Locally weighted regression with different kernel smoothers for software effort estimation

•Locally Weighted Regression method provides an efficient solution to learn from local effort data.•A comprehensive experiment with 1080 Locally Weighted Regression variants has been constructed.•It has been fount that Uniform kernel functions cannot outperform non-uniform kernel functions.•Kernel t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science of computer programming Ročník 214; s. 102744
Hlavní autori: Alqasrawi, Yousef, Azzeh, Mohammad, Elsheikh, Yousef
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2022
Predmet:
ISSN:0167-6423, 1872-7964
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Locally Weighted Regression method provides an efficient solution to learn from local effort data.•A comprehensive experiment with 1080 Locally Weighted Regression variants has been constructed.•It has been fount that Uniform kernel functions cannot outperform non-uniform kernel functions.•Kernel type, polynomial degrees and bandwidth parameters do not produce a definite effect on estimation accuracy.•Locally Weighted Regression with Triweight or Triangle kernel outperform other complex kernels. Estimating software effort has been a largely unsolved problem for decades. One of the main reasons that hinders building accurate estimation models is the often heterogeneous nature of software data with a complex structure. Typically, building effort estimation models from local data tend to be more accurate than using the entire data. Previous studies have focused on the use of clustering techniques and decision trees to generate local and coherent data that can help in building local prediction models. However, these approaches may fall short in some aspect due to limitations in finding optimal clusters and processing noisy data. In this paper we used a more sophisticated locality approach that can mitigate these shortcomings that is Locally Weighted Regression (LWR). This method provides an efficient solution to learn from local data by building an estimation model that combines multiple local regression models in k-nearest-neighbor based model. The main factor affecting the accuracy of this method is the choice of the kernel function used to derive the weights for local regression models. This paper investigates the effects of choosing different kernels on the performance of Locally Weighted Regression of a software effort estimation problem. After comprehensive experiments with 7 datasets, 10 kernels, 3 polynomial degrees and 4 bandwidth values with a total of 840 Locally Weighted Regression variants, we found that: 1) Uniform kernel functions cannot outperform non-uniform kernel functions, and 2) kernel type, polynomial degrees and bandwidth parameters have no specific effect on the estimation accuracy. In other words, no change in bandwidth or degree values occurred with a significant difference in kernel rankings. In short, Locally Weighted Regression methods with Triweight or Triangle kernel can perform better than more complex kernels. Hence, we encourage non-uniform kernel methods as smoother function with wide bandwidth and small polynomial degree.
AbstractList •Locally Weighted Regression method provides an efficient solution to learn from local effort data.•A comprehensive experiment with 1080 Locally Weighted Regression variants has been constructed.•It has been fount that Uniform kernel functions cannot outperform non-uniform kernel functions.•Kernel type, polynomial degrees and bandwidth parameters do not produce a definite effect on estimation accuracy.•Locally Weighted Regression with Triweight or Triangle kernel outperform other complex kernels. Estimating software effort has been a largely unsolved problem for decades. One of the main reasons that hinders building accurate estimation models is the often heterogeneous nature of software data with a complex structure. Typically, building effort estimation models from local data tend to be more accurate than using the entire data. Previous studies have focused on the use of clustering techniques and decision trees to generate local and coherent data that can help in building local prediction models. However, these approaches may fall short in some aspect due to limitations in finding optimal clusters and processing noisy data. In this paper we used a more sophisticated locality approach that can mitigate these shortcomings that is Locally Weighted Regression (LWR). This method provides an efficient solution to learn from local data by building an estimation model that combines multiple local regression models in k-nearest-neighbor based model. The main factor affecting the accuracy of this method is the choice of the kernel function used to derive the weights for local regression models. This paper investigates the effects of choosing different kernels on the performance of Locally Weighted Regression of a software effort estimation problem. After comprehensive experiments with 7 datasets, 10 kernels, 3 polynomial degrees and 4 bandwidth values with a total of 840 Locally Weighted Regression variants, we found that: 1) Uniform kernel functions cannot outperform non-uniform kernel functions, and 2) kernel type, polynomial degrees and bandwidth parameters have no specific effect on the estimation accuracy. In other words, no change in bandwidth or degree values occurred with a significant difference in kernel rankings. In short, Locally Weighted Regression methods with Triweight or Triangle kernel can perform better than more complex kernels. Hence, we encourage non-uniform kernel methods as smoother function with wide bandwidth and small polynomial degree.
