Locally weighted regression with different kernel smoothers for software effort estimation
•Locally Weighted Regression method provides an efficient solution to learn from local effort data.•A comprehensive experiment with 1080 Locally Weighted Regression variants has been constructed.•It has been fount that Uniform kernel functions cannot outperform non-uniform kernel functions.•Kernel t...
Uloženo v:
| Vydáno v: | Science of computer programming Ročník 214; s. 102744 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2022
|
| Témata: | |
| ISSN: | 0167-6423, 1872-7964 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Locally Weighted Regression method provides an efficient solution to learn from local effort data.•A comprehensive experiment with 1080 Locally Weighted Regression variants has been constructed.•It has been fount that Uniform kernel functions cannot outperform non-uniform kernel functions.•Kernel type, polynomial degrees and bandwidth parameters do not produce a definite effect on estimation accuracy.•Locally Weighted Regression with Triweight or Triangle kernel outperform other complex kernels.
Estimating software effort has been a largely unsolved problem for decades. One of the main reasons that hinders building accurate estimation models is the often heterogeneous nature of software data with a complex structure. Typically, building effort estimation models from local data tend to be more accurate than using the entire data. Previous studies have focused on the use of clustering techniques and decision trees to generate local and coherent data that can help in building local prediction models. However, these approaches may fall short in some aspect due to limitations in finding optimal clusters and processing noisy data. In this paper we used a more sophisticated locality approach that can mitigate these shortcomings that is Locally Weighted Regression (LWR). This method provides an efficient solution to learn from local data by building an estimation model that combines multiple local regression models in k-nearest-neighbor based model. The main factor affecting the accuracy of this method is the choice of the kernel function used to derive the weights for local regression models. This paper investigates the effects of choosing different kernels on the performance of Locally Weighted Regression of a software effort estimation problem. After comprehensive experiments with 7 datasets, 10 kernels, 3 polynomial degrees and 4 bandwidth values with a total of 840 Locally Weighted Regression variants, we found that: 1) Uniform kernel functions cannot outperform non-uniform kernel functions, and 2) kernel type, polynomial degrees and bandwidth parameters have no specific effect on the estimation accuracy. In other words, no change in bandwidth or degree values occurred with a significant difference in kernel rankings. In short, Locally Weighted Regression methods with Triweight or Triangle kernel can perform better than more complex kernels. Hence, we encourage non-uniform kernel methods as smoother function with wide bandwidth and small polynomial degree. |
|---|---|
| AbstractList | •Locally Weighted Regression method provides an efficient solution to learn from local effort data.•A comprehensive experiment with 1080 Locally Weighted Regression variants has been constructed.•It has been fount that Uniform kernel functions cannot outperform non-uniform kernel functions.•Kernel type, polynomial degrees and bandwidth parameters do not produce a definite effect on estimation accuracy.•Locally Weighted Regression with Triweight or Triangle kernel outperform other complex kernels.
Estimating software effort has been a largely unsolved problem for decades. One of the main reasons that hinders building accurate estimation models is the often heterogeneous nature of software data with a complex structure. Typically, building effort estimation models from local data tend to be more accurate than using the entire data. Previous studies have focused on the use of clustering techniques and decision trees to generate local and coherent data that can help in building local prediction models. However, these approaches may fall short in some aspect due to limitations in finding optimal clusters and processing noisy data. In this paper we used a more sophisticated