Feedback-based quantum strategies for constrained combinatorial optimization problems

Feedback-based quantum algorithms have recently emerged as potential methods for approximating the ground states of Hamiltonians. One such algorithm, the feedback-based algorithm for quantum optimization (FALQON), is specifically designed to solve quadratic unconstrained binary optimization problems...

Full description

Saved in:
Bibliographic Details
Published in:Future generation computer systems Vol. 174; p. 107979
Main Authors: Abdul Rahman, Salahuddin, Karabacak, Özkan, Wisniewski, Rafal
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2026
Subjects:
ISSN:0167-739X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feedback-based quantum algorithms have recently emerged as potential methods for approximating the ground states of Hamiltonians. One such algorithm, the feedback-based algorithm for quantum optimization (FALQON), is specifically designed to solve quadratic unconstrained binary optimization problems. Its extension, the feedback-based algorithm for quantum optimization with constraints (FALQON-C), was introduced to handle constrained optimization problems with equality and inequality constraints. In this work, we extend the feedback-based quantum algorithms framework to address a broader class of constraints known as invalid configuration (IC) constraints, which explicitly prohibit specific configurations of decision variables. We first present a transformation technique that converts the constrained optimization problem with invalid configuration constraints into an equivalent unconstrained problem by incorporating a penalizing term into the cost function. Then, leaning upon control theory, we propose an alternative method tailored for feedback-based quantum algorithms that directly tackles IC constraints without requiring slack variables. Our approach introduces a new operator that encodes the optimal feasible solution of the constrained optimization problem as its ground state. Then, a controlled quantum system based on the Lyapunov control technique is designed to ensure convergence to the ground state of this operator. Two approaches are introduced in the design of this operator to address IC constraints: the folded spectrum approach and the deflation approach. These methods eliminate the need for slack variables, significantly reducing the quantum circuit depth and the number of qubits required. We show the effectiveness of our proposed algorithms through numerical simulations. •Feedback-based quantum algorithms are extended to handle invalid configuration constraints.•We introduce a conversion from constrained to unconstrained optimization problems.•As an alternative strategy, Lyapunov-based update laws are proposed for circuit parameters.•Folded spectrum and deflation techniques are used to design the new update laws.•Our approach reduces quantum resources by lowering circuit depth and qubit count.
AbstractList Feedback-based quantum algorithms have recently emerged as potential methods for approximating the ground states of Hamiltonians. One such algorithm, the feedback-based algorithm for quantum optimization (FALQON), is specifically designed to solve quadratic unconstrained binary optimization problems. Its extension, the feedback-based algorithm for quantum optimization with constraints (FALQON-C), was introduced to handle constrained optimization problems with equality and inequality constraints. In this work, we extend the feedback-based quantum algorithms framework to address a broader class of constraints known as invalid configuration (IC) constraints, which explicitly prohibit specific configurations of decision variables. We first present a transformation technique that converts the constrained optimization problem with invalid configuration constraints into an equivalent unconstrained problem by incorporating a penalizing term into the cost function. Then, leaning upon control theory, we propose an alternative method tailored for feedback-based quantum algorithms that directly tackles IC constraints without requiring slack variables. Our approach introduces a new operator that encodes the optimal feasible solution of the constrained optimization problem as its ground state. Then, a controlled quantum system based on the Lyapunov control technique is designed to ensure convergence to the ground state of this operator. Two approaches are introduced in the design of this operator to address IC constraints: the folded spectrum approach and the deflation approach. These methods eliminate the need for slack variables, significantly reducing the quantum circuit depth and the number of qubits required. We show the effectiveness of our proposed algorithms through numerical simulations. •Feedback-based quantum algorithms are extended to handle invalid configuration constraints.•We introduce a conversion from constrained to unconstrained optimization problems.•As an alternative strategy, Lyapunov-based update laws are proposed for circuit parameters.•Folded spectrum and deflation techniques are used to design the new update laws.•Our approach reduces quantum resources by lowering circuit depth and qubit count.