ArticleNumber 102744
Author Elsheikh, Yousef
Alqasrawi, Yousef
Azzeh, Mohammad
Author_xml – sequence: 1
  givenname: Yousef
  surname: Alqasrawi
  fullname: Alqasrawi, Yousef
  email: y_alqasrawi@asu.edu.jo
  organization: Faculty of Information Technology, Applied Science Private University, Amman, Jordan
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0002-0323-6452
  surname: Azzeh
  fullname: Azzeh, Mohammad
  email: m.azzeh@psut.edu.jo
  organization: Department of Data Science, Princess Sumaya University for Technology, Amman, Jordan
– sequence: 3
  givenname: Yousef
  surname: Elsheikh
  fullname: Elsheikh, Yousef
  email: y_elsheikh@asu.edu.jo
  organization: Faculty of Information Technology, Applied Science Private University, Amman, Jordan
BookMark eNqFkM9OAyEQh4mpiW31CbzwAlthocAePJjGf0kTL3rxQig7tNTtYoC46dtLW08e9DSZye-bzHwTNOpDDwhdUzKjhIqb7SxZb8OsJjUtk1pyfobGVMm6ko3gIzQuKVkJXrMLNElpSwgRXNIxel8Ga7pujwfw602GFkdYR0jJhx4PPm9w652DCH3GHxB76HDahZA3EBN2IeIUXB5MBAyutBlDyn5ncsEv0bkzXYKrnzpFbw_3r4unavny-Ly4W1aWEZYrJWTTOEeVk6Ih1hAlqTTKAaMSxFyKFbFcOSKBCwDDoKGg5orMV9YISVo2Rc1pr40hpQhOW5-PF-RofKcp0QdJequPkvRBkj5JKiz7xX7Gcn7c_0Pdnigob315iIcM9BZaH8Fm3Qb_J_8Ns26F_Q
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3329369
crossref_primary_10_1016_j_intell_2024_101830
crossref_primary_10_1080_23249935_2022_2163207
crossref_primary_10_1007_s10489_022_04160_5
crossref_primary_10_1016_j_uclim_2025_102339
crossref_primary_10_1016_j_ecoser_2024_101681
crossref_primary_10_1016_j_trc_2025_105333
crossref_primary_10_1109_ACCESS_2025_3586081
crossref_primary_10_3390_electronics14122395
crossref_primary_10_3390_rs15112767
crossref_primary_10_1007_s11042_024_18120_3
crossref_primary_10_1007_s10586_024_04858_w
crossref_primary_10_1016_j_infsof_2022_107088
Cites_doi 10.1016/j.knosys.2009.05.001
10.1002/smr.1983
10.1016/j.asoc.2016.05.008
10.1002/smr.1882
10.1023/A:1006559212014
10.1002/smr.2110
10.1002/smr.2180
10.1109/TSE.2011.111
10.1109/TSE.2007.1001
10.1007/s10664-011-9187-3
10.1049/iet-sen.2013.0165
10.1016/j.infsof.2019.08.006
10.1007/s10515-012-0108-5
10.1109/TSE.2006.114
10.1016/j.infsof.2011.09.007
10.1145/3295700
10.1016/j.infsof.2011.12.008
10.1109/TSE.2011.55
10.1016/j.infsof.2012.09.012
10.1016/j.jss.2019.110448
10.1016/j.jss.2012.07.050
10.1007/s10664-019-09686-w
10.2991/ijcis.11.1.22
10.1049/iet-sen.2016.0322
10.1007/s11219-021-09547-0
10.1109/TSE.1984.5010193
10.1109/TSE.2003.1245300
10.1109/TSE.2012.45
10.1109/TIE.2016.2612161
10.1007/s11390-007-9043-5
10.1016/j.jss.2015.01.028
10.1109/TSE.2011.27
10.1109/TSE.2012.83
10.1016/j.infsof.2017.12.009
10.1016/j.scico.2021.102621
10.1007/s00521-015-2004-y
10.1109/TSE.2012.88
10.1007/s10664-014-9346-4
10.1016/j.jss.2013.02.053
10.1145/2522920.2522928
10.1007/s10664-011-9189-1
10.1007/s11081-017-9370-5
10.1016/j.infsof.2014.07.013
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.scico.2021.102744
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7964
ExternalDocumentID 10_1016_j_scico_2021_102744
S0167642321001374
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSV
T5K
TN5
XPP
ZMT
~G-
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c303t-86799ff18f7690ca08717a8fe317e6576b0c48f07e46eea3e91e85805bca670d3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720929000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6423
IngestDate Sat Nov 29 07:26:34 EST 2025
Tue Nov 18 21:26:50 EST 2025
Fri Feb 23 02:42:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Effort estimation
Locally weighted regression
Kernel function
k-nearest neighbors
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-86799ff18f7690ca08717a8fe317e6576b0c48f07e46eea3e91e85805bca670d3
ORCID 0000-0002-0323-6452
ParticipantIDs crossref_citationtrail_10_1016_j_scico_2021_102744
crossref_primary_10_1016_j_scico_2021_102744
elsevier_sciencedirect_doi_10_1016_j_scico_2021_102744
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Science of computer programming
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Atkeson, Moore, Schaal (br0210) 1997; 11
