Primal-dual fixed point algorithm based on adapted metric method for solving convex minimization problem with application

Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz continuous gradient, one is composed of a linear operator and the other is proximity friendly. The primal-dual fixed point algorithm is a simple...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied numerical mathematics Ročník 157; s. 236 - 254
Hlavní autoři: Huang, Wenli, Tang, Yuchao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2020
Témata:
ISSN:0168-9274, 1873-5460
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz continuous gradient, one is composed of a linear operator and the other is proximity friendly. The primal-dual fixed point algorithm is a simple and effective algorithm for such problems. To exploit the second-order derivatives information of the objective function, we propose a primal-dual fixed point algorithm with an adapted metric method. The proposed algorithm is derived from the idea of establishing a generally fixed point formulation for the solution of the considered problem. Under mild conditions on the iterative parameters, we prove the convergence of the proposed algorithm. Further, we establish the ergodic convergence rate in the sense of primal-dual gap and also derive the linear convergence rate with additional conditions. Numerical experiments on image deblurring problems show that the proposed algorithm outperforms other state-of-the-art primal-dual algorithms in terms of the number of iterations.
AbstractList Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz continuous gradient, one is composed of a linear operator and the other is proximity friendly. The primal-dual fixed point algorithm is a simple and effective algorithm for such problems. To exploit the second-order derivatives information of the objective function, we propose a primal-dual fixed point algorithm with an adapted metric method. The proposed algorithm is derived from the idea of establishing a generally fixed point formulation for the solution of the considered problem. Under mild conditions on the iterative parameters, we prove the convergence of the proposed algorithm. Further, we establish the ergodic convergence rate in the sense of primal-dual gap and also derive the linear convergence rate with additional conditions. Numerical experiments on image deblurring problems show that the proposed algorithm outperforms other state-of-the-art primal-dual algorithms in terms of the number of iterations.
Author Tang, Yuchao
Huang, Wenli
Author_xml – sequence: 1
  givenname: Wenli
  surname: Huang
  fullname: Huang, Wenli
  email: 1105515702@qq.com
– sequence: 2
  givenname: Yuchao
  surname: Tang
  fullname: Tang, Yuchao
  email: hhaaoo1331@163.com
BookMark eNqFkM1OwzAMgCM0JDbgCbjkBVrStU2bAwc08SdNggOcozQ_m6c2qdJsbDw96caJA5xs2f4s-5uhiXVWI3STkTQjGb3dpKK32y6dkzlJCU0JKc_QNKurPCkLSiZoGqfqhM2r4gLNhmFD4kRZkCk6vHnoRJuorWixgb1WuHdgAxbtynkI6w43YohVZ7FQog8x7XTwIMewdgob5_Hg2h3YFZbO7vQed2Chgy8RIFK9d02rO_wZl2HR9y3IY-MKnRvRDvr6J16ij8eH98Vzsnx9elncLxOZkzwkTGiVNxWtGSvrXDSVqEpSSpYzWktTGqUMa3RDi4xpQoXJVNUYFetS0qZiRX6J2Gmv9G4YvDZcQjheELyAlmeEjw75hh8d8tEhJ5RHQ5HNf7H9qMsf_qHuTpSOb-1Aez5I0FZqBV7LwJWDP_lv10WTKQ
CitedBy_id crossref_primary_10_1007_s43069_025_00438_9
crossref_primary_10_1109_TCNS_2021_3065653
crossref_primary_10_1109_TNNLS_2021_3110295
crossref_primary_10_1007_s10915_022_01958_w
crossref_primary_10_1109_TAC_2024_3470841
Cites_doi 10.1360/SCM-2017-0313
10.1007/s10851-011-0298-7
10.1007/s10957-019-01524-9
10.1007/s11228-011-0191-y
10.1007/s10444-016-9462-3
10.1109/MSP.2014.2377273