ArticleNumber 107979
Author Abdul Rahman, Salahuddin
Karabacak, Özkan
Wisniewski, Rafal
Author_xml – sequence: 1
  givenname: Salahuddin
  orcidid: 0009-0002-9686-8586
  surname: Abdul Rahman
  fullname: Abdul Rahman, Salahuddin
  email: saabra@es.aau.dk
  organization: Aalborg University, Aalborg, Denmark
– sequence: 2
  givenname: Özkan
  surname: Karabacak
  fullname: Karabacak, Özkan
  organization: Kadir Has University, Istanbul, Turkey
– sequence: 3
  givenname: Rafal
  surname: Wisniewski
  fullname: Wisniewski, Rafal
  organization: Aalborg University, Aalborg, Denmark
BookMark eNp9kM1OwzAQhH0oEm3hDTjkBVL8k2STCxKq-JMqcQGJm-XYa-TS2MV2kODpSRXOnFaa3ZkdfSuy8MEjIVeMbhhlzfV-Y8c8RtxwyutJgg66BVlOKyhBdG_nZJXSnlLKQLAleb1HNL3SH2WvEpric1Q-j0ORclQZ3x2mwoZY6OBPivPTiQ5D77zKITp1KMIxu8H9qOyCL44x9Acc0gU5s-qQ8PJvrqc_dy_bx3L3_PC0vd2VWlCRy7YD29Xcct4wUFD3olUAplW2rhqqG9DcdGigNoILAFXpurK6ghZbEFRxsSbVnKtjSCmilcfoBhW_JaPyhEPu5YxDnnDIGcdku5ltOHX7chhl0g69RuMi6ixNcP8H_AKvunDG
Cites_doi 10.1103/PhysRevA.106.062414
10.3390/a12040077
10.1103/PhysRevLett.118.010501
10.1088/2058-9565/ad35e4
10.22331/q-2024-10-10-1496
10.1103/PRXQuantum.2.010101
10.1145/3478519
10.22331/q-2023-03-02-933
10.1021/acs.jctc.3c01378
10.1007/s10479-022-04634-2
10.1103/PhysRevResearch.3.023165
10.1103/PhysRevResearch.7.013035
10.1038/s41534-020-00302-0
10.1016/j.automatica.2017.02.041
10.1103/PhysRevLett.129.250502
10.1038/s42254-021-00348-9
10.22331/q-2019-07-01-156
10.3390/e24101428
10.1103/PhysRevResearch.6.043068
10.1088/1361-6633/ab85b8
10.1103/PhysRevResearch.5.033227
10.1103/PhysRevLett.114.090502
10.1038/s42005-023-01331-9
10.1016/j.physrep.2024.03.002
10.1103/PhysRevResearch.6.013241
10.1103/PhysRevLett.126.070504
10.1103/PhysRevResearch.6.033336
10.1016/j.automatica.2020.109327
10.1109/QCE60285.2024.00029
10.22331/q-2022-03-30-677
10.1038/s41467-024-51162-7
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.future.2025.107979
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_future_2025_107979
S0167739X25002742
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c303t-897f952f22617a75b38a77d8af5460c67c2d9ed75d32377a4c54fc478e8730a23
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001532824600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:27:25 EST 2025
Sat Oct 25 16:46:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Feedback-based quantum algorithms
Folded spectrum method
Quadratic constrained binary optimization problems
Variational quantum algorithms
Noisy-intermediate scale quantum algorithms
Hotelling’s deflation method
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-897f952f22617a75b38a77d8af5460c67c2d9ed75d32377a4c54fc478e8730a23
ORCID 0009-0002-9686-8586
OpenAccessLink https://dx.doi.org/10.1016/j.future.2025.107979
ParticipantIDs crossref_primary_10_1016_j_future_2025_107979
elsevier_sciencedirect_doi_10_1016_j_future_2025_107979
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hauke, Katzgraber, Lechner, Nishimori, Oliver (b23) 2020; 83
Herman, Shaydulin, Sun, Chakrabarti, Hu, Minssen, Rattew, Yalovetzky, Pistoia (b39) 2023; 6
Tang, Chen, Biswas, Magann, Arenz, Economou (b9) 2024
Brady, Hadfield (b11) 2024
Schnaus, Palackal, Poggel, Runge, Ehm, Lorenz, Mendl (b20) 2024
Cadi Tazi, Thom (b25) 2024; 20