Azzeh, Nassif, Minku (br0310) 2015; 103
Dejaeger, Verbeke, Martens, Baesens (br0380) 2012; 38
Minku (br0110) Feb. 2019; 24
Kocaguneli, Menzies (br0570) Jul. 2013; 86
Jørgensen, Halkjelsvik (br0350) Jan. 2020; 159
Azzeh, Nassif, Martín (br0200) Apr. 2021; 29
Talgorn, Audet, Le Digabel, Kokkolaras (br0220) Mar. 2018; 19
Azzeh, Neagu, Cowling (br0440) 2008
Foss, Stensrud, Kitchenham, Myrtveit (br0530) Nov. 2003; 29
Gallego, Rodríguez, Sicilia, Rubio, Crespo (br0130) May 2007; 22
Reyes, Cano, Fardoun, Ventura (br0240) Jan. 2018; 11
Kocaguneli, Menzies, Keung (br0250) 2012; 38
Azzeh, Nassif (br0430) 2018; 30
Idri, Amazal, Abran (br0450) 2015; 58
Kocaguneli, Kultur, Bener (br0120) 2009
Chacón, Duong (br0270) 2018
Shepperd, Schofield, Kitchenham (br0490) 1995
Menzies (br0190) 2013; 39
Nassif, Ho, Capretz (br0410) 2013; 86
Song, Minku, Xin (br0340) Jan. 2019; 28
Menzies, Chen, Hihn, Lum (br0070) Nov. 2006; 32
Demšar (br0560) 2006
Azzeh, Nassif (br0320) 2017; 29
Ma, Luo, Zeng, Chen (br0180) Mar. 2012; 54
Kitchenham, Mendes, Travassos (br0160) May 2007; 33
Menzies, Caglayan, Kocaguneli, Krall, Peters, Turhan (br0500)
Corazza, Di Martino, Ferrucci, Gravino, Sarro, Mendes (br0100) Dec. 2011; 18
Azzeh, Nassif, Banitaan (br0150) 2016
Azzeh, Nassi (br0060) 2015; 9
Mittas, Angelis (br0550) 2012
Azzeh, Nassif (br0020) 2016; 49
Mittas, Angelis (br0390) 2013; 39
Azzeh, Nassif, Banitaan, Almasalha (br0030) 2016; 27
Shepperd, MacDonell (br0540) 2012; 54
Silhavy, Silhavy, Prokopova (br0470) May 2018; 97
Ali, Gravino (br0330) May 2021; 205
Kocaguneli, Menzies, Keung (br0230) Feb. 2013; 18
Azzeh, Nassif, Banitaan (br0370) 2018; 12
Gautam, Singh (br0420) Dec. 2018; 30
Boehm (br0360) 1984; SE-10
Amazal, Idri, Abran (br0080) Dec. 2019; 31
Kocaguneli, Menzies, Keung, Cok, Madachy (br0510) 2013; 39
Yin, Xie, Sun (br0260) Feb. 2017; 64
Azzeh, Nassif, Banitaan (br0090) 2016
Keung, Kocaguneli, Menzies (br0040) Dec. 2013; 20
Kultur, Turhan, Bener (br0480) Aug. 2009; 22
Jørgensen (br0050) Nov. 2019; 115
Ryu, Choi, Baik (br0170) Feb. 2016; 21
Minku, Yao (br0010) Aug. 2013; 55
Minku, Yao (br0300) Oct. 2013; 22
Rodriguez (br0520) 2012; 85
Kocaguneli, Menzies, Bener, Keung (br0290) 2012; 38
Azzeh (10.1016/j.scico.2021.102744_br0370) 2018; 12
Reyes (10.1016/j.scico.2021.102744_br0240) 2018; 11
Boehm (10.1016/j.scico.2021.102744_br0360) 1984; SE-10
Azzeh (10.1016/j.scico.2021.102744_br0430) 2018; 30
Kocaguneli (10.1016/j.scico.2021.102744_br0290) 2012; 38
Nassif (10.1016/j.scico.2021.102744_br0410) 2013; 86
Yin (10.1016/j.scico.2021.102744_br0260) 2017; 64
Menzies (10.1016/j.scico.2021.102744_br0500)
Azzeh (10.1016/j.scico.2021.102744_br0030) 2016; 27
Minku (10.1016/j.scico.2021.102744_br0010) 2013; 55
Talgorn (10.1016/j.scico.2021.102744_br0220) 2018; 19
Kocaguneli (10.1016/j.scico.2021.102744_br0510) 2013; 39
Silhavy (10.1016/j.scico.2021.102744_br0470) 2018; 97
Chacón (10.1016/j.scico.2021.102744_br0270) 2018
Azzeh (10.1016/j.scico.2021.102744_br0310) 2015; 103
Gallego (10.1016/j.scico.2021.102744_br0130) 2007; 22
Song (10.1016/j.scico.2021.102744_br0340) 2019; 28
Azzeh (10.1016/j.scico.2021.102744_br0440) 2008
Kocaguneli (10.1016/j.scico.2021.102744_br0250) 2012; 38
Ali (10.1016/j.scico.2021.102744_br0330) 2021; 205
Kultur (10.1016/j.scico.2021.102744_br0480) 2009; 22
Idri (10.1016/j.scico.2021.102744_br0450) 2015; 58
Atkeson (10.1016/j.scico.2021.102744_br0210) 1997; 11
Azzeh (10.1016/j.scico.2021.102744_br0090)
Azzeh (10.1016/j.scico.2021.102744_br0020) 2016; 49
Jørgensen (10.1016/j.scico.2021.102744_br0350) 2020; 159
Mittas (10.1016/j.scico.2021.102744_br0550)
Rodriguez (10.1016/j.scico.2021.102744_br0520) 2012; 85
Minku (10.1016/j.scico.2021.102744_br0110) 2019; 24
Menzies (10.1016/j.scico.2021.102744_br0070) 2006; 32
Foss (10.1016/j.scico.2021.102744_br0530) 2003; 29
Shepperd (10.1016/j.scico.2021.102744_br0490) 1995
Azzeh (10.1016/j.scico.2021.102744_br0150) 2016
Azzeh (10.1016/j.scico.2021.102744_br0200) 2021; 29
Azzeh (10.1016/j.scico.2021.102744_br0320) 2017; 29