10.1007/s00245-019-09597-8
10.1137/S0363012998338806
10.1080/02331934.2012.733883
10.1007/s10114-016-5625-x
10.1088/0266-5611/29/2/025011
10.1016/j.jmaa.2017.02.068
10.1007/s11075-015-0007-5
10.1155/2017/3694525
10.1007/s10444-011-9254-8
10.1007/s11045-018-0615-z
10.1109/TSP.2017.2691661
10.1088/0266-5611/27/4/045009
10.1137/17M1120099
10.1007/s10851-014-0523-2
10.1016/j.orl.2015.02.001
10.1137/09076934X
10.1007/s10915-018-0680-3
10.1007/s11590-018-1272-8
10.1007/s10851-010-0251-1
10.1137/100814494
10.1137/050626090
10.1007/s11228-017-0421-z
10.1016/j.jmaa.2014.11.044
10.1007/s10107-018-1321-1
10.1016/j.acha.2015.11.004
10.1007/s10957-012-0245-9
10.1007/s10957-019-01601-z
10.1109/TIP.2003.819861
10.4067/S0719-06462014000300007
10.1088/0266-5611/28/11/115005
10.1007/s10444-018-9619-3
10.1088/0266-5611/27/12/125007
10.3390/sym10110563
10.1007/s10107-015-0957-3
10.1016/j.neucom.2017.12.056
10.1137/10081602X
10.1186/s13663-016-0543-2
10.3390/math7020131
10.1007/s10589-017-9909-6
10.1017/S096249291600009X
ContentType Journal Article
Copyright 2020 IMACS
Copyright_xml – notice: 2020 IMACS
DBID AAYXX
CITATION
DOI 10.1016/j.apnum.2020.06.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-5460
EndPage 254
ExternalDocumentID 10_1016_j_apnum_2020_06_005
S0168927420301872
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
KOM
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-9aed3b76899583ab7a7505c93968cf5fddf9beb6419e06af1d7bfd5fdcc6b7943
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564648400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-9274
IngestDate Sat Nov 29 07:26:02 EST 2025
Tue Nov 18 21:56:04 EST 2025
Fri Feb 23 02:48:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Primal-dual algorithm
Forward-backward splitting algorithm
Adapted metric method
Proximity operator
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-9aed3b76899583ab7a7505c93968cf5fddf9beb6419e06af1d7bfd5fdcc6b7943
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_apnum_2020_06_005
crossref_primary_10_1016_j_apnum_2020_06_005
elsevier_sciencedirect_doi_10_1016_j_apnum_2020_06_005
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Applied numerical mathematics
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Combettes, Vũ (br0120) 2014; 63
Condat (br0040) 2013; 158
Tseng (br0020) 2000; 38
Li, Zhang (br0440) 2016; 41
Combettes, Pesquet (br0010) 2012; 20
Chen, Zhou, Song (br0240) 2016; 42
Moudafi (br0480) 2014; 16
Combettes, Yamada (br0380) 2015; 425
Wen, Tang, Cui, Peng (br0310) 2019; 30
Komodakis, Pesquet (br0400) 2015; 32
Tang, Wu, Zhu (br0360) 2019; 49
Raguet (br0330) 2019; 13
Chambolle, Pock (br0060) 2011; 40
Briceño-Arias, Combettes (br0030) 2011; 21
Csetnek, Malitsky, Tam (br0160) 2019; 80
Rieger, Tam (br0200) 2020
Boţ, Csetnek (br0460) 2016; 71
Tang, Zhu, Wen, Peng (br0550) 2017; 33
Yan (br0320) 2018; 76
Zong, Tang, Cho (br0390) 2018; 10
Malitsky, Tam (br0150) 2018
Moreau (br0520) 1962; 255
Chen, Tang (br0490) 2019; 2019
Zhu, Yao, Xu, Huang, Zhang (br0530) 2018; 289
Drori, Sabach, Teboulle (br0280) 2015; 43
Chen, Huang, Zhang (br0110) 2013; 29
Ryu, Vu (br0190) 2020; 184
Connor, Vandenberghe (br0470) 2020; 179
Chen, Huang, Zhang (br0220) 2016; 2016
Pock, Chambolle (br0410) 2011
Latafat, Patrinos (br0130) 2017; 68
Wang, Bovik, Sheikh, Simoncelli (br0560) 2004; 13
Boţ, Csetnek (br0180) 2019; 45
Chen, Zhang, Cheng (br0260) 2012; 43
Briceño-Arias, Davis (br0140) 2018; 28
Davis, Yin (br0350) 2017; 25
Beck (br0510) 2017
Bauschke, Combettes (br0500) 2017
Lorenz, Pock (br0430) 2015; 51
Yang, Tang, Zhu (br0270) 2019; 7
Wen, Peng, Tang, Zhu, Yue (br0450) 2017; 2017