locality approach that can mitigate these shortcomings that is Locally Weighted Regression (LWR). This method provides an efficient solution to learn from local data by building an estimation model that combines multiple local regression models in k-nearest-neighbor based model. The main factor affecting the accuracy of this method is the choice of the kernel function used to derive the weights for local regression models. This paper investigates the effects of choosing different kernels on the performance of Locally Weighted Regression of a software effort estimation problem. After comprehensive experiments with 7 datasets, 10 kernels, 3 polynomial degrees and 4 bandwidth values with a total of 840 Locally Weighted Regression variants, we found that: 1) Uniform kernel functions cannot outperform non-uniform kernel functions, and 2) kernel type, polynomial degrees and bandwidth parameters have no specific effect on the estimation accuracy. In other words, no change in bandwidth or degree values occurred with a significant difference in kernel rankings. In short, Locally Weighted Regression methods with Triweight or Triangle kernel can perform better than more complex kernels. Hence, we encourage non-uniform kernel methods as smoother function with wide bandwidth and small polynomial degree. |
| ArticleNumber | 102744 |
| Author | Elsheikh, Yousef Alqasrawi, Yousef Azzeh, Mohammad |
| Author_xml | – sequence: 1 givenname: Yousef surname: Alqasrawi fullname: Alqasrawi, Yousef email: y_alqasrawi@asu.edu.jo organization: Faculty of Information Technology, Applied Science Private University, Amman, Jordan – sequence: 2 givenname: Mohammad orcidid: 0000-0002-0323-6452 surname: Azzeh fullname: Azzeh, Mohammad email: m.azzeh@psut.edu.jo organization: Department of Data Science, Princess Sumaya University for Technology, Amman, Jordan – sequence: 3 givenname: Yousef surname: Elsheikh fullname: Elsheikh, Yousef email: y_elsheikh@asu.edu.jo organization: Faculty of Information Technology, Applied Science Private University, Amman, Jordan |
| BookMark | eNqFkM9OAyEQh4mpiW31CbzwAlthocAePJjGf0kTL3rxQig7tNTtYoC46dtLW08e9DSZye-bzHwTNOpDDwhdUzKjhIqb7SxZb8OsJjUtk1pyfobGVMm6ko3gIzQuKVkJXrMLNElpSwgRXNIxel8Ga7pujwfw602GFkdYR0jJhx4PPm9w652DCH3GHxB76HDahZA3EBN2IeIUXB5MBAyutBlDyn5ncsEv0bkzXYKrnzpFbw_3r4unavny-Ly4W1aWEZYrJWTTOEeVk6Ih1hAlqTTKAaMSxFyKFbFcOSKBCwDDoKGg5orMV9YISVo2Rc1pr40hpQhOW5-PF-RofKcp0QdJequPkvRBkj5JKiz7xX7Gcn7c_0Pdnigob315iIcM9BZaH8Fm3Qb_J_8Ns26F_Q |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3329369 crossref_primary_10_1016_j_intell_2024_101830 crossref_primary_10_1080_23249935_2022_2163207 crossref_primary_10_1007_s10489_022_04160_5 crossref_primary_10_1016_j_uclim_2025_102339 crossref_primary_10_1016_j_ecoser_2024_101681 crossref_primary_10_1016_j_trc_2025_105333 crossref_primary_10_1109_ACCESS_2025_3586081 crossref_primary_10_3390_electronics14122395 crossref_primary_10_3390_rs15112767 crossref_primary_10_1007_s11042_024_18120_3 crossref_primary_10_1007_s10586_024_04858_w crossref_primary_10_1016_j_infsof_2022_107088 |
| Cites_doi | 10.1016/j.knosys.2009.05.001 10.1002/smr.1983 10.1016/j.asoc.2016.05.008 10.1002/smr.1882 10.1023/A:1006559212014 10.1002/smr.2110 10.1002/smr.2180 10.1109/TSE.2011.111 10.1109/TSE.2007.1001 10.1007/s10664-011-9187-3 10.1049/iet-sen.2013.0165 10.1016/j.infsof.2019.08.006 10.1007/s10515-012-0108-5 10.1109/TSE.2006.114 10.1016/j.infsof.2011.09.007 10.1145/3295700 10.1016/j.infsof.2011.12.008 10.1109/TSE.2011.55 10.1016/j.infsof.2012.09.012 10.1016/j.jss.2019.110448 10.1016/j.jss.2012.07.050 10.1007/s10664-019-09686-w 10.2991/ijcis.11.1.22 10.1049/iet-sen.2016.0322 10.1007/s11219-021-09547-0 10.1109/TSE.1984.5010193 10.1109/TSE.2003.1245300 10.1109/TSE.2012.45 10.1109/TIE.2016.2612161 10.1007/s11390-007-9043-5 10.1016/j.jss.2015.01.028 10.1109/TSE.2011.27 10.1109/TSE.2012.83 10.1016/j.infsof.2017.12.009 10.1016/j.scico.2021.102621 10.1007/s00521-015-2004-y 10.1109/TSE.2012.88 10.1007/s10664-014-9346-4 10.1016/j.jss.2013.02.053 10.1145/2522920.2522928 10.1007/s10664-011-9189-1 10.1007/s11081-017-9370-5 10.1016/j.infsof.2014.07.013 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.scico.2021.102744 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7964 |