Higgott, Wang, Brierley (b26) 2019; 3
Dattani (b32) 2019
Chakraborty (b41) 2024; 8
Li, Wen, Wang (b47) 2022; 1
Kuang, Guan, Dong (b46) 2021; 123
Hu, Khan, Bronn, Angelatos, Rowlands, Ribeill, Türeci (b28) 2024; 15
Tacchino, Chiesa, Carretta, Gerace (b34) 2020; 3
Kuang, Dong, Petersen (b45) 2017; 81
Hadfield (b33) 2021; 2
Abdul Rahman, Karabacak, Wisniewski (b17) 2024
Rahman, Karabacak, Wisniewski (b15) 2024
Cerezo, Arrasmith, Babbush, Benjamin, Endo, Fujii, McClean, Mitarai, Yuan, Cincio (b1) 2021; 3
Abdul Rahman, Clausen, Karabacak, Wisniewski (b6) 2024
Magann, Economou, Arenz (b7) 2023; 5
Magann, Rudinger, Grace, Sarovar (b3) 2022; 129
Lv, Yan, Wang, Ma, Fei, Meng, Duan (b40) 2022; 24
Wierichs, Izaac, Wang, Lin (b44) 2022; 6
S.A. Rahman, Ö. Karabacak, R. Wisniewski, Weighted Feedback-Based Quantum Algorithm for Excited States Calculation, in: 2024 IEEE International Conference on Quantum Computing and Engineering, QCE, vol. 01, 2024, pp. 169–175.
Clausen, Rahman, Karabacak, Wisniewski (b30) 2023; 56
Albrecht, Prokop, Shen, Wallden (b18) 2023; 7
Montanez-Barrera, Willsch, Maldonado-Romo, Michielsen (b19) 2024; 9
Vyskocil, Djidjev (b22) 2019; 12
Chandarana, Paul, Swain, Chen, del Campo (b13) 2024
Gibbs, Holmes, Caro, Ezzell, Huang, Cincio, Sornborger, Coles (b37) 2024; 6
Berry, Childs, Cleve, Kothari, Somma (b35) 2015; 114
Smart, Mazziotti (b8) 2021; 126
Magann, Rudinger, Grace, Sarovar (b2) 2022; 106
Cirstoiu, Holmes, Iosue, Cincio, Coles, Sornborger (b36) 2020; 6
Magann, Grace, Rabitz, Sarovar (b38) 2021; 3
Larsen, Grace, Baczewski, Magann (b5) 2024; 6
Tang, Chen, Biswas, Magann, Arenz, Economou (b14) 2024
Blekos, Brand, Ceschini, Chou, Li, Pandya, Summer (b16) 2024; 1068
Hess, Palackal, Awasthi, Wintersperger (b21) 2024
Low, Chuang (b42) 2017; 118
Arai, Okada, Nakano, Mitarai, Fujii (b12) 2025; 7
Mackey (b24) 2008; 21
Magann, Arenz, Grace, Ho, Kosut, McClean, Rabitz, Sarovar (b29) 2021; 2
Malla, Sukeno, Yu, Wei, Weichselbaum, Konik (b10) 2024; 6
Glover, Kochenberger, Hennig, Du (b31) 2022; 314
Mizuno, Watabe (b27) 2024
Baydin, Pearlmutter, Radul, Siskind (b43) 2018; 18
Montanez-Barrera (10.1016/j.future.2025.107979_b19) 2024; 9
Magann (10.1016/j.future.2025.107979_b29) 2021; 2
Magann (10.1016/j.future.2025.107979_b7) 2023; 5
Tang (10.1016/j.future.2025.107979_b14) 2024
Magann (10.1016/j.future.2025.107979_b38) 2021; 3
Gibbs (10.1016/j.future.2025.107979_b37) 2024; 6
Kuang (10.1016/j.future.2025.107979_b45) 2017; 81
Hu (10.1016/j.future.2025.107979_b28) 2024; 15
Chandarana (10.1016/j.future.2025.107979_b13) 2024
Hadfield (10.1016/j.future.2025.107979_b33) 2021; 2
Berry (10.1016/j.future.2025.107979_b35) 2015; 114
Wierichs (10.1016/j.future.2025.107979_b44) 2022; 6
Hauke (10.1016/j.future.2025.107979_b23) 2020; 83
Hess (10.1016/j.future.2025.107979_b21) 2024
Low (10.1016/j.future.2025.107979_b42) 2017; 118
Brady (10.1016/j.future.2025.107979_b11) 2024
Magann (10.1016/j.future.2025.107979_b2) 2022; 106
Larsen (10.1016/j.future.2025.107979_b5) 2024; 6
Abdul Rahman (10.1016/j.future.2025.107979_b6) 2024
Baydin (10.1016/j.future.2025.107979_b43) 2018; 18
Tacchino (10.1016/j.future.2025.107979_b34) 2020; 3
Smart (10.1016/j.future.2025.107979_b8) 2021; 126
Mizuno (10.1016/j.future.2025.107979_b27) 2024