Argyriou, Micchelli, Pontil, Shen, Xu (br0250) April 2011
Loris, Verhoeven (br0230) 2011; 27
Vũ (br0050) 2013; 38
Luke, Shefi (br0300) 2018; 457
Molinari, Liang, Fadili (br0340) 2019; 182
Esser, Zhang, Chan (br0070) 2010; 3
Chambolle, Pock (br0080) 2016; 159
Combettes, Condat, Pesquet, Vu (br0100) 2014
Krol, Li, Shen, Xu (br0210) 2012; 28
Gu, Dogandžić (br0290) 2017; 65
Cevher, Vu (br0170) 2019
Chambolle, Pock (br0090) 2016; 25
Micchelli, Shen, Xu (br0540) 2011; 27
He, Yuan (br0420) 2012; 5
Combettes, Wajs (br0370) 2005; 4
Pock (10.1016/j.apnum.2020.06.005_br0410) 2011
Komodakis (10.1016/j.apnum.2020.06.005_br0400) 2015; 32
Davis (10.1016/j.apnum.2020.06.005_br0350) 2017; 25
Rieger (10.1016/j.apnum.2020.06.005_br0200)
Yang (10.1016/j.apnum.2020.06.005_br0270) 2019; 7
Condat (10.1016/j.apnum.2020.06.005_br0040) 2013; 158
Ryu (10.1016/j.apnum.2020.06.005_br0190) 2020; 184
Vũ (10.1016/j.apnum.2020.06.005_br0050) 2013; 38
Argyriou (10.1016/j.apnum.2020.06.005_br0250)
Micchelli (10.1016/j.apnum.2020.06.005_br0540) 2011; 27
Chen (10.1016/j.apnum.2020.06.005_br0490) 2019; 2019
Wen (10.1016/j.apnum.2020.06.005_br0450) 2017; 2017
Combettes (10.1016/j.apnum.2020.06.005_br0120) 2014; 63
Combettes (10.1016/j.apnum.2020.06.005_br0380) 2015; 425
Wen (10.1016/j.apnum.2020.06.005_br0310) 2019; 30
Connor (10.1016/j.apnum.2020.06.005_br0470) 2020; 179
Krol (10.1016/j.apnum.2020.06.005_br0210) 2012; 28
Chambolle (10.1016/j.apnum.2020.06.005_br0080) 2016; 159
Boţ (10.1016/j.apnum.2020.06.005_br0460) 2016; 71
Chambolle (10.1016/j.apnum.2020.06.005_br0090) 2016; 25
Yan (10.1016/j.apnum.2020.06.005_br0320) 2018; 76
Boţ (10.1016/j.apnum.2020.06.005_br0180) 2019; 45
Bauschke (10.1016/j.apnum.2020.06.005_br0500) 2017
Wang (10.1016/j.apnum.2020.06.005_br0560) 2004; 13
Briceño-Arias (10.1016/j.apnum.2020.06.005_br0030) 2011; 21
Briceño-Arias (10.1016/j.apnum.2020.06.005_br0140) 2018; 28
Chen (10.1016/j.apnum.2020.06.005_br0110) 2013; 29
Esser (10.1016/j.apnum.2020.06.005_br0070) 2010; 3
Latafat (10.1016/j.apnum.2020.06.005_br0130) 2017; 68
Combettes (10.1016/j.apnum.2020.06.005_br0370) 2005; 4
Moreau (10.1016/j.apnum.2020.06.005_br0520) 1962; 255
Raguet (10.1016/j.apnum.2020.06.005_br0330) 2019; 13
Gu (10.1016/j.apnum.2020.06.005_br0290) 2017; 65
Chen (10.1016/j.apnum.2020.06.005_br0240) 2016; 42
Loris (10.1016/j.apnum.2020.06.005_br0230) 2011; 27
Combettes (10.1016/j.apnum.2020.06.005_br0010) 2012; 20
Drori (10.1016/j.apnum.2020.06.005_br0280) 2015; 43
Tang (10.1016/j.apnum.2020.06.005_br0360) 2019; 49
Zong (10.1016/j.apnum.2020.06.005_br0390) 2018; 10
Li (10.1016/j.apnum.2020.06.005_br0440) 2016; 41
Lorenz (10.1016/j.apnum.2020.06.005_br0430) 2015; 51
Molinari (10.1016/j.apnum.2020.06.005_br0340) 2019; 182
Chambolle (10.1016/j.apnum.2020.06.005_br0060) 2011; 40
Beck (10.1016/j.apnum.2020.06.005_br0510) 2017
Moudafi (10.1016/j.apnum.2020.06.005_br0480) 2014; 16
Chen (10.1016/j.apnum.2020.06.005_br0260) 2012; 43
Luke (10.1016/j.apnum.2020.06.005_br0300) 2018; 457
Tang (10.1016/j.apnum.2020.06.005_br0550) 2017; 33
He (10.1016/j.apnum.2020.06.005_br0420) 2012; 5
Cevher (10.1016/j.apnum.2020.06.005_br0170)
Zhu (10.1016/j.apnum.2020.06.005_br0530) 2018; 289
Chen (10.1016/j.apnum.2020.06.005_br0220) 2016; 2016
Tseng (10.1016/j.apnum.2020.06.005_br0020) 2000; 38
Csetnek (10.1016/j.apnum.2020.06.005_br0160) 2019; 80
Malitsky (10.1016/j.apnum.2020.06.005_br0150)
Combettes (10.1016/j.apnum.2020.06.005_br0100) 2014
References_xml – volume: 182
  start-page: 606
  year: 2019
  end-page: 639
  ident: br0340
  article-title: Convergence rates of forward-douglas-rachford splitting method
  publication-title: J. Optim. Theory Appl.