Kocaguneli (10.1016/j.scico.2021.102744_br0570) 2013; 86
Kitchenham (10.1016/j.scico.2021.102744_br0160) 2007; 33
Kocaguneli (10.1016/j.scico.2021.102744_br0120)
Azzeh (10.1016/j.scico.2021.102744_br0060) 2015; 9
Jørgensen (10.1016/j.scico.2021.102744_br0050) 2019; 115
Menzies (10.1016/j.scico.2021.102744_br0190) 2013; 39
Minku (10.1016/j.scico.2021.102744_br0300) 2013; 22
Amazal (10.1016/j.scico.2021.102744_br0080) 2019; 31
Gautam (10.1016/j.scico.2021.102744_br0420) 2018; 30
Shepperd (10.1016/j.scico.2021.102744_br0540) 2012; 54
Demšar (10.1016/j.scico.2021.102744_br0560)
Keung (10.1016/j.scico.2021.102744_br0040) 2013; 20
Corazza (10.1016/j.scico.2021.102744_br0100) 2011; 18
Ryu (10.1016/j.scico.2021.102744_br0170) 2016; 21
Kocaguneli (10.1016/j.scico.2021.102744_br0230) 2013; 18
Mittas (10.1016/j.scico.2021.102744_br0390) 2013; 39
Dejaeger (10.1016/j.scico.2021.102744_br0380) 2012; 38
Ma (10.1016/j.scico.2021.102744_br0180) 2012; 54
References_xml – volume: 38
  start-page: 1403
  year: 2012
  end-page: 1416
  ident: br0250
  article-title: On the value of ensemble effort estimation
  publication-title: IEEE Trans. Softw. Eng.
– start-page: 170
  year: 1995
  end-page: 178
  ident: br0490
  article-title: Effort estimation using analogy
  publication-title: Proceedings - International Conference on Software Engineering
– volume: 27
  year: 2016
  ident: br0030
  article-title: Pareto efficient multi-objective optimization for local tuning of analogy-based estimation
  publication-title: Neural Comput. Appl.
– volume: 115
  start-page: 93
  year: Nov. 2019
  end-page: 96
  ident: br0050
  article-title: Evaluating probabilistic software development effort estimates: maximizing informativeness subject to calibration
  publication-title: Inf. Softw. Technol.
– volume: 33
  start-page: 316
  year: May 2007
  end-page: 329
  ident: br0160
  article-title: Cross versus within-company cost estimation studies: a systematic review
  publication-title: IEEE Trans. Softw. Eng.
– volume: 39
  start-page: 822
  year: 2013
  end-page: 834
  ident: br0190
  article-title: Local versus global lessons for defect prediction and effort estimation
  publication-title: IEEE Trans. Softw. Eng.
– volume: 54
  start-page: 820
  year: 2012
  end-page: 827
  ident: br0540
  article-title: Evaluating prediction systems in software project estimation
  publication-title: Inf. Softw. Technol.
– volume: 20
  start-page: 543
  year: Dec. 2013
  end-page: 567
  ident: br0040
  article-title: Finding conclusion stability for selecting the best effort predictor in software effort estimation
  publication-title: Autom. Softw. Eng.
– volume: 22
  start-page: 1
  year: Oct. 2013
  end-page: 32
  ident: br0300
  article-title: Software effort estimation as a multiobjective learning problem
  publication-title: ACM Trans. Softw. Eng. Methodol.
– volume: 97
  start-page: 1
  year: May 2018
  end-page: 9
  ident: br0470
  article-title: Evaluating subset selection methods for use case points estimation
  publication-title: Inf. Softw. Technol.
– year: 2006
  ident: br0560
  article-title: Statistical comparisons of classifiers over multiple data sets
– volume: 24
  start-page: 3153
  year: Feb. 2019
  end-page: 3204
  ident: br0110
  article-title: A novel online supervised hyperparameter tuning procedure applied to cross-company software effort estimation
  publication-title: Empir. Softw. Eng.
– start-page: 1268
  year: 2016
  end-page: 1271
  ident: br0150
  article-title: An application of classification and class decomposition to use case point estimation method
  publication-title: Proc. - 2015 IEEE 14th Int. Conf. Mach. Learn. Appl. ICMLA 2015
– volume: 103
  year: 2015
  ident: br0310
  article-title: An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation
  publication-title: J. Syst. Softw.
– volume: 9
  year: 2015
  ident: br0060
  article-title: Analogy-based effort estimation: a new method to discover set of analogies from dataset characteristics
  publication-title: IET Softw.