Schnaus (10.1016/j.future.2025.107979_b20) 2024
Kuang (10.1016/j.future.2025.107979_b46) 2021; 123
Cerezo (10.1016/j.future.2025.107979_b1) 2021; 3
Higgott (10.1016/j.future.2025.107979_b26) 2019; 3
Herman (10.1016/j.future.2025.107979_b39) 2023; 6
Cadi Tazi (10.1016/j.future.2025.107979_b25) 2024; 20
Mackey (10.1016/j.future.2025.107979_b24) 2008; 21
Albrecht (10.1016/j.future.2025.107979_b18) 2023; 7
Magann (10.1016/j.future.2025.107979_b3) 2022; 129
Clausen (10.1016/j.future.2025.107979_b30) 2023; 56
Cirstoiu (10.1016/j.future.2025.107979_b36) 2020; 6
10.1016/j.future.2025.107979_b4
Glover (10.1016/j.future.2025.107979_b31) 2022; 314
Malla (10.1016/j.future.2025.107979_b10) 2024; 6
Lv (10.1016/j.future.2025.107979_b40) 2022; 24
Blekos (10.1016/j.future.2025.107979_b16) 2024; 1068
Abdul Rahman (10.1016/j.future.2025.107979_b17) 2024
Rahman (10.1016/j.future.2025.107979_b15) 2024
Dattani (10.1016/j.future.2025.107979_b32) 2019
Tang (10.1016/j.future.2025.107979_b9) 2024
Arai (10.1016/j.future.2025.107979_b12) 2025; 7
Vyskocil (10.1016/j.future.2025.107979_b22) 2019; 12
Chakraborty (10.1016/j.future.2025.107979_b41) 2024; 8
Li (10.1016/j.future.2025.107979_b47) 2022; 1
References_xml – volume: 7
  start-page: 933
  year: 2023
  ident: b18
  article-title: Variational quantum solutions to the shortest vector problem
  publication-title: Quantum
– volume: 9
  year: 2024
  ident: b19
  article-title: Unbalanced penalization: A new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms
  publication-title: Quantum Sci. Technol.
– volume: 129
  year: 2022
  ident: b3
  article-title: Feedback-based quantum optimization
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 1428
  year: 2022
  ident: b40
  article-title: Using variational quantum algorithm to solve the LWE problem
  publication-title: Entropy
– year: 2024
  ident: b14
  article-title: Non-variational ADAPT algorithm for quantum simulations
– volume: 6
  start-page: 82
  year: 2020
  ident: b36
  article-title: Variational fast forwarding for quantum simulation beyond the coherence time
  publication-title: NPJ Quantum Inf.
– volume: 6
  year: 2024
  ident: b5
  article-title: Feedback-based quantum algorithms for ground state preparation
  publication-title: Phys. Rev. Res.
– volume: 1
  year: 2022
  ident: b47
  article-title: Lyapunov-based fixed-time stabilization control of quantum systems
  publication-title: J. Autom. Intell.
– volume: 1068
  start-page: 1
  year: 2024
  end-page: 66
  ident: b16
  article-title: A review on quantum approximate optimization algorithm and its variants
  publication-title: Phys. Rep.
– start-page: 277
  year: 2024
  end-page: 289
  ident: b17
  article-title: Feedback-based quantum algorithm for constrained optimization problems
  publication-title: International Conference on Parallel Processing and Applied Mathematics
– volume: 3
  start-page: 625
  year: 2021
  end-page: 644
  ident: b1
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
– year: 2024
  ident: b13
  article-title: Lyapunov controlled counterdiabatic quantum optimization
– volume: 83
  year: 2020
  ident: b23
  article-title: Perspectives of quantum annealing: Methods and implementations
  publication-title: Rep. Progr. Phys.
