Multilevel Picard approximations of high-dimensional semilinear partial differential equations with locally monotone coefficient functions

The full history recursive multilevel Picard approximation method for semilinear parabolic partial differential equations (PDEs) is the only method which provably overcomes the curse of dimensionality for general time horizons if the coefficient functions and the nonlinearity are globally Lipschitz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied numerical mathematics Ročník 181; s. 151 - 175
Hlavní autoři: Hutzenthaler, Martin, Nguyen, Tuan Anh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2022
Témata:
ISSN:0168-9274, 1873-5460
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The full history recursive multilevel Picard approximation method for semilinear parabolic partial differential equations (PDEs) is the only method which provably overcomes the curse of dimensionality for general time horizons if the coefficient functions and the nonlinearity are globally Lipschitz continuous and the nonlinearity is gradient-independent. In this article we extend this result to locally monotone coefficient functions. Our results cover a range of semilinear PDEs with polynomial coefficient functions.
ISSN:0168-9274
1873-5460
DOI:10.1016/j.apnum.2022.05.009