– year: 2008
  ident: br0440
  article-title: Adjusting analogy software effort estimation based on fuzzy logic
  publication-title: ICSOFT 2008 - Proceedings of the 3rd International Conference on Software and Data Technologies
– volume: 22
  start-page: 395
  year: Aug. 2009
  end-page: 402
  ident: br0480
  article-title: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs
  publication-title: Knowl.-Based Syst.
– year: 2012
  ident: br0550
  article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm
– volume: 64
  start-page: 1507
  year: Feb. 2017
  end-page: 1516
  ident: br0260
  article-title: A nonlinear process monitoring approach with locally weighted learning of available data
  publication-title: IEEE Trans. Ind. Electron.
– volume: 31
  year: Dec. 2019
  ident: br0080
  article-title: Analysis of cluster center initialization of 2FA-kprototypes analogy-based software effort estimation
  publication-title: J. Softw. Evol. Process
– volume: 32
  start-page: 883
  year: Nov. 2006
  end-page: 895
  ident: br0070
  article-title: Selecting best practices for effort estimation
  publication-title: IEEE Trans. Softw. Eng.
– volume: 39
  start-page: 1040
  year: 2013
  end-page: 1053
  ident: br0510
  article-title: Active learning and effort estimation: finding the essential content of software effort estimation data
  publication-title: IEEE Trans. Softw. Eng.
– year: 2016
  ident: br0090
  article-title: An application of classification and class decomposition to use case point estimation method
– volume: 29
  start-page: 309
  year: Apr. 2021
  end-page: 336
  ident: br0200
  article-title: Empirical analysis on productivity prediction and locality for use case points method
  publication-title: Softw. Qual. J.
– volume: 38
  start-page: 375
  year: 2012
  end-page: 397
  ident: br0380
  article-title: Data mining techniques for software effort estimation: a comparative study
  publication-title: IEEE Trans. Softw. Eng.
– volume: 18
  start-page: 1
  year: Feb. 2013
  end-page: 24
  ident: br0230
  article-title: Kernel methods for software effort estimation: effects of different kernel functions and bandwidths on estimation accuracy
  publication-title: Empir. Softw. Eng.
– ident: br0500
  article-title: The PROMISE repository of empirical software engineering data
– year: 2009
  ident: br0120
  article-title: Combining multiple learners induced on multiple datasets for software effort prediction
– year: 2018
  ident: br0270
  article-title: Multivariate Kernel Smoothing and Its Applications
– volume: 11
  start-page: 282
  year: Jan. 2018
  end-page: 295
  ident: br0240
  article-title: A locally weighted learning method based on a data gravitation model for multi-target regression
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 58
  year: 2015
  ident: br0450
  article-title: Analogy-based software development effort estimation: a systematic mapping and review
  publication-title: Inf. Softw. Technol.
– volume: 86
  start-page: 1879
  year: Jul. 2013
  end-page: 1890
  ident: br0570
  article-title: Software effort models should be assessed via leave-one-out validation
  publication-title: J. Syst. Softw.
– volume: 22
  start-page: 371
  year: May 2007
  end-page: 378
  ident: br0130
  article-title: Software project effort estimation based on multiple parametric models generated through data clustering
  publication-title: J. Comput. Sci. Tech.
– volume: 30
  year: Dec. 2018
  ident: br0420
  article-title: The state-of-the-art in software development effort estimation
  publication-title: J. Softw. Evol. Process
– volume: 18
  start-page: 506
  year: Dec. 2011
  end-page: 546
  ident: br0100
  article-title: Using tabu search to configure support vector regression for effort estimation
  publication-title: Empir. Softw. Eng.
– volume: 19
  start-page: 213
  year: Mar. 2018
  end-page: 238
  ident: br0220
  article-title: Locally weighted regression models for surrogate-assisted design optimization
  publication-title: Optim. Eng.
– volume: 38
  start-page: 425
  year: 2012
  end-page: 438
  ident: br0290
  article-title: Exploiting the essential assumptions of analogy-based effort estimation
  publication-title: IEEE Trans. Softw. Eng.
– volume: 39
  start-page: 537
  year: 2013
  end-page: 551
  ident: br0390
  article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm
  publication-title: IEEE Trans. Softw. Eng.
– volume: 54
  start-page: 248
  year: Mar. 2012
  end-page: 256
  ident: br0180
  article-title: Transfer learning for cross-company software defect prediction
  publication-title: Inf. Softw. Technol.
– volume: 28
  year: Jan. 2019
  ident: br0340
  article-title: Software effort interval prediction via Bayesian inference and synthetic bootstrap resampling
  publication-title: ACM Trans. Softw. Eng. Methodol.
– volume: 159
  year: Jan. 2020
  ident: br0350
  article-title: Sequence effects in the estimation of software development effort
  publication-title: J. Syst. Softw.
– volume: 55
  start-page: 1512
  year: Aug. 2013
  end-page: 1528
  ident: br0010
  article-title: Ensembles and locality: insight on improving software effort estimation
  publication-title: Inf. Softw. Technol.
– volume: 86
  year: 2013
  ident: br0410
  article-title: Towards an early software estimation using log-linear regression and a multilayer perceptron model
  publication-title: J. Syst. Softw.