– start-page: 321
  year: 2024
  end-page: 329
  ident: b6
  article-title: Adaptive sampling noise mitigation technique for feedback-based quantum algorithms
  publication-title: International Conference on Computational Science
– volume: 8
  start-page: 1496
  year: 2024
  ident: b41
  article-title: Implementing any linear combination of unitaries on intermediate-term quantum computers
  publication-title: Quantum
– year: 2024
  ident: b15
  article-title: Feedback-based quantum algorithm for excited states calculation
– volume: 118
  year: 2017
  ident: b42
  article-title: Optimal Hamiltonian simulation by quantum signal processing
  publication-title: Phys. Rev. Lett.
– volume: 21
  year: 2008
  ident: b24
  article-title: Deflation methods for sparse PCA
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 2491
  year: 2024
  end-page: 2504
  ident: b25
  article-title: Folded spectrum VQE: A quantum computing method for the calculation of molecular excited states
  publication-title: J. Chem. Theory Comput.
– volume: 114
  year: 2015
  ident: b35
  article-title: Simulating Hamiltonian dynamics with a truncated Taylor series
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 164
  year: 2017
  end-page: 175
  ident: b45
  article-title: Rapid Lyapunov control of finite-dimensional quantum systems
  publication-title: Automatica
– year: 2019
  ident: b32
  article-title: Quadratization in discrete optimization and quantum mechanics
– volume: 106
  year: 2022
  ident: b2
  article-title: Lyapunov-control-inspired strategies for quantum combinatorial optimization
  publication-title: Phys. Rev. A
– volume: 15
  start-page: 7491
  year: 2024
  ident: b28
  article-title: Overcoming the coherence time barrier in quantum machine learning on temporal data
  publication-title: Nat. Commun.
– volume: 6
  year: 2024
  ident: b10
  article-title: Feedback-based quantum algorithm inspired by counterdiabatic driving
  publication-title: Phys. Rev. Res.
– year: 2024
  ident: b27
  article-title: Quantum algorithm for shortest vector problems with folded spectrum method
– volume: 126
  year: 2021
  ident: b8
  article-title: Quantum solver of contracted eigenvalue equations for scalable molecular simulations on quantum computing devices
  publication-title: Phys. Rev. Lett.
– volume: 7
  year: 2025
  ident: b12
  article-title: Scalable circuit depth reduction in feedback-based quantum optimization with a quadratic approximation
  publication-title: Phys. Rev. Res.
– volume: 3
  year: 2021
  ident: b38
  article-title: Digital quantum simulation of molecular dynamics and control
  publication-title: Phys. Rev. Res.
– volume: 2
  start-page: 1
  year: 2021
  end-page: 21
  ident: b33
  article-title: On the representation of boolean and real functions as Hamiltonians for quantum computing
  publication-title: ACM Trans. Quantum Comput.
– volume: 2
  year: 2021
  ident: b29
  article-title: From pulses to circuits and back again: A quantum optimal control perspective on variational quantum algorithms
  publication-title: PRX Quantum
– volume: 6
  start-page: 677
  year: 2022
  ident: b44
  article-title: General parameter-shift rules for quantum gradients
  publication-title: Quantum
– volume: 56
  start-page: 5171
  year: 2023
  end-page: 5178
  ident: b30
  article-title: Measurement-based control for minimizing energy functions in quantum systems
  publication-title: IFAC-Pap.
– year: 2024
  ident: b11
  article-title: FOCQS: Feedback optimally controlled quantum states
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b43
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 5
  year: 2023
  ident: b7
  article-title: Randomized adaptive quantum state preparation
  publication-title: Phys. Rev. Res.
– reference: S.A. Rahman, Ö. Karabacak, R. Wisniewski, Weighted Feedback-Based Quantum Algorithm for Excited States Calculation, in: 2024 IEEE International Conference on Quantum Computing and Engineering, QCE, vol. 01, 2024, pp. 169–175.
