitting with applications to monotone inclusions in duality publication-title: Optimization doi: 10.1080/02331934.2012.733883 – volume: 33 start-page: 868 issue: 6 year: 2017 ident: 10.1016/j.apnum.2020.06.005_br0550 article-title: A splitting primal-dual proximity algorithm for solving composite optimization problems publication-title: Acta Math. Sin. Engl. Ser. doi: 10.1007/s10114-016-5625-x – start-page: 4141 year: 2014 ident: 10.1016/j.apnum.2020.06.005_br0100 article-title: A forward-backward view of some primal-dual optimization methods in image recovery – volume: 29 year: 2013 ident: 10.1016/j.apnum.2020.06.005_br0110 article-title: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration publication-title: Inverse Probl. doi: 10.1088/0266-5611/29/2/025011 – ident: 10.1016/j.apnum.2020.06.005_br0250 – volume: 457 start-page: 1568 issue: 2 year: 2018 ident: 10.1016/j.apnum.2020.06.005_br0300 article-title: A globally linearly convergent method for pointwise quadratically supportable convex-concave saddle point problems publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2017.02.068 – volume: 71 start-page: 519 year: 2016 ident: 10.1016/j.apnum.2020.06.005_br0460 article-title: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems publication-title: Numer. Algorithms doi: 10.1007/s11075-015-0007-5 – ident: 10.1016/j.apnum.2020.06.005_br0150 – volume: 2017 year: 2017 ident: 10.1016/j.apnum.2020.06.005_br0450 article-title: A preconditioning technique for first-order primal-dual splitting method in convex optimization publication-title: Math. Probl. Eng. doi: 10.1155/2017/3694525 – volume: 38 start-page: 667 year: 2013 ident: 10.1016/j.apnum.2020.06.005_br0050 article-title: A splitting algorithm for dual monotone inclusions involving cocoercive operators publication-title: Adv. Comput. Math. doi: 10.1007/s10444-011-9254-8 – start-page: 1762 year: 2011 ident: 10.1016/j.apnum.2020.06.005_br0410 article-title: Diagonal preconditioning for first order primal-dual algorithms in convex optimization – volume: 30 start-page: 1531 issue: 3 year: 2019 ident: 10.1016/j.apnum.2020.06.005_br0310 article-title: Efficient primal-dual fixed point algorithms with dynamic stepsize for composite convex optimization problems publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-018-0615-z – volume: 2019 issue: 19 year: 2019 ident: 10.1016/j.apnum.2020.06.005_br0490 article-title: Iteative methods for computing the resolvent of the sum of a maximal monotone operator and composite operator with applications publication-title: Math. Probl. Eng. – volume: 65 start-page: 3510 issue: 13 year: 2017 ident: 10.1016/j.apnum.2020.06.005_br0290 article-title: Projected Nesterov's proximal-gradient algorithm for sparse signal recovery publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2691661 – year: 2017 ident: 10.1016/j.apnum.2020.06.005_br0500 – volume: 27 year: 2011 ident: 10.1016/j.apnum.2020.06.005_br0540 article-title: Proximity algorithms for image models: denoising publication-title: Inverse Probl. doi: 10.1088/0266-5611/27/4/045009 – ident: 10.1016/j.apnum.2020.06.005_br0200 – volume: 28 start-page: 2839 year: 2018 ident: 10.1016/j.apnum.2020.06.005_br0140 article-title: Forward-backward-half forward algorithm for solving monotone inclusions publication-title: SIAM J. Optim. doi: 10.1137/17M1120099 – volume: 51 start-page: 311 year: 2015 ident: 10.1016/j.apnum.2020.06.005_br0430 article-title: An inertial forward-backward algorithm for monotone inclusions publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-014-0523-2 – volume: 43 start-page: 209 issue: 2 year: 2015 ident: 10.1016/j.apnum.2020.06.005_br0280 article-title: A simple algorithm for a class of nonsmooth convex-concave saddle-point problems publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2015.02.001 – ident: 10.1016/j.apnum.2020.06.005_br0170 – volume: 3 start-page: 1015 issue: 4 year: 2010 ident: 10.1016/j.apnum.2020.06.005_br0070 article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science publication-title: SIAM J. Imaging Sci. doi: 10.1137/09076934X – volume: 76 start-page: 1698 issue: 3 year: 2018 ident: 10.1016/j.apnum.2020.06.005_br0320 article-title: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0680-3 – volume: 13 start-page: 717 issue: 4 year: 2019 ident: 10.1016/j.apnum.2020.06.005_br0330 article-title: A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization publication-title: Optim. Lett. doi: 10.1007/s11590-018-1272-8 – volume: 40 start-page: 120 issue: 1 year: 2011 ident: 10.1016/j.apnum.2020.06.005_br0060 article-title: A first-order primal-dual algorithm for convex problems with applications to imaging publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – volume: 5 start-page: 119 issue: 1 year: 2012 ident: 10.1016/j.apnum.2020.06.005_br0420 article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective publication-title: SIAM J. Imaging Sci. doi: 10.1137/100814494 – volume: 4 start-page: 1168 year: 2005 ident: 10.1016/j.apnum.2020.06.005_br0370 article-title: Signal recovery by proximal forward-backward splitting publication-title: Multiscale Model. Simul. doi: 10.1137/050626090 – volume: 25 start-page: 829 issue: 4 year: 2017 ident: 10.1016/j.apnum.2020.06.005_br0350 article-title: A three-operator splitting scheme and its optimization applications publication-title: Set-Valued Var. Anal. doi: 10.1007/s11228-017-0421-z – volume: 255 start-page: 2897 year: 1962 ident: 10.1016/j.apnum.2020.06.005_br0520 article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien publication-title: C. R. Acad. Sci., Paris Ser. A Math – volume: 425 start-page: 55 year: 2015 ident: 10.1016/j.apnum.2020.06.005_br0380 article-title: Compositions and convex combinations of averaged nonexpansive operators publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.11.044 – volume: 179 start-page: 85 year: 2020 ident: 10.1016/j.apnum.2020.06.005_br0470 article-title: On the equivalence of the primal-dual hybrid gradient method and Douglas-Rachford splitting publication-title: Math. Program. doi: 10.1007/s10107-018-1321-1 – volume: 41 start-page: 491 year: 2016 ident: 10.1016/j.apnum.2020.06.005_br0440 article-title: Fast proximity-gradient algorithms for structured convex optimization problems publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.11.004 – volume: 158 start-page: 460 year: 2013 ident: 10.1016/j.apnum.2020.06.005_br0040 article-title: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0245-9 – volume: 184 start-page: 858 year: 2020 ident: 10.1016/j.apnum.2020.06.005_br0190 article-title: Finding the forward-Douglas-Rachford-foward method publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01601-z – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.apnum.2020.06.005_br0560 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 16 start-page: 87 issue: 3 year: 2014 ident: 10.1016/j.apnum.2020.06.005_br0480 article-title: Computing the resolvent of composite operators publication-title: CUBO doi: 10.4067/S0719-06462014000300007 – volume: 28 issue: 11 year: 2012 ident: 10.1016/j.apnum.2020.06.005_br0210 article-title: Preconditioned alternating projection algorithms for maximum a posterior ect reconstruction publication-title: Inverse Probl. doi: 10.1088/0266-5611/28/11/115005 – volume: 45 start-page: 327 year: 2019 ident: 10.1016/j.apnum.2020.06.005_br0180 article-title: Admm for monotone operators: convergence analysis and rates publication-title: Adv. Comput. Math. doi: 10.1007/s10444-018-9619-3 – volume: 27 year: 2011 ident: 10.1016/j.apnum.2020.06.005_br0230 article-title: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty publication-title: Inverse Probl. doi: 10.1088/0266-5611/27/12/125007 – volume: 10 start-page: 563 issue: 11 year: 2018 ident: 10.1016/j.apnum.2020.06.005_br0390 article-title: Convergence analysis of an inexact three-operator splitting algorithm publication-title: Symmetry doi: 10.3390/sym10110563 – volume: 159 start-page: 253 year: 2016 ident: 10.1016/j.apnum.2020.06.005_br0080 article-title: On the ergodic convergence rates of a first-order primal-dual algorithm publication-title: Math. Program. doi: 10.1007/s10107-015-0957-3 – volume: 289 start-page: 1 year: 2018 ident: 10.1016/j.apnum.2020.06.005_br0530 article-title: A simple primal-dual algorithm for nuclear norm and total variation regularization publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.056 – volume: 21 start-page: 1230 issue: 4 year: 2011 ident: 10.1016/j.apnum.2020.06.005_br0030 article-title: A monotone+skew splitting model for composite monotone inclusions in duality publication-title: SIAM J. Control Optim. doi: 10.1137/10081602X – volume: 2016 start-page: 54 year: 2016 ident: 10.1016/j.apnum.2020.06.005_br0220 article-title: A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions publication-title: Fixed Point Theory Appl. doi: 10.1186/s13663-016-0543-2 – volume: 7 start-page: 131 issue: 2 year: 2019 ident: 10.1016/j.apnum.2020.06.005_br0270 article-title: Iterative methods for computing the resolvent of composed operators in Hilbert spaces publication-title: Mathematics doi: 10.3390/math7020131 – volume: 68 start-page: 57 year: 2017 ident: 10.1016/j.apnum.2020.06.005_br0130 article-title: Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-017-9909-6 – volume: 25 start-page: 161 year: 2016 ident: 10.1016/j.apnum.2020.06.005_br0090 article-title: An introduction to continuous optimization for imaging publication-title: Acta Numer. doi: 10.1017/S096249291600009X |
| SSID | ssj0005540 |
| Score | 2.3090003 |
| Snippet | Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 236 |
| SubjectTerms | Adapted metric method Forward-backward splitting algorithm Primal-dual algorithm Proximity operator |
| Title | Primal-dual fixed point algorithm based on adapted metric method for solving convex minimization problem with application |
| URI | https://dx.doi.org/10.1016/j.apnum.2020.06.005 |
| Volume | 157 |
| WOSCitedRecordID | wos000564648400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5460 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005540 issn: 0168-9274 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQcuvBEtD-2BW3AUr-O191ihIkCoqkSBcLL2SVM5dpSX0lP_OrMPP1BQBUhcrGiVtcc7n2dnZueB0GsiBDGx4pGO1QQMlJRGIskmEWdS52yslHLp0V8_ZWdn-XTKzgeDmyYXZltmVZXvdmzxX1kNY8Bsmzr7F-xubwoD8BuYDldgO1z_iPHntn5EGbkcKzPbgUK5qGc2kLz8US9n68v50O5cyp4ScMUXVuOc27ZaMnSTdoGHQOLWp-NWW70b2gIk85CxOQw9aEJaXHcA3tdzG-W22vgToXI4b-vDrjooBWf1N-tS6XwIfvD7Rl7yuu-VABM0_sUrsZ8u472XFKQr8W15RtpL3Dyz0Rm-qUArkn3R6kaoJrS3PxNfdHpP9HsvxNWIL-DVRpYmV5h1nHY7XRt_-NlSYgkh1iLMM9jDD0mWMhCLhycfTqcfuyih1OXUtpQ3hatciODeo36v3PQUlosH6F6wNPCJR8hDNNDVI3Q_MAYHmb56jK57gMEOMNgBBreAwQ4wuK5wAAz2gMEeMBgAgwNgsAcM7gMGB8BgCxjcA8wT9OXd6cXb91FoyBFJ0HTWEeNaJQIMVMbSPOEi46BvppIljObSpEYpw4QWdBIzPaYcZEAmjIJxKamwlQifooOqrvQzhA01kog0piAOJtrEgnBOtMkl3IImiThCpFnJQoZq9bZpSlk0YYlXhVv-wi5_4YIz0yP0pp208MVabv87bVhUBH3T65EFYOq2icf_OvE5utt9LC_QwXq50S_RHbldz1bLVwF7PwG31q3c |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primal-dual+fixed+point+algorithm+based+on+adapted+metric+method+for+solving+convex+minimization+problem+with+application&rft.jtitle=Applied+numerical+mathematics&rft.au=Huang%2C+Wenli&rft.au=Tang%2C+Yuchao&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0168-9274&rft.eissn=1873-5460&rft.volume=157&rft.spage=236&rft.epage=254&rft_id=info:doi/10.1016%2Fj.apnum.2020.06.005&rft.externalDocID=S0168927420301872 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9274&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9274&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9274&client=summon |