– volume: 30
  year: 2018
  ident: br0430
  article-title: Project productivity evaluation in early software effort estimation
  publication-title: J. Softw. Evol. Process
– volume: 29
  start-page: 985
  year: Nov. 2003
  end-page: 995
  ident: br0530
  article-title: A simulation study of the model evaluation criterion MMRE
  publication-title: IEEE Trans. Softw. Eng.
– volume: 49
  year: 2016
  ident: br0020
  article-title: A hybrid model for estimating software project effort from use case points
  publication-title: Appl. Soft Comput. J.
– volume: 11
  start-page: 11
  year: 1997
  end-page: 73
  ident: br0210
  article-title: Locally weighted learning
  publication-title: Artif. Intell. Rev.
– volume: SE-10
  start-page: 4
  year: 1984
  end-page: 21
  ident: br0360
  article-title: Software engineering economics
  publication-title: IEEE Trans. Softw. Eng.
– volume: 85
  start-page: 562
  year: 2012
  end-page: 570
  ident: br0520
  article-title: Empirical findings on team size and productivity in software development BadgePeople: leveling-up innovation in quality improvement of people-driven processes with simulation and gamification (TIN2016-76956-C3-3-R) view project quality perceptions in high
  publication-title: J. Syst. Softw.
– volume: 205
  year: May 2021
  ident: br0330
  article-title: Improving software effort estimation using bio-inspired algorithms to select relevant features: an empirical study
  publication-title: Sci. Comput. Program.
– volume: 21
  start-page: 43
  year: Feb. 2016
  end-page: 71
  ident: br0170
  article-title: Value-cognitive boosting with a support vector machine for cross-project defect prediction
  publication-title: Empir. Softw. Eng.
– volume: 29
  year: 2017
  ident: br0320
  article-title: Analyzing the relationship between project productivity and environment factors in the use case points method
  publication-title: J. Softw. Evol. Process
– volume: 12
  start-page: 19
  year: 2018
  end-page: 29
  ident: br0370
  article-title: Comparative analysis of soft computing techniques for predicting software effort based use case points
  publication-title: IET Softw.
– volume: 22
  start-page: 395
  issue: 6
  year: 2009
  ident: 10.1016/j.scico.2021.102744_br0480
  article-title: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2009.05.001
– ident: 10.1016/j.scico.2021.102744_br0550
– volume: 30
  issue: 12
  year: 2018
  ident: 10.1016/j.scico.2021.102744_br0420
  article-title: The state-of-the-art in software development effort estimation
  publication-title: J. Softw. Evol. Process
  doi: 10.1002/smr.1983
– ident: 10.1016/j.scico.2021.102744_br0500
– volume: 49
  year: 2016
  ident: 10.1016/j.scico.2021.102744_br0020
  article-title: A hybrid model for estimating software project effort from use case points
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2016.05.008
– volume: 29
  issue: 9
  year: 2017
  ident: 10.1016/j.scico.2021.102744_br0320
  article-title: Analyzing the relationship between project productivity and environment factors in the use case points method
  publication-title: J. Softw. Evol. Process
  doi: 10.1002/smr.1882
– volume: 11
  start-page: 11
  issue: 1–5
  year: 1997
  ident: 10.1016/j.scico.2021.102744_br0210
  article-title: Locally weighted learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006559212014
– volume: 30
  issue: 12
  year: 2018
  ident: 10.1016/j.scico.2021.102744_br0430
  article-title: Project productivity evaluation in early software effort estimation
  publication-title: J. Softw. Evol. Process
  doi: 10.1002/smr.2110
– volume: 31
  issue: 12
  year: 2019
  ident: 10.1016/j.scico.2021.102744_br0080
  article-title: Analysis of cluster center initialization of 2FA-kprototypes analogy-based software effort estimation
  publication-title: J. Softw. Evol. Process
  doi: 10.1002/smr.2180
– volume: 38
  start-page: 1403
  issue: 6
  year: 2012
  ident: 10.1016/j.scico.2021.102744_br0250
  article-title: On the value of ensemble effort estimation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2011.111
– volume: 33
  start-page: 316
  issue: 5
  year: 2007
  ident: 10.1016/j.scico.2021.102744_br0160
  article-title: Cross versus within-company cost estimation studies: a systematic review
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2007.1001
– volume: 18
  start-page: 506
  issue: 3
  year: 2011
  ident: 10.1016/j.scico.2021.102744_br0100
  article-title: Using tabu search to configure support vector regression for effort estimation
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-011-9187-3
– volume: 9
  issue: 2
  year: 2015
  ident: 10.1016/j.scico.2021.102744_br0060
  article-title: Analogy-based effort estimation: a new method to discover set of analogies from dataset characteristics
  publication-title: IET Softw.
  doi: 10.1049/iet-sen.2013.0165
– volume: 115
  start-page: 93
  year: 2019
  ident: 10.1016/j.scico.2021.102744_br0050
  article-title: Evaluating probabilistic software development effort estimates: maximizing informativeness subject to calibration
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2019.08.006
– volume: 20
  start-page: 543
  issue: 4
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0040
  article-title: Finding conclusion stability for selecting the best effort predictor in software effort estimation
  publication-title: Autom. Softw. Eng.