| ExternalDocumentID | 10_1016_j_scico_2021_102744 S0167642321001374 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSV T5K TN5 XPP ZMT ~G- 9DU AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB G-2 HZ~ R2- SEW SSZ WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c303t-86799ff18f7690ca08717a8fe317e6576b0c48f07e46eea3e91e85805bca670d3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720929000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-6423 |
| IngestDate | Sat Nov 29 07:26:34 EST 2025 Tue Nov 18 21:26:50 EST 2025 Fri Feb 23 02:42:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Effort estimation Locally weighted regression Kernel function k-nearest neighbors |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-86799ff18f7690ca08717a8fe317e6576b0c48f07e46eea3e91e85805bca670d3 |
| ORCID | 0000-0002-0323-6452 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_scico_2021_102744 crossref_primary_10_1016_j_scico_2021_102744 elsevier_sciencedirect_doi_10_1016_j_scico_2021_102744 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 2022-02-00 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Science of computer programming |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Atkeson, Moore, Schaal (br0210) 1997; 11 Azzeh, Nassif, Minku (br0310) 2015; 103 Dejaeger, Verbeke, Martens, Baesens (br0380) 2012; 38 Minku (br0110) Feb. 2019; 24 Kocaguneli, Menzies (br0570) Jul. 2013; 86 Jørgensen, Halkjelsvik (br0350) Jan. 2020; 159 Azzeh, Nassif, Martín (br0200) Apr. 2021; 29 Talgorn, Audet, Le Digabel, Kokkolaras (br0220) Mar. 2018; 19 Azzeh, Neagu, Cowling (br0440) 2008 Foss, Stensrud, Kitchenham, Myrtveit (br0530) Nov. 2003; 29 Gallego, Rodríguez, Sicilia, Rubio, Crespo (br0130) May 2007; 22 Reyes, Cano, Fardoun, Ventura (br0240) Jan. 2018; 11 Kocaguneli, Menzies, Keung (br0250) 2012; 38 Azzeh, Nassif (br0430) 2018; 30 Idri, Amazal, Abran (br0450) 2015; 58 Kocaguneli, Kultur, Bener (br0120) 2009 Chacón, Duong (br0270) 2018 Shepperd, Schofield, Kitchenham (br0490) 1995 Menzies (br0190) 2013; 39 Nassif, Ho, Capretz (br0410) 2013; 86 Song, Minku, Xin (br0340) Jan. 2019; 28 Menzies, Chen, Hihn, Lum (br0070) Nov. 2006; 32 Demšar (br0560) 2006 Azzeh, Nassif (br0320) 2017; 29 Ma, Luo, Zeng, Chen (br0180) Mar. 2012; 54 Kitchenham, Mendes, Travassos (br0160) May 2007; 33 Menzies, Caglayan, Kocaguneli, Krall, Peters, Turhan (br0500) Corazza, Di Martino, Ferrucci, Gravino, Sarro, Mendes (br0100) Dec. 2011; 18 Azzeh, Nassif, Banitaan (br0150) 2016 Azzeh, Nassi (br0060) 2015; 9 Mittas, Angelis (br0550) 2012 Azzeh, Nassif (br0020) 2016; 49 Mittas, Angelis (br0390) 2013; 39 Azzeh, Nassif, Banitaan, Almasalha (br0030) 2016; 27 Shepperd, MacDonell (br0540) 2012; 54 Silhavy, Silhavy, Prokopova (br0470) May 2018; 97 Ali, Gravino (br0330) May 2021; 205 Kocaguneli, Menzies, Keung (br0230) Feb. 2013; 18 Azzeh, Nassif, Banitaan (br0370) 2018; 12 Gautam, Singh (br0420) Dec. 2018; 30 Boehm (br0360) 1984; SE-10 Amazal, Idri, Abran (br0080) Dec. 2019; 31 Kocaguneli, Menzies, Keung, Cok, Madachy (br0510) 2013; 39 Yin, Xie, Sun (br0260) Feb. 2017; 64 Azzeh, Nassif, Banitaan (br0090) 2016 Keung, Kocaguneli, Menzies (br0040) Dec. 2013; 20 Kultur, Turhan, Bener (br0480) Aug. 2009; 22 Jørgensen (br0050) Nov. 2019; 115 Ryu, Choi, Baik (br0170) Feb. 2016; 21 Minku, Yao (br0010) Aug. 2013; 55 Minku, Yao (br0300) Oct. 2013; 22 Rodriguez (br0520) 2012; 85 Kocaguneli, Menzies, Bener, Keung (br0290) 2012; 38 Azzeh (10.1016/j.scico.2021.102744_br0370) 2018; 12 Reyes (10.1016/j.scico.2021.102744_br0240) 2018; 11 Boehm (10.1016/j.scico.2021.102744_br0360) 1984; SE-10 Azzeh (10.1016/j.scico.2021.102744_br0430) 2018; 30 Kocaguneli (10.1016/j.scico.2021.102744_br0290) 2012; 38 Nassif (10.1016/j.scico.2021.102744_br0410) 2013; 86 Yin (10.1016/j.scico.2021.102744_br0260) 2017; 64 Menzies (10.1016/j.scico.2021.102744_br0500) Azzeh (10.1016/j.scico.2021.102744_br0030) 2016; 27 Minku (10.1016/j.scico.2021.102744_br0010) 2013; 55 Talgorn (10.1016/j.scico.2021.102744_br0220) 2018; 19 Kocaguneli (10.1016/j.scico.2021.102744_br0510) 2013; 39 Silhavy (10.1016/j.scico.2021.102744_br0470) 2018; 97 Chacón (10.1016/j.scico.2021.102744_br0270) 2018 Azzeh (10.1016/j.scico.2021.102744_br0310) 2015; 103 Gallego (10.1016/j.scico.2021.102744_br0130) 2007; 22 Song (10.1016/j.scico.2021.102744_br0340) 2019; 28 Azzeh (10.1016/j.scico.2021.102744_br0440) 2008 Kocaguneli (10.1016/j.scico.2021.102744_br0250) 2012; 38 Ali (10.1016/j.scico.2021.102744_br0330) 2021; 205 Kultur (10.1016/j.scico.2021.102744_br0480) 2009; 22 Idri (10.1016/j.scico.2021.102744_br0450) 2015; 58 Atkeson (10.1016/j.scico.2021.102744_br0210) 1997; 11 Azzeh (10.1016/j.scico.2021.102744_br0090) Azzeh (10.1016/j.scico.2021.102744_br0020) 2016; 49 Jørgensen (10.1016/j.scico.2021.102744_br0350) 2020; 159 Mittas (10.1016/j.scico.2021.102744_br0550) Rodriguez (10.1016/j.scico.2021.102744_br0520) 2012; 85 Minku (10.1016/j.scico.2021.102744_br0110) 2019; 24 Menzies (10.1016/j.scico.2021.102744_br0070) 2006; 32 Foss (10.1016/j.scico.2021.102744_br0530) 2003; 29 Shepperd (10.1016/j.scico.2021.102744_br0490) 1995 Azzeh (10.1016/j.scico.2021.102744_br0150) 2016 Azzeh (10.1016/j.scico.2021.102744_br0200) 2021; 29 Azzeh (10.1016/j.scico.2021.102744_br0320) 2017; 29 Kocaguneli (10.1016/j.scico.2021.102744_br0570) 2013; 86 Kitchenham (10.1016/j.scico.2021.102744_br0160) 2007; 33 Kocaguneli (10.1016/j.scico.2021.102744_br0120) Azzeh (10.1016/j.scico.2021.102744_br0060) 2015; 9 Jørgensen (10.1016/j.scico.2021.102744_br0050) 2019; 115 Menzies (10.1016/j.scico.2021.102744_br0190) 2013; 39 Minku (10.1016/j.scico.2021.102744_br0300) 2013; 22 Amazal (10.1016/j.scico.2021.102744_br0080) 2019; 31 Gautam (10.1016/j.scico.2021.102744_br0420) 2018; 30 Shepperd (10.1016/j.scico.2021.102744_br0540) 2012; 54 Demšar (10.1016/j.scico.2021.102744_br0560) Keung (10.1016/j.scico.2021.102744_br0040) 2013; 20 Corazza (10.1016/j.scico.2021.102744_br0100) 2011; 18 Ryu (10.1016/j.scico.2021.102744_br0170) 2016; 21 Kocaguneli (10.1016/j.scico.2021.102744_br0230) 2013; 18 Mittas (10.1016/j.scico.2021.102744_br0390) 2013; 39 Dejaeger (10.1016/j.scico.2021.102744_br0380) 2012; 38 Ma (10.1016/j.scico.2021.102744_br0180) 2012; 54 |
| References_xml | – volume: 38 start-page: 1403 year: 2012 end-page: 1416 ident: br0250 article-title: On the value of ensemble effort estimation publication-title: IEEE Trans. Softw. Eng. – start-page: 170 year: 1995 end-page: 178 ident: br0490 article-title: Effort estimation using analogy publication-title: Proceedings - International Conference on Software Engineering – volume: 27 year: 2016 ident: br0030 article-title: Pareto efficient multi-objective optimization for local tuning of analogy-based estimation publication-title: Neural Comput. Appl. – volume: 115 start-page: 93 year: Nov. 2019 end-page: 96 ident: br0050 article-title: Evaluating probabilistic software development effort estimates: maximizing informativeness subject to calibration publication-title: Inf. Softw. Technol. – volume: 33 start-page: 316 year: May 2007 end-page: 329 ident: br0160 article-title: Cross versus within-company cost estimation studies: a systematic review publication-title: IEEE Trans. Softw. Eng. – volume: 39 start-page: 822 year: 2013 end-page: 834 ident: br0190 article-title: Local versus global lessons for defect prediction and effort estimation publication-title: IEEE Trans. Softw. Eng. – volume: 54 start-page: 820 year: 2012 end-page: 827 ident: br0540 article-title: Evaluating prediction systems in software project estimation publication-title: Inf. Softw. Technol. – volume: 20 start-page: 543 year: Dec. 2013 end-page: 567 ident: br0040 article-title: Finding conclusion stability for selecting the best effort predictor in software effort estimation publication-title: Autom. Softw. Eng. – volume: 22 start-page: 1 year: Oct. 2013 end-page: 32 ident: br0300 article-title: Software effort estimation as a multiobjective learning problem publication-title: ACM Trans. Softw. Eng. Methodol. – volume: 97 start-page: 1 year: May 2018 end-page: 9 ident: br0470 article-title: Evaluating subset selection methods for use case points estimation publication-title: Inf. Softw. Technol. – year: 2006 ident: br0560 article-title: Statistical comparisons of classifiers over multiple data sets – volume: 24 start-page: 3153 year: Feb. 2019 end-page: 3204 ident: br0110 article-title: A novel online supervised hyperparameter tuning procedure applied to cross-company software effort estimation publication-title: Empir. Softw. Eng. – start-page: 1268 year: 2016 end-page: 1271 ident: br0150 article-title: An application of classification and class decomposition to use case point estimation method publication-title: Proc. - 2015 