– volume: 3
  start-page: 156
  year: 2019
  ident: b26
  article-title: Variational quantum computation of excited states
  publication-title: Quantum
– year: 2024
  ident: b21
  article-title: Effective embedding of integer linear inequalities for variational quantum algorithms
– year: 2024
  ident: b9
  article-title: Non-variational ADAPT algorithm for quantum simulations
– volume: 12
  start-page: 77
  year: 2019
  ident: b22
  article-title: Embedding equality constraints of optimization problems into a quantum annealer
  publication-title: Algorithms
– year: 2024
  ident: b20
  article-title: Efficient encodings of the travelling salesperson problem for variational quantum algorithms
– volume: 123
  year: 2021
  ident: b46
  article-title: Finite-time stabilization control of quantum systems
  publication-title: Automatica
– volume: 6
  start-page: 219
  year: 2023
  ident: b39
  article-title: Constrained optimization via quantum zeno dynamics
  publication-title: Commun. Phys.
– volume: 314
  start-page: 141
  year: 2022
  end-page: 183
  ident: b31
  article-title: Quantum bridge analytics I: a tutorial on formulating and using QUBO models
  publication-title: Ann. Oper. Res.
– volume: 6
  year: 2024
  ident: b37
  article-title: Dynamical simulation via quantum machine learning with provable generalization
  publication-title: Phys. Rev. Res.
– volume: 3
  year: 2020
  ident: b34
  article-title: Quantum computers as universal quantum simulators: state-of-the-art and perspectives
  publication-title: Adv. Quantum Technol.
– volume: 106
  issue: 6
  year: 2022
  ident: 10.1016/j.future.2025.107979_b2
  article-title: Lyapunov-control-inspired strategies for quantum combinatorial optimization
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.106.062414
– volume: 12
  start-page: 77
  issue: 4
  year: 2019
  ident: 10.1016/j.future.2025.107979_b22
  article-title: Embedding equality constraints of optimization problems into a quantum annealer
  publication-title: Algorithms
  doi: 10.3390/a12040077
– year: 2024
  ident: 10.1016/j.future.2025.107979_b21
– volume: 118
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2025.107979_b42
  article-title: Optimal Hamiltonian simulation by quantum signal processing
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.010501
– start-page: 277
  year: 2024
  ident: 10.1016/j.future.2025.107979_b17
  article-title: Feedback-based quantum algorithm for constrained optimization problems
– volume: 9
  issue: 2
  year: 2024
  ident: 10.1016/j.future.2025.107979_b19
  article-title: Unbalanced penalization: A new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ad35e4
– volume: 8
  start-page: 1496
  year: 2024
  ident: 10.1016/j.future.2025.107979_b41
  article-title: Implementing any linear combination of unitaries on intermediate-term quantum computers
  publication-title: Quantum
  doi: 10.22331/q-2024-10-10-1496
– year: 2024
  ident: 10.1016/j.future.2025.107979_b9
– volume: 2
  issue: 1
  year: 2021
  ident: 10.1016/j.future.2025.107979_b29
  article-title: From pulses to circuits and back again: A quantum optimal control perspective on variational quantum algorithms
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.010101
– volume: 2
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.future.2025.107979_b33
  article-title: On the representation of boolean and real functions as Hamiltonians for quantum computing
  publication-title: ACM Trans. Quantum Comput.
  doi: 10.1145/3478519
– year: 2024
  ident: 10.1016/j.future.2025.107979_b13
– volume: 7
  start-page: 933
  year: 2023
  ident: 10.1016/j.future.2025.107979_b18
  article-title: Variational quantum solutions to the shortest vector problem
  publication-title: Quantum
  doi: 10.22331/q-2023-03-02-933
– volume: 20
  start-page: 2491
  issue: 6
  year: 2024
  ident: 10.1016/j.future.2025.107979_b25
  article-title: Folded spectrum VQE: A quantum computing method for the calculation of molecular excited states
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c01378
– volume: 314
  start-page: 141
  issue: 1
  year: 2022
  ident: 10.1016/j.future.2025.107979_b31
  article-title: Quantum bridge analytics I: a tutorial on formulating and using QUBO models
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-022-04634-2
– volume: 3
  issue: 2
  year: 2021
  ident: 10.1016/j.future.2025.107979_b38
  article-title: Digital quantum simulation of molecular dynamics and control
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.023165
– start-page: 321
  year: 2024
  ident: 10.1016/j.future.2025.107979_b6
  article-title: Adaptive sampling noise mitigation technique for feedback-based quantum algorithms
– volume: 7
  issue: 1
  year: 2025
  ident: 10.1016/j.future.2025.107979_b12
  article-title: Scalable circuit depth reduction in feedback-based quantum optimization with a quadratic approximation
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.7.013035
– volume: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.future.2025.107979_b47
  article-title: Lyapunov-based fixed-time stabilization control of quantum systems
  publication-title: J. Autom. Intell.