  doi: 10.1007/s10515-012-0108-5
– volume: 32
  start-page: 883
  issue: 11
  year: 2006
  ident: 10.1016/j.scico.2021.102744_br0070
  article-title: Selecting best practices for effort estimation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2006.114
– ident: 10.1016/j.scico.2021.102744_br0560
– volume: 54
  start-page: 248
  issue: 3
  year: 2012
  ident: 10.1016/j.scico.2021.102744_br0180
  article-title: Transfer learning for cross-company software defect prediction
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2011.09.007
– volume: 28
  issue: 1
  year: 2019
  ident: 10.1016/j.scico.2021.102744_br0340
  article-title: Software effort interval prediction via Bayesian inference and synthetic bootstrap resampling
  publication-title: ACM Trans. Softw. Eng. Methodol.
  doi: 10.1145/3295700
– volume: 54
  start-page: 820
  issue: 8
  year: 2012
  ident: 10.1016/j.scico.2021.102744_br0540
  article-title: Evaluating prediction systems in software project estimation
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2011.12.008
– volume: 38
  start-page: 375
  issue: 2
  year: 2012
  ident: 10.1016/j.scico.2021.102744_br0380
  article-title: Data mining techniques for software effort estimation: a comparative study
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2011.55
– volume: 55
  start-page: 1512
  issue: 8
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0010
  article-title: Ensembles and locality: insight on improving software effort estimation
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2012.09.012
– volume: 159
  year: 2020
  ident: 10.1016/j.scico.2021.102744_br0350
  article-title: Sequence effects in the estimation of software development effort
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2019.110448
– volume: 86
  issue: 1
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0410
  article-title: Towards an early software estimation using log-linear regression and a multilayer perceptron model
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2012.07.050
– volume: 24
  start-page: 3153
  issue: 5
  year: 2019
  ident: 10.1016/j.scico.2021.102744_br0110
  article-title: A novel online supervised hyperparameter tuning procedure applied to cross-company software effort estimation
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-019-09686-w
– volume: 11
  start-page: 282
  issue: 1
  year: 2018
  ident: 10.1016/j.scico.2021.102744_br0240
  article-title: A locally weighted learning method based on a data gravitation model for multi-target regression
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.11.1.22
– volume: 12
  start-page: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.scico.2021.102744_br0370
  article-title: Comparative analysis of soft computing techniques for predicting software effort based use case points
  publication-title: IET Softw.
  doi: 10.1049/iet-sen.2016.0322
– start-page: 1268
  year: 2016
  ident: 10.1016/j.scico.2021.102744_br0150
  article-title: An application of classification and class decomposition to use case point estimation method
– volume: 29
  start-page: 309
  issue: 2
  year: 2021
  ident: 10.1016/j.scico.2021.102744_br0200
  article-title: Empirical analysis on productivity prediction and locality for use case points method
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-021-09547-0
– volume: SE-10
  start-page: 4
  issue: 1
  year: 1984
  ident: 10.1016/j.scico.2021.102744_br0360
  article-title: Software engineering economics
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.1984.5010193
– ident: 10.1016/j.scico.2021.102744_br0090
– ident: 10.1016/j.scico.2021.102744_br0120
– volume: 29
  start-page: 985
  issue: 11
  year: 2003
  ident: 10.1016/j.scico.2021.102744_br0530
  article-title: A simulation study of the model evaluation criterion MMRE
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2003.1245300
– year: 2018
  ident: 10.1016/j.scico.2021.102744_br0270
– volume: 85
  start-page: 562
  issue: 3
  year: 2012
  ident: 10.1016/j.scico.2021.102744_br0520
  article-title: Empirical findings on team size and productivity in software development BadgePeople: leveling-up innovation in quality improvement of people-driven processes with simulation and gamification (TIN2016-76956-C3-3-R) view project quality perceptions in high
  publication-title: J. Syst. Softw.
– volume: 39
  start-page: 537
  issue: 4
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0390
  article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2012.45
– volume: 64
  start-page: 1507
  issue: 2
  year: 2017
  ident: 10.1016/j.scico.2021.102744_br0260
  article-title: A nonlinear process monitoring approach with locally weighted learning of available data
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2612161
– volume: 22
  start-page: 371
  issue: 3
  year: 2007
  ident: 10.1016/j.scico.2021.102744_br0130
  article-title: Software project effort estimation based on multiple parametric models generated through data clustering
  publication-title: J. Comput. Sci. Tech.
  doi: 10.1007/s11390-007-9043-5
– volume: 103
  year: 2015
  ident: 10.1016/j.scico.2021.102744_br0310
  article-title: An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2015.01.028
– volume: 38
  start-page: 425
  issue: 2
  year: 2012
  ident: 10.1016/j.scico.2021.102744_br0290
  article-title: Exploiting the essential assumptions of analogy-based effort estimation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2011.27
– volume: 39
  start-page: 822
  issue: 6
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0190
  article-title: Local versus global lessons for defect prediction and effort estimation
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2012.83
– volume: 97
  start-page: 1
  year: 2018
  ident: 10.1016/j.scico.2021.102744_br0470
  article-title: Evaluating subset selection methods for use case points estimation
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2017.12.009
– volume: 205
  year: 2021
  ident: 10.1016/j.scico.2021.102744_br0330
  article-title: Improving software effort estimation using bio-inspired algorithms to select relevant features: an empirical study
  publication-title: Sci. Comput. Program.