IEEE 14th Int. Conf. Mach. Learn. Appl. ICMLA 2015 – volume: 103 year: 2015 ident: br0310 article-title: An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation publication-title: J. Syst. Softw. – volume: 9 year: 2015 ident: br0060 article-title: Analogy-based effort estimation: a new method to discover set of analogies from dataset characteristics publication-title: IET Softw. – year: 2008 ident: br0440 article-title: Adjusting analogy software effort estimation based on fuzzy logic publication-title: ICSOFT 2008 - Proceedings of the 3rd International Conference on Software and Data Technologies – volume: 22 start-page: 395 year: Aug. 2009 end-page: 402 ident: br0480 article-title: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs publication-title: Knowl.-Based Syst. – year: 2012 ident: br0550 article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm – volume: 64 start-page: 1507 year: Feb. 2017 end-page: 1516 ident: br0260 article-title: A nonlinear process monitoring approach with locally weighted learning of available data publication-title: IEEE Trans. Ind. Electron. – volume: 31 year: Dec. 2019 ident: br0080 article-title: Analysis of cluster center initialization of 2FA-kprototypes analogy-based software effort estimation publication-title: J. Softw. Evol. Process – volume: 32 start-page: 883 year: Nov. 2006 end-page: 895 ident: br0070 article-title: Selecting best practices for effort estimation publication-title: IEEE Trans. Softw. Eng. – volume: 39 start-page: 1040 year: 2013 end-page: 1053 ident: br0510 article-title: Active learning and effort estimation: finding the essential content of software effort estimation data publication-title: IEEE Trans. Softw. Eng. – year: 2016 ident: br0090 article-title: An application of classification and class decomposition to use case point estimation method – volume: 29 start-page: 309 year: Apr. 2021 end-page: 336 ident: br0200 article-title: Empirical analysis on productivity prediction and locality for use case points method publication-title: Softw. Qual. J. – volume: 38 start-page: 375 year: 2012 end-page: 397 ident: br0380 article-title: Data mining techniques for software effort estimation: a comparative study publication-title: IEEE Trans. Softw. Eng. – volume: 18 start-page: 1 year: Feb. 2013 end-page: 24 ident: br0230 article-title: Kernel methods for software effort estimation: effects of different kernel functions and bandwidths on estimation accuracy publication-title: Empir. Softw. Eng. – ident: br0500 article-title: The PROMISE repository of empirical software engineering data – year: 2009 ident: br0120 article-title: Combining multiple learners induced on multiple datasets for software effort prediction – year: 2018 ident: br0270 article-title: Multivariate Kernel Smoothing and Its Applications – volume: 11 start-page: 282 year: Jan. 2018 end-page: 295 ident: br0240 article-title: A locally weighted learning method based on a data gravitation model for multi-target regression publication-title: Int. J. Comput. Intell. Syst. – volume: 58 year: 2015 ident: br0450 article-title: Analogy-based software development effort estimation: a systematic mapping and review publication-title: Inf. Softw. Technol. – volume: 86 start-page: 1879 year: Jul. 2013 end-page: 1890 ident: br0570 article-title: Software effort models should be assessed via leave-one-out validation publication-title: J. Syst. Softw. – volume: 22 start-page: 371 year: May 2007 end-page: 378 ident: br0130 article-title: Software project effort estimation based on multiple parametric models generated through data clustering publication-title: J. Comput. Sci. Tech. – volume: 30 year: Dec. 2018 ident: br0420 article-title: The state-of-the-art in software development effort estimation publication-title: J. Softw. Evol. Process – volume: 18 start-page: 506 year: Dec. 2011 end-page: 546 ident: br0100 article-title: Using tabu search to configure support vector regression for effort estimation publication-title: Empir. Softw. Eng. – volume: 19 start-page: 213 year: Mar. 2018 end-page: 238 ident: br0220 article-title: Locally weighted regression models for surrogate-assisted design optimization publication-title: Optim. Eng. – volume: 38 start-page: 425 year: 2012 end-page: 438 ident: br0290 article-title: Exploiting the essential