– volume: 6
  start-page: 82
  issue: 1
  year: 2020
  ident: 10.1016/j.future.2025.107979_b36
  article-title: Variational fast forwarding for quantum simulation beyond the coherence time
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/s41534-020-00302-0
– volume: 81
  start-page: 164
  year: 2017
  ident: 10.1016/j.future.2025.107979_b45
  article-title: Rapid Lyapunov control of finite-dimensional quantum systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.02.041
– volume: 129
  issue: 25
  year: 2022
  ident: 10.1016/j.future.2025.107979_b3
  article-title: Feedback-based quantum optimization
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.250502
– year: 2019
  ident: 10.1016/j.future.2025.107979_b32
– volume: 3
  start-page: 625
  issue: 9
  year: 2021
  ident: 10.1016/j.future.2025.107979_b1
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– volume: 3
  start-page: 156
  year: 2019
  ident: 10.1016/j.future.2025.107979_b26
  article-title: Variational quantum computation of excited states
  publication-title: Quantum
  doi: 10.22331/q-2019-07-01-156
– year: 2024
  ident: 10.1016/j.future.2025.107979_b14
– year: 2024
  ident: 10.1016/j.future.2025.107979_b15
– volume: 24
  start-page: 1428
  issue: 10
  year: 2022
  ident: 10.1016/j.future.2025.107979_b40
  article-title: Using variational quantum algorithm to solve the LWE problem
  publication-title: Entropy
  doi: 10.3390/e24101428
– volume: 6
  issue: 4
  year: 2024
  ident: 10.1016/j.future.2025.107979_b10
  article-title: Feedback-based quantum algorithm inspired by counterdiabatic driving
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.6.043068
– year: 2024
  ident: 10.1016/j.future.2025.107979_b20
– volume: 83
  issue: 5
  year: 2020
  ident: 10.1016/j.future.2025.107979_b23
  article-title: Perspectives of quantum annealing: Methods and implementations
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/1361-6633/ab85b8
– volume: 5
  issue: 3
  year: 2023
  ident: 10.1016/j.future.2025.107979_b7
  article-title: Randomized adaptive quantum state preparation
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.033227
– volume: 114
  issue: 9
  year: 2015
  ident: 10.1016/j.future.2025.107979_b35
  article-title: Simulating Hamiltonian dynamics with a truncated Taylor series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.090502
– volume: 6
  start-page: 219
  issue: 1
  year: 2023
  ident: 10.1016/j.future.2025.107979_b39
  article-title: Constrained optimization via quantum zeno dynamics
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-023-01331-9
– volume: 1068
  start-page: 1
  year: 2024
  ident: 10.1016/j.future.2025.107979_b16
  article-title: A review on quantum approximate optimization algorithm and its variants
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2024.03.002
– volume: 6
  issue: 1
  year: 2024
  ident: 10.1016/j.future.2025.107979_b37
  article-title: Dynamical simulation via quantum machine learning with provable generalization
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.6.013241
– volume: 126
  issue: 7
  year: 2021
  ident: 10.1016/j.future.2025.107979_b8
  article-title: Quantum solver of contracted eigenvalue equations for scalable molecular simulations on quantum computing devices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.070504
– volume: 6
  issue: 3
  year: 2024
  ident: 10.1016/j.future.2025.107979_b5
  article-title: Feedback-based quantum algorithms for ground state preparation
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.6.033336
– volume: 123
  year: 2021
  ident: 10.1016/j.future.2025.107979_b46
  article-title: Finite-time stabilization control of quantum systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109327
– volume: 18
  start-page: 1
  issue: 153
  year: 2018
  ident: 10.1016/j.future.2025.107979_b43
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.future.2025.107979_b4
  doi: 10.1109/QCE60285.2024.00029
– year: 2024
  ident: 10.1016/j.future.2025.107979_b11
– volume: 21
  year: 2008
  ident: 10.1016/j.future.2025.107979_b24
  article-title: Deflation methods for sparse PCA
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: 10.1016/j.future.2025.107979_b27
– volume: 3
  issue: 3
  year: 2020
  ident: 10.1016/j.future.2025.107979_b34
  article-title: Quantum computers as universal quantum simulators: state-of-the-art and perspectives
  publication-title: Adv. Quantum Technol.