  doi: 10.1016/j.scico.2021.102621
– volume: 27
  issue: 8
  year: 2016
  ident: 10.1016/j.scico.2021.102744_br0030
  article-title: Pareto efficient multi-objective optimization for local tuning of analogy-based estimation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2004-y
– volume: 39
  start-page: 1040
  issue: 8
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0510
  article-title: Active learning and effort estimation: finding the essential content of software effort estimation data
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2012.88
– volume: 21
  start-page: 43
  issue: 1
  year: 2016
  ident: 10.1016/j.scico.2021.102744_br0170
  article-title: Value-cognitive boosting with a support vector machine for cross-project defect prediction
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-014-9346-4
– volume: 86
  start-page: 1879
  issue: 7
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0570
  article-title: Software effort models should be assessed via leave-one-out validation
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2013.02.053
– year: 2008
  ident: 10.1016/j.scico.2021.102744_br0440
  article-title: Adjusting analogy software effort estimation based on fuzzy logic
– volume: 22
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0300
  article-title: Software effort estimation as a multiobjective learning problem
  publication-title: ACM Trans. Softw. Eng. Methodol.
  doi: 10.1145/2522920.2522928
– start-page: 170
  year: 1995
  ident: 10.1016/j.scico.2021.102744_br0490
  article-title: Effort estimation using analogy
– volume: 18
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.scico.2021.102744_br0230
  article-title: Kernel methods for software effort estimation: effects of different kernel functions and bandwidths on estimation accuracy
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-011-9189-1
– volume: 19
  start-page: 213
  issue: 1
  year: 2018
  ident: 10.1016/j.scico.2021.102744_br0220
  article-title: Locally weighted regression models for surrogate-assisted design optimization
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-017-9370-5
– volume: 58
  year: 2015
  ident: 10.1016/j.scico.2021.102744_br0450
  article-title: Analogy-based software development effort estimation: a systematic mapping and review
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2014.07.013
SSID ssj0006471
Score 2.4296443
Snippet •Locally Weighted Regression method provides an efficient solution to learn from local effort data.•A comprehensive experiment with 1080 Locally Weighted...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102744
SubjectTerms Effort estimation
k-nearest neighbors
Kernel function
Locally weighted regression
Title Locally weighted regression with different kernel smoothers for software effort estimation
URI https://dx.doi.org/10.1016/j.scico.2021.102744
Volume 214
WOSCitedRecordID wos000720929000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006471
  issn: 0167-6423
  databaseCode: AIEXJ
  dateStart: 20211208
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5By4ELb0TLQ3vgZozWj3jXxwoVASoVhyJFXCx7M0vaJk6JTVP665l9OpQqogcuVmJ7N1a-L7Mzk29nCHmdyYkQRc5jLvMmzjmTcanSJs7SBvCaYnViNgof8MNDMR6XX1wypzPtBHjbiouL8uy_Qo3nEGy9dfYGcIdJ8QS-RtDxiLDj8Z-AP9Cr0-xXtDJJT9C7U75bsavdsR16ovTRKSxbmEXdfGH2YZnSDFGHhnml9WCg8G0f6TIc8wE_58h6m-BU6boxhNd6zf1qqHk0-1F3y3plNANoWTpQ4dLlJZiczufFFAfVk0FG0k3h-HR6ZYhLTWBUy4LMw2Ur0QpjgJOtm9s0ydcMZmJKFF5ry21a4QSjfPxNYCSfJm-Hu_-snH1lRQs6Qy9hO6nMJJWepLKT3CbbKR-VaAi39z7ujz-F5buwUXp4dl-qyogC_3qW692ZNRfl6AG552ILumc58ZDcgvYRue_7dlAH2WPyzVGEeorQgSJUU4QGilBLERooQpET1FOEWorQgSJPyNf3-0fvPsSux0Ys0XnpY11vsVQqEYoXJZM1wwCa10IB-pVQYDDaMJkLxTjkBUCdQZmAGAk2amRdcDbJnpKtdtHCM0InEkNTntT6j-U8mYiGKyhASWCyzKUa7ZDUf1WVdAXodR-UWbUBph3yJgw6s_VXNt9eeAwq50Ja17BCVm0auHuzz3lO7g6Ef0G2-uVPeEnuyPP-uFu-cpT6DY_wmJY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+weighted+regression+with+different+kernel+smoothers+for+software+effort+estimation&rft.jtitle=Science+of+computer+programming&rft.au=Alqasrawi%2C+Yousef&rft.au=Azzeh%2C+Mohammad&rft.au=Elsheikh%2C+Yousef&rft.date=2022-02-01&rft.issn=0167-6423&rft.volume=214&rft.spage=102744&rft_id=info:doi/10.1016%2Fj.scico.2021.102744&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scico_2021_102744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6423&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6423&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6423&client=summon