assumptions of analogy-based effort estimation publication-title: IEEE Trans. Softw. Eng. – volume: 39 start-page: 537 year: 2013 end-page: 551 ident: br0390 article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm publication-title: IEEE Trans. Softw. Eng. – volume: 54 start-page: 248 year: Mar. 2012 end-page: 256 ident: br0180 article-title: Transfer learning for cross-company software defect prediction publication-title: Inf. Softw. Technol. – volume: 28 year: Jan. 2019 ident: br0340 article-title: Software effort interval prediction via Bayesian inference and synthetic bootstrap resampling publication-title: ACM Trans. Softw. Eng. Methodol. – volume: 159 year: Jan. 2020 ident: br0350 article-title: Sequence effects in the estimation of software development effort publication-title: J. Syst. Softw. – volume: 55 start-page: 1512 year: Aug. 2013 end-page: 1528 ident: br0010 article-title: Ensembles and locality: insight on improving software effort estimation publication-title: Inf. Softw. Technol. – volume: 86 year: 2013 ident: br0410 article-title: Towards an early software estimation using log-linear regression and a multilayer perceptron model publication-title: J. Syst. Softw. – volume: 30 year: 2018 ident: br0430 article-title: Project productivity evaluation in early software effort estimation publication-title: J. Softw. Evol. Process – volume: 29 start-page: 985 year: Nov. 2003 end-page: 995 ident: br0530 article-title: A simulation study of the model evaluation criterion MMRE publication-title: IEEE Trans. Softw. Eng. – volume: 49 year: 2016 ident: br0020 article-title: A hybrid model for estimating software project effort from use case points publication-title: Appl. Soft Comput. J. – volume: 11 start-page: 11 year: 1997 end-page: 73 ident: br0210 article-title: Locally weighted learning publication-title: Artif. Intell. Rev. – volume: SE-10 start-page: 4 year: 1984 end-page: 21 ident: br0360 article-title: Software engineering economics publication-title: IEEE Trans. Softw. Eng. – volume: 85 start-page: 562 year: 2012 end-page: 570 ident: br0520 article-title: Empirical findings on team size and productivity in software development BadgePeople: leveling-up innovation in quality improvement of people-driven processes with simulation and gamification (TIN2016-76956-C3-3-R) view project quality perceptions in high publication-title: J. Syst. Softw. – volume: 205 year: May 2021 ident: br0330 article-title: Improving software effort estimation using bio-inspired algorithms to select relevant features: an empirical study publication-title: Sci. Comput. Program. – volume: 21 start-page: 43 year: Feb. 2016 end-page: 71 ident: br0170 article-title: Value-cognitive boosting with a support vector machine for cross-project defect prediction publication-title: Empir. Softw. Eng. – volume: 29 year: 2017 ident: br0320 article-title: Analyzing the relationship between project productivity and environment factors in the use case points method publication-title: J. Softw. Evol. Process – volume: 12 start-page: 19 year: 2018 end-page: 29 ident: br0370 article-title: Comparative analysis of soft computing techniques for predicting software effort based use case points publication-title: IET Softw. – volume: 22 start-page: 395 issue: 6 year: 2009 ident: 10.1016/j.scico.2021.102744_br0480 article-title: Ensemble of neural networks with associative memory (ENNA) for estimating software development costs publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2009.05.001 – ident: 10.1016/j.scico.2021.102744_br0550 – volume: 30 issue: 12 year: 2018 ident: 10.1016/j.scico.2021.102744_br0420 article-title: The state-of-the-art in software development effort estimation publication-title: J. Softw. Evol. Process doi: 10.1002/smr.1983 – ident: 10.1016/j.scico.2021.102744_br0500 – volume: 49 year: 2016 ident: 10.1016/j.scico.2021.102744_br0020 article-title: A hybrid model for estimating software project effort from use case points publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2016.05.008 – volume: 29 issue: 9 year: 2017 ident: 10.1016/j.scico.2021.102744_br0320 article-title: Analyzing the relationship between project productivity and environment factors in the use case points method publication-title: J. Softw. Evol. Process doi: 10.1002/smr.1882 – volume: 11 start-page: 