– volume: 56
  start-page: 5171
  issue: 2
  year: 2023
  ident: 10.1016/j.future.2025.107979_b30
  article-title: Measurement-based control for minimizing energy functions in quantum systems
  publication-title: IFAC-Pap.
– volume: 6
  start-page: 677
  year: 2022
  ident: 10.1016/j.future.2025.107979_b44
  article-title: General parameter-shift rules for quantum gradients
  publication-title: Quantum
  doi: 10.22331/q-2022-03-30-677
– volume: 15
  start-page: 7491
  issue: 1
  year: 2024
  ident: 10.1016/j.future.2025.107979_b28
  article-title: Overcoming the coherence time barrier in quantum machine learning on temporal data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-51162-7
SSID ssj0001731
Score 2.4491065
Snippet Feedback-based quantum algorithms have recently emerged as potential methods for approximating the ground states of Hamiltonians. One such algorithm, the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107979
SubjectTerms Feedback-based quantum algorithms
Folded spectrum method
Hotelling’s deflation method
Noisy-intermediate scale quantum algorithms
Quadratic constrained binary optimization problems
Variational quantum algorithms
Title Feedback-based quantum strategies for constrained combinatorial optimization problems
URI https://dx.doi.org/10.1016/j.future.2025.107979
Volume 174
WOSCitedRecordID wos001532824600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001731
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELbS0EMvhVIQryIfeosWEe9j7GOEQBQhVCEqclt5ba8IhAWRBKFe-OuM13Z2UypUDr2sVqvE-5jP87JnPkK-Wz9AJirDmZZigJKVKioybSnDOGgMKPpFUUv6FM7O-HAofnY6z6EW5nEMVcWfnsT9fxU1XkNh29LZd4h7PihewHMUOh5R7Hj8J8EfoT0qpLqJrIHStmoSzcptbzINTSHqnYXK-oWWHsLUZW0YH9vo26bP71CJ3PrqzJ7nm5m0fdijug2J5V42Hj7KU0P4vtBzN31Q6Nm4dy6vQppVjuXVTOtRs_Qv7Z4CJWudbBftRfb7pgHs5WhS2Wapjlv7XJb-5X2agrXTFD5ziRoZ4po3t1G9kLSUJ0aiwjHLvNLrLsVwvecarWBYz9K95ueLbbT_MG_zTYdhP9t17kbJ7Si5G-UDWWKQCt4lS4Mfh8OTuTHvg6e09E8fqi_rLYKvn-bv3k3LY7lYIZ99qEEHDiJfSMdUq2Q50HhQr9W_kl-LiKEeMbRBDEXE0BZi6AJiaBsxNCBmDcc9vDg4jjzbRqTQjZlGXEApUlYy26NfQlrEXALOV1mmSbavMlBMC6Mh1TGLAXCCp0mpEuCGo5WQLF4n3equMhuEos8NpjRxrE2Czo8SSWn63GiWFXYRYn-TROEr5feuqUr-lnQ2CYRPmXvH0Dl8OeLjzX9uvfNO2-RTA94d0p0-zMw38lE9TkeTh10PjheSK4su
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feedback-based+quantum+strategies+for+constrained+combinatorial+optimization+problems&rft.jtitle=Future+generation+computer+systems&rft.au=Abdul+Rahman%2C+Salahuddin&rft.au=Karabacak%2C+%C3%96zkan&rft.au=Wisniewski%2C+Rafal&rft.date=2026-01-01&rft.issn=0167-739X&rft.volume=174&rft.spage=107979&rft_id=info:doi/10.1016%2Fj.future.2025.107979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2025_107979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon