An adaptive reference vector guided many-objective optimization algorithm based on the pareto front density estimation

The performance of evolutionary algorithms using reference vectors to guide the evolution process mainly depends on the adaptive reference vector update strategy. In order to solve the challenging many-objective optimization problems with irregular Pareto fronts, this paper proposes an adaptive refe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Swarm and evolutionary computation Ročník 88; s. 101601
Hlavní autori: Xu, Ying, Li, Fusen, Zhang, Huan, Li, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.07.2024
Predmet:
ISSN:2210-6502
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The performance of evolutionary algorithms using reference vectors to guide the evolution process mainly depends on the adaptive reference vector update strategy. In order to solve the challenging many-objective optimization problems with irregular Pareto fronts, this paper proposes an adaptive reference vector update strategy based on the Pareto front density estimation, which estimates the true Pareto front by finding sparse regions while ensuring the uniform distribution of reference vectors. In addition, an improved environmental selection strategy using the angle-based neighborhood density estimation has been proposed for estimating the neighborhood density to effectively guide the population evolution. On this basis, this paper proposes an adaptive reference vector guided many-objective optimization algorithm based on Pareto front density estimation (MaOEA-PDE). Experimental results on a large number of benchmark problems show MaOEA-PDE achieves better performance compared with some state-of-the-art algorithms in the literature.
ISSN:2210-6502
DOI:10.1016/j.swevo.2024.101601