– year: 2018
  ident: br0150
  article-title: A forward-backward splitting method for monotone inclusions without cocoercivity
– volume: 45
  start-page: 327
  year: 2019
  end-page: 359
  ident: br0180
  article-title: Admm for monotone operators: convergence analysis and rates
  publication-title: Adv. Comput. Math.
– volume: 3
  start-page: 1015
  year: 2010
  end-page: 1046
  ident: br0070
  article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science
  publication-title: SIAM J. Imaging Sci.
– volume: 2019
  year: 2019
  ident: br0490
  article-title: Iteative methods for computing the resolvent of the sum of a maximal monotone operator and composite operator with applications
  publication-title: Math. Probl. Eng.
– year: 2020
  ident: br0200
  article-title: Backward-forward-reflected-backward splitting for three operator monotone inclusions
– volume: 158
  start-page: 460
  year: 2013
  end-page: 479
  ident: br0040
  article-title: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms
  publication-title: J. Optim. Theory Appl.
– volume: 38
  start-page: 431
  year: 2000
  end-page: 446
  ident: br0020
  article-title: A modified forward-backward splitting method for maximal monotone mappings
  publication-title: SIAM J. Control Optim.
– volume: 20
  start-page: 307
  year: 2012
  end-page: 330
  ident: br0010
  article-title: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and paralle-sum type monotone operators
  publication-title: Set-Valued Var. Anal.
– volume: 65
  start-page: 3510
  year: 2017
  end-page: 3525
  ident: br0290
  article-title: Projected Nesterov's proximal-gradient algorithm for sparse signal recovery
  publication-title: IEEE Trans. Signal Process.
– year: 2019
  ident: br0170
  article-title: A refected foward-backward splitting method for monotone inlcusions involving Lipschitzian operators
– volume: 457
  start-page: 1568
  year: 2018
  end-page: 1590
  ident: br0300
  article-title: A globally linearly convergent method for pointwise quadratically supportable convex-concave saddle point problems
  publication-title: J. Math. Anal. Appl.
– year: April 2011
  ident: br0250
  article-title: Efficient first order methods for linear composite regularizers
– volume: 2016
  start-page: 54
  year: 2016
  ident: br0220
  article-title: A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions
  publication-title: Fixed Point Theory Appl.
– volume: 28
  start-page: 2839
  year: 2018
  end-page: 2871
  ident: br0140
  article-title: Forward-backward-half forward algorithm for solving monotone inclusions
  publication-title: SIAM J. Optim.
– volume: 25
  start-page: 829
  year: 2017
  end-page: 858
  ident: br0350
  article-title: A three-operator splitting scheme and its optimization applications
  publication-title: Set-Valued Var. Anal.
– volume: 2017
  year: 2017
  ident: br0450
  article-title: A preconditioning technique for first-order primal-dual splitting method in convex optimization
  publication-title: Math. Probl. Eng.
– volume: 255
  start-page: 2897
  year: 1962
  end-page: 2899
  ident: br0520
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: C. R. Acad. Sci., Paris Ser. A Math
– start-page: 1762
  year: 2011
  end-page: 1769
  ident: br0410
  article-title: Diagonal preconditioning for first order primal-dual algorithms in convex optimization
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– volume: 27
  year: 2011
  ident: br0230
  article-title: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty
  publication-title: Inverse Probl.
– volume: 63
  start-page: 1289
  year: 2014
  end-page: 1318
  ident: br0120
  article-title: Variable metric forward-backward splitting with applications to monotone inclusions in duality
  publication-title: Optimization
– volume: 13
  start-page: 717
  year: 2019
  end-page: 740
  ident: br0330
  article-title: A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization
  publication-title: Optim. Lett.
– volume: 51
  start-page: 311
  year: 2015
  end-page: 325
  ident: br0430
  article-title: An inertial forward-backward algorithm for monotone inclusions
  publication-title: J. Math. Imaging Vis.
– volume: 159
  start-page: 253
  year: 2016
  end-page: 287
  ident: br0080
  article-title: On the ergodic convergence rates of a first-order primal-dual algorithm
  publication-title: Math. Program.
– volume: 32
  start-page: 31
  year: 2015
  end-page: 54
  ident: br0400
  article-title: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems
  publication-title: IEEE Signal Process. Mag.
– volume: 29
  year: 2013
  ident: br0110
  article-title: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration
  publication-title: Inverse Probl.
– volume: 10
  start-page: 563
  year: 2018
  ident: br0390
  article-title: Convergence analysis of an inexact three-operator splitting algorithm
  publication-title: Symmetry
– year: 2017
  ident: br0510
  article-title: First-Order Methods in Optimization
– volume: 179
  start-page: 85
  year: 2020
  end-page: 108
  ident: br0470
  article-title: On the equivalence of the primal-dual hybrid gradient method and Douglas-Rachford splitting
  publication-title: Math. Program.
– volume: 184
  start-page: 858
  year: 2020
  end-page: 876
  ident: br0190
  article-title: Finding the forward-Douglas-Rachford-foward method
  publication-title: J. Optim. Theory Appl.
– volume: 76
  start-page: 1698
  year: 2018
  end-page: 1717
  ident: br0320
  article-title: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator
  publication-title: J. Sci. Comput.
– volume: 80
  start-page: 665
  year: 2019
  end-page: 678
  ident: br0160
  article-title: Shadow Dougla-Rachford splitting for monotone inclusions
  publication-title: Appl. Math. Optim.
– volume: 7
  start-page: 131
  year: 2019
  ident: br0270
  article-title: Iterative methods for computing the resolvent of composed operators in Hilbert spaces
  publication-title: Mathematics
– volume: 25
  start-page: 161
  year: 2016
  end-page: 319
  ident: br0090
  article-title: An introduction to continuous optimization for imaging
  publication-title: Acta Numer.
– volume: 28
  year: 2012
  ident: br0210
  article-title: Preconditioned alternating projection algorithms for maximum a posterior ect reconstruction
  publication-title: Inverse Probl.
– volume: 38
  start-page: 667
  year: 2013
  end-page: 681
  ident: br0050
  article-title: A splitting algorithm for dual monotone inclusions involving cocoercive operators
  publication-title: Adv. Comput. Math.
– volume: 21
  start-page: 1230
  year: 2011
  end-page: 1250
  ident: br0030
  article-title: A monotone+skew splitting model for composite monotone inclusions in duality
  publication-title: SIAM J. Control Optim.
– volume: 41
  start-page: 491
  year: 2016
  end-page: 517
  ident: br0440
  article-title: Fast proximity-gradient algorithms for structured convex optimization problems
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: br0560
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 27
  year: 2011
  ident: br0540
  article-title: Proximity algorithms for image models: denoising
  publication-title: Inverse Probl.
– volume: 289
  start-page: 1
  year: 2018
  end-page: 12
  ident: br0530
  article-title: A simple primal-dual algorithm for nuclear norm and total variation regularization
  publication-title: Neurocomputing
– volume: 49
  start-page: 831
  year: 2019
  end-page: 858
  ident: br0360
  article-title: An inner-outer iteration method for solving convex optimization problems involving the sum of three convex functions
  publication-title: Sci. Sin., Math.
– volume: 68
  start-page: 57
  year: 2017
  end-page: 93
  ident: br0130
  article-title: Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators
  publication-title: Comput. Optim. Appl.
– volume: 33
  start-page: 868
  year: 2017
  end-page: 886
  ident: br0550
  article-title: A splitting primal-dual proximity algorithm for solving composite optimization problems
  publication-title: Acta Math. Sin. Engl. Ser.
– volume: 5
  start-page: 119
  year: 2012
  end-page: 149
  ident: br0420
  article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective
  publication-title: SIAM J. Imaging Sci.
– volume: 43
  start-page: 167
  year: 2012
  end-page: 179
  ident: br0260
  article-title: A fast fixed point algorithm for total variation deblurring and segmentation
  publication-title: J. Math. Imaging Vis.
– year: 2017
  ident: br0500
  article-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
– volume: 425
  start-page: 55
  year: 2015
  end-page: 70
  ident: br0380
  article-title: Compositions and convex combinations of averaged nonexpansive operators
  publication-title: J. Math. Anal. Appl.
– volume: 4
  start-page: 1168
  year: 2005
  end-page: 1200
  ident: br0370
  article-title: Signal recovery by proximal forward-backward splitting
  publication-title: Multiscale Model. Simul.
– volume: 42
  start-page: 1287
  year: 2016
  end-page: 1310
  ident: br0240
  article-title: Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring
  publication-title: Adv. Comput. Math.
– volume: 40
  start-page: 120
  year: 2011
  end-page: 145
  ident: br0060
  article-title: A first-order primal-dual algorithm for convex problems with applications to imaging
  publication-title: J. Math. Imaging Vis.
– volume: 16
  start-page: 87
  year: 2014
  end-page: 96
  ident: br0480
  article-title: Computing the resolvent of composite operators
  publication-title: CUBO
– volume: 30
  start-page: 1531
  year: 2019
  end-page: 1544
  ident: br0310
  article-title: Efficient primal-dual fixed point algorithms with dynamic stepsize for composite convex optimization problems
  publication-title: Multidimens. Syst. Signal Process.
– volume: 43
  start-page: 209
  year: 2015
  end-page: 214
  ident: br0280
  article-title: A simple algorithm for a class of nonsmooth convex-concave saddle-point problems
  publication-title: Oper. Res. Lett.
– start-page: 4141
  year: 2014
  end-page: 4145
  ident: br0100
  article-title: A forward-backward view of some primal-dual optimization methods in image recovery
  publication-title: Proceedings of 2014 IEEE International Conference on Image Processing
– volume: 71
  start-page: 519
  year: 2016
  end-page: 540
  ident: br0460
  article-title: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems
  publication-title: Numer. Algorithms
– volume: 49
  start-page: 831
  year: 2019
  ident: 10.1016/j.apnum.2020.06.005_br0360
  article-title: An inner-outer iteration method for solving convex optimization problems involving the sum of three convex functions
  publication-title: Sci. Sin., Math.
  doi: 10.1360/SCM-2017-0313
– volume: 43
  start-page: 167
  issue: 3
  year: 2012
  ident: 10.1016/j.apnum.2020.06.005_br0260
  article-title: A fast fixed point algorithm for total variation deblurring and segmentation
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-011-0298-7
– volume: 182
  start-page: 606
  year: 2019
  ident: 10.1016/j.apnum.2020.06.005_br0340
  article-title: Convergence rates of forward-douglas-rachford splitting method
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01524-9
– volume: 20
  start-page: 307
  issue: 2
  year: 2012
  ident: 10.1016/j.apnum.2020.06.005_br0010
  article-title: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and paralle-sum type monotone operators
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-011-0191-y
– volume: 42
  start-page: 1287
  issue: 6
  year: 2016
  ident: 10.1016/j.apnum.2020.06.005_br0240
  article-title: Fixed point algorithm based on adapted metric method for convex minimization problem with application to image deblurring
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-016-9462-3
– volume: 32
  start-page: 31
  year: 2015
  ident: 10.1016/j.apnum.2020.06.005_br0400
  article-title: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2377273
– volume: 80
  start-page: 665
  year: 2019
  ident: 10.1016/j.apnum.2020.06.005_br0160
  article-title: Shadow Dougla-Rachford splitting for monotone inclusions
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-019-09597-8
– volume: 38
  start-page: 431
  issue: 2
  year: 2000
  ident: 10.1016/j.apnum.2020.06.005_br0020
  article-title: A modified forward-backward splitting method for maximal monotone mappings
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– year: 2017
  ident: 10.1016/j.apnum.2020.06.005_br0510
– volume: 63
  start-page: 1289
  issue: 9
  year: 2014
  ident: 10.1016/j.apnum.2020.06.005_br0120
  article-title: Variable metric forward-backward splitting with applications to monotone inclusions in duality
  publication-title: Optimization
  doi: 10.1080/02331934.2012.733883
– volume: 33
  start-page: 868
  issue: 6
  year: 2017
  ident: 10.1016/j.apnum.2020.06.005_br0550
  article-title: A splitting primal-dual proximity algorithm for solving composite optimization problems
  publication-title: Acta Math. Sin. Engl. Ser.
  doi: 10.1007/s10114-016-5625-x
– start-page: 4141
  year: 2014
  ident: 10.1016/j.apnum.2020.06.005_br0100
  article-title: A forward-backward view of some primal-dual optimization methods in image recovery
– volume: 29
  year: 2013
  ident: 10.1016/j.apnum.2020.06.005_br0110
  article-title: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/29/2/025011
– ident: 10.1016/j.apnum.2020.06.005_br0250
– volume: 457
  start-page: 1568
  issue: 2
  year: 2018
  ident: 10.1016/j.apnum.2020.06.005_br0300
  article-title: A globally linearly convergent method for pointwise quadratically supportable convex-concave saddle point problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.02.068
– volume: 71
  start-page: 519
  year: 2016
  ident: 10.1016/j.apnum.2020.06.005_br0460
  article-title: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-0007-5
– ident: 10.1016/j.apnum.2020.06.005_br0150
– volume: 2017
  year: 2017
  ident: 10.1016/j.apnum.2020.06.005_br0450
  article-title: A preconditioning technique for first-order primal-dual splitting method in convex optimization
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/3694525
– volume: 38
  start-page: 667
  year: 2013
  ident: 10.1016/j.apnum.2020.06.005_br0050
  article-title: A splitting algorithm for dual monotone inclusions involving cocoercive operators
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-011-9254-8
– start-page: 1762
  year: 2011
  ident: 10.1016/j.apnum.2020.06.005_br0410
  article-title: Diagonal preconditioning for first order primal-dual algorithms in convex optimization
– volume: 30
  start-page: 1531
  issue: 3
  year: 2019
  ident: 10.1016/j.apnum.2020.06.005_br0310
  article-title: Efficient primal-dual fixed point algorithms with dynamic stepsize for composite convex optimization problems
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-018-0615-z
– volume: 2019
  issue: 19
  year: 2019
  ident: 10.1016/j.apnum.2020.06.005_br0490
  article-title: Iteative methods for computing the resolvent of the sum of a maximal monotone operator and composite operator with applications
  publication-title: Math. Probl. Eng.
– volume: 65
  start-page: 3510
  issue: 13
  year: 2017
  ident: 10.1016/j.apnum.2020.06.005_br0290
  article-title: Projected Nesterov's proximal-gradient algorithm for sparse signal recovery
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2691661
– year: 2017
  ident: 10.1016/j.apnum.2020.06.005_br0500
– volume: 27
  year: 2011
  ident: 10.1016/j.apnum.2020.06.005_br0540
  article-title: Proximity algorithms for image models: denoising
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/27/4/045009
– ident: 10.1016/j.apnum.2020.06.005_br0200
– volume: 28
  start-page: 2839
  year: 2018
  ident: 10.1016/j.apnum.2020.06.005_br0140
  article-title: Forward-backward-half forward algorithm for solving monotone inclusions
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1120099
– volume: 51
  start-page: 311
  year: 2015
  ident: 10.1016/j.apnum.2020.06.005_br0430
  article-title: An inertial forward-backward algorithm for monotone inclusions
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-014-0523-2
– volume: 43
  start-page: 209
  issue: 2
  year: 2015
  ident: 10.1016/j.apnum.2020.06.005_br0280
  article-title: A simple algorithm for a class of nonsmooth convex-concave saddle-point problems
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2015.02.001
– ident: 10.1016/j.apnum.2020.06.005_br0170
– volume: 3
  start-page: 1015
  issue: 4
  year: 2010
  ident: 10.1016/j.apnum.2020.06.005_br0070
  article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/09076934X
– volume: 76
  start-page: 1698
  issue: 3
  year: 2018
  ident: 10.1016/j.apnum.2020.06.005_br0320
  article-title: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0680-3
– volume: 13
  start-page: 717
  issue: 4
  year: 2019
  ident: 10.1016/j.apnum.2020.06.005_br0330
  article-title: A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-018-1272-8
– volume: 40
  start-page: 120
  issue: 1
  year: 2011
  ident: 10.1016/j.apnum.2020.06.005_br0060
  article-title: A first-order primal-dual algorithm for convex problems with applications to imaging
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 5
  start-page: 119
  issue: 1
  year: 2012
  ident: 10.1016/j.apnum.2020.06.005_br0420
  article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/100814494
– volume: 4
  start-page: 1168
  year: 2005
  ident: 10.1016/j.apnum.2020.06.005_br0370
  article-title: Signal recovery by proximal forward-backward splitting
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 25
  start-page: 829
  issue: 4
  year: 2017
  ident: 10.1016/j.apnum.2020.06.005_br0350
  article-title: A three-operator splitting scheme and its optimization applications
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-017-0421-z
– volume: 255
  start-page: 2897
  year: 1962
  ident: 10.1016/j.apnum.2020.06.005_br0520
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: C. R. Acad. Sci., Paris Ser. A Math
– volume: 425
  start-page: 55
  year: 2015
  ident: 10.1016/j.apnum.2020.06.005_br0380
  article-title: Compositions and convex combinations of averaged nonexpansive operators
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.11.044
– volume: 179
  start-page: 85
  year: 2020
  ident: 10.1016/j.apnum.2020.06.005_br0470
  article-title: On the equivalence of the primal-dual hybrid gradient method and Douglas-Rachford splitting
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1321-1
– volume: 41
  start-page: 491
  year: 2016
  ident: 10.1016/j.apnum.2020.06.005_br0440
  article-title: Fast proximity-gradient algorithms for structured convex optimization problems
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2015.11.004
– volume: 158
  start-page: 460
  year: 2013
  ident: 10.1016/j.apnum.2020.06.005_br0040
  article-title: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0245-9
– volume: 184
  start-page: 858
  year: 2020
  ident: 10.1016/j.apnum.2020.06.005_br0190
  article-title: Finding the forward-Douglas-Rachford-foward method
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01601-z
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.apnum.2020.06.005_br0560
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 16
  start-page: 87
  issue: 3
  year: 2014
  ident: 10.1016/j.apnum.2020.06.005_br0480
  article-title: Computing the resolvent of composite operators
  publication-title: CUBO
  doi: 10.4067/S0719-06462014000300007
– volume: 28
  issue: 11
  year: 2012
  ident: 10.1016/j.apnum.2020.06.005_br0210
  article-title: Preconditioned alternating projection algorithms for maximum a posterior ect reconstruction
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/28/11/115005
– volume: 45
  start-page: 327
  year: 2019
  ident: 10.1016/j.apnum.2020.06.005_br0180
  article-title: Admm for monotone operators: convergence analysis and rates
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-018-9619-3
– volume: 27
  year: 2011
  ident: 10.1016/j.apnum.2020.06.005_br0230
  article-title: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/27/12/125007
– volume: 10
  start-page: 563
  issue: 11
  year: 2018
  ident: 10.1016/j.apnum.2020.06.005_br0390
  article-title: Convergence analysis of an inexact three-operator splitting algorithm
  publication-title: Symmetry
  doi: 10.3390/sym10110563
– volume: 159
  start-page: 253
  year: 2016
  ident: 10.1016/j.apnum.2020.06.005_br0080
  article-title: On the ergodic convergence rates of a first-order primal-dual algorithm
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0957-3
– volume: 289
  start-page: 1
  year: 2018
  ident: 10.1016/j.apnum.2020.06.005_br0530
  article-title: A simple primal-dual algorithm for nuclear norm and total variation regularization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.056
– volume: 21
  start-page: 1230
  issue: 4
  year: 2011
  ident: 10.1016/j.apnum.2020.06.005_br0030
  article-title: A monotone+skew splitting model for composite monotone inclusions in duality
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/10081602X
– volume: 2016
  start-page: 54
  year: 2016
  ident: 10.1016/j.apnum.2020.06.005_br0220
  article-title: A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions
  publication-title: Fixed Point Theory Appl.
  doi: 10.1186/s13663-016-0543-2
– volume: 7
  start-page: 131
  issue: 2
  year: 2019
  ident: 10.1016/j.apnum.2020.06.005_br0270
  article-title: Iterative methods for computing the resolvent of composed operators in Hilbert spaces
  publication-title: Mathematics
  doi: 10.3390/math7020131
– volume: 68
  start-page: 57
  year: 2017
  ident: 10.1016/j.apnum.2020.06.005_br0130
  article-title: Asymmetric forward-backward-adjoint splitting for solving monotone inclusions involving three operators
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9909-6
– volume: 25
  start-page: 161
  year: 2016
  ident: 10.1016/j.apnum.2020.06.005_br0090
  article-title: An introduction to continuous optimization for imaging
  publication-title: Acta Numer.
  doi: 10.1017/S096249291600009X
SSID ssj0005540
Score 2.3090003
Snippet Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 236
SubjectTerms Adapted metric method
Forward-backward splitting algorithm
Primal-dual algorithm
Proximity operator
Title Primal-dual fixed point algorithm based on adapted metric method for solving convex minimization problem with application
URI https://dx.doi.org/10.1016/j.apnum.2020.06.005
Volume 157
WOSCitedRecordID wos000564648400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005540
  issn: 0168-9274
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLam0EMvFLoIaEE-9DYNyiSxEx9RRQWoQhwonZ4i23HKoEwSzdbpv-_zkkVQjcqBixVZE8eZ9-X58_NbEPokCNA2IbgXKOJ7USSEx0Pue9CXKCGjnBqX_9tv8dVVMh6z68HgdxMLsyriskzWa1Y_q6ihD4StQ2efIO52UOiAaxA6tCB2aP9L8Nc6f0ThmRirfLIGQllXE-1IXvyqZpPF3XSoV65MnxLwjNeacU51WS3pqkkbx0OY4sqG45YrtR7qBCRTF7E5dDVoXFhcdwDe57kNuS2X9kSoGE7b_LDzDkrOWP1Dm1Q6G4Lt_LmUd7zqWyVgCzpqrRLOUElBkQa2Ak-raW0u6kZXhrS37AY2l_QjjW6NC_cnvIYZn-hHmXyrPukWsObQ_sG61nobNo5s96kZJNWDpMadj7xA20FMGKjD7dOLs_Fl5x1ETCxt-xpNwirjGvhoLv8mNT2icrOLdtwOA59aZOyhgSrfoNdOINjp8vlb9KcHFGyAgg1QcAsUbICCqxI7oGALFGyBggEo2AEFW6DgPlCwAwrWQME9oLxD37-e3Xw591whDk8Cw1l4jKssFLAxZYwkIRcxB55JJAsZTWRO8izLmVCCRiOmfMrzURaLPIN-KanQGQjfo62yKtU-gvmO8jhTQijCI8YFA-2QUBYlITR-JA5Q0PyTqXRZ6nWxlCLdIMUD9Lm9qbZJWjb_nDYiSh3PtPwxBdBtuvHwac_5gF51n8ZHtLWYLdUReilXi8l8duwQ9xf-m6hD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primal-dual+fixed+point+algorithm+based+on+adapted+metric+method+for+solving+convex+minimization+problem+with+application&rft.jtitle=Applied+numerical+mathematics&rft.au=Huang%2C+Wenli&rft.au=Tang%2C+Yuchao&rft.date=2020-11-01&rft.issn=0168-9274&rft.volume=157&rft.spage=236&rft.epage=254&rft_id=info:doi/10.1016%2Fj.apnum.2020.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apnum_2020_06_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9274&client=summon