11 issue: 1–5 year: 1997 ident: 10.1016/j.scico.2021.102744_br0210 article-title: Locally weighted learning publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006559212014 – volume: 30 issue: 12 year: 2018 ident: 10.1016/j.scico.2021.102744_br0430 article-title: Project productivity evaluation in early software effort estimation publication-title: J. Softw. Evol. Process doi: 10.1002/smr.2110 – volume: 31 issue: 12 year: 2019 ident: 10.1016/j.scico.2021.102744_br0080 article-title: Analysis of cluster center initialization of 2FA-kprototypes analogy-based software effort estimation publication-title: J. Softw. Evol. Process doi: 10.1002/smr.2180 – volume: 38 start-page: 1403 issue: 6 year: 2012 ident: 10.1016/j.scico.2021.102744_br0250 article-title: On the value of ensemble effort estimation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2011.111 – volume: 33 start-page: 316 issue: 5 year: 2007 ident: 10.1016/j.scico.2021.102744_br0160 article-title: Cross versus within-company cost estimation studies: a systematic review publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2007.1001 – volume: 18 start-page: 506 issue: 3 year: 2011 ident: 10.1016/j.scico.2021.102744_br0100 article-title: Using tabu search to configure support vector regression for effort estimation publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-011-9187-3 – volume: 9 issue: 2 year: 2015 ident: 10.1016/j.scico.2021.102744_br0060 article-title: Analogy-based effort estimation: a new method to discover set of analogies from dataset characteristics publication-title: IET Softw. doi: 10.1049/iet-sen.2013.0165 – volume: 115 start-page: 93 year: 2019 ident: 10.1016/j.scico.2021.102744_br0050 article-title: Evaluating probabilistic software development effort estimates: maximizing informativeness subject to calibration publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2019.08.006 – volume: 20 start-page: 543 issue: 4 year: 2013 ident: 10.1016/j.scico.2021.102744_br0040 article-title: Finding conclusion stability for selecting the best effort predictor in software effort estimation publication-title: Autom. Softw. Eng. doi: 10.1007/s10515-012-0108-5 – volume: 32 start-page: 883 issue: 11 year: 2006 ident: 10.1016/j.scico.2021.102744_br0070 article-title: Selecting best practices for effort estimation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2006.114 – ident: 10.1016/j.scico.2021.102744_br0560 – volume: 54 start-page: 248 issue: 3 year: 2012 ident: 10.1016/j.scico.2021.102744_br0180 article-title: Transfer learning for cross-company software defect prediction publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2011.09.007 – volume: 28 issue: 1 year: 2019 ident: 10.1016/j.scico.2021.102744_br0340 article-title: Software effort interval prediction via Bayesian inference and synthetic bootstrap resampling publication-title: ACM Trans. Softw. Eng. Methodol. doi: 10.1145/3295700 – volume: 54 start-page: 820 issue: 8 year: 2012 ident: 10.1016/j.scico.2021.102744_br0540 article-title: Evaluating prediction systems in software project estimation publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2011.12.008 – volume: 38 start-page: 375 issue: 2 year: 2012 ident: 10.1016/j.scico.2021.102744_br0380 article-title: Data mining techniques for software effort estimation: a comparative study publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2011.55 – volume: 55 start-page: 1512 issue: 8 year: 2013 ident: 10.1016/j.scico.2021.102744_br0010 article-title: Ensembles and locality: insight on improving software effort estimation publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2012.09.012 – volume: 159 year: 2020 ident: 10.1016/j.scico.2021.102744_br0350 article-title: Sequence effects in the estimation of software development effort publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2019.110448 – volume: 86 issue: 1 year: 2013 ident: 10.1016/j.scico.2021.102744_br0410 article-title: Towards an early software estimation using log-linear regression and a multilayer perceptron model publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2012.07.050 – volume: 24 start-page: 3153 issue: 5 year: 2019 ident: 10.1016/j.scico.2021.102744_br0110 article-title: A novel online supervised hyperparameter tuning procedure applied to cross-company software effort estimation publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-019-09686-w – volume: 11 start-page: 282 issue: 1 year: 2018 ident: 10.1016/j.scico.2021.102744_br0240 article-title: A locally weighted learning method based on a data gravitation model for multi-target regression publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.11.1.22 – volume: 12 start-page: 19 issue: 1 year: 2018 ident: 10.1016/j.scico.2021.102744_br0370 article-title: Comparative analysis of soft computing techniques for predicting software effort based use case points publication-title: IET Softw. doi: 10.1049/iet-sen.2016.0322 – start-page: 1268 year: 2016 ident: 10.1016/j.scico.2021.102744_br0150 article-title: An application of classification and class decomposition to use case point estimation method – volume: 29 start-page: 309 issue: 2 year: 2021 ident: 10.1016/j.scico.2021.102744_br0200 article-title: Empirical analysis on productivity prediction and locality for use case points method publication-title: Softw. Qual. J. doi: 10.1007/s11219-021-09547-0 – volume: SE-10 start-page: 4 issue: 1 year: 1984 ident: 10.1016/j.scico.2021.102744_br0360 article-title: Software engineering economics publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.1984.5010193 – ident: 10.1016/j.scico.2021.102744_br0090 – ident: 10.1016/j.scico.2021.102744_br0120 – volume: 29 start-page: 985 issue: 11 year: 2003 ident: 10.1016/j.scico.2021.102744_br0530 article-title: A simulation study of the model evaluation criterion MMRE publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2003.1245300 – year: 2018 ident: 10.1016/j.scico.2021.102744_br0270 – volume: 85 start-page: 562 issue: 3 year: 2012 ident: 10.1016/j.scico.2021.102744_br0520 article-title: Empirical findings on team size and productivity in software development BadgePeople: leveling-up innovation in quality improvement of people-driven processes with simulation and gamification (TIN2016-76956-C3-3-R) view project quality perceptions in high publication-title: J. Syst. Softw. – volume: 39 start-page: 537 issue: 4 year: 2013 ident: 10.1016/j.scico.2021.102744_br0390 article-title: Ranking and clustering software cost estimation models through a multiple comparisons algorithm publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2012.45 – volume: 64 start-page: 1507 issue: 2 year: 2017 ident: 10.1016/j.scico.2021.102744_br0260 article-title: A nonlinear process monitoring approach with locally weighted learning of available data publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2612161 – volume: 22 start-page: 371 issue: 3 year: 2007 ident: 10.1016/j.scico.2021.102744_br0130 article-title: Software project effort estimation based on multiple parametric models generated through data clustering publication-title: J. Comput. Sci. Tech. doi: 10.1007/s11390-007-9043-5 – volume: 103 year: 2015 ident: 10.1016/j.scico.2021.102744_br0310 article-title: An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2015.01.028 – volume: 38 start-page: 425 issue: 2 year: 2012 ident: 10.1016/j.scico.2021.102744_br0290 article-title: Exploiting the essential assumptions of analogy-based effort estimation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2011.27 – volume: 39 start-page: 822 issue: 6 year: 2013 ident: 10.1016/j.scico.2021.102744_br0190 article-title: Local versus global lessons for defect prediction and effort estimation publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2012.83 – volume: 97 start-page: 1 year: 2018 ident: 10.1016/j.scico.2021.102744_br0470 article-title: Evaluating subset selection methods for use case points estimation publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2017.12.009 – volume: 205 year: 2021 ident: 10.1016/j.scico.2021.102744_br0330 article-title: Improving software effort estimation using bio-inspired algorithms to select relevant features: an empirical study publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2021.102621 – volume: 27 issue: 8 year: 2016 ident: 10.1016/j.scico.2021.102744_br0030 article-title: Pareto efficient multi-objective optimization for local tuning of analogy-based estimation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2004-y – volume: 39 start-page: 1040 issue: 8 year: 2013 ident: 10.1016/j.scico.2021.102744_br0510 article-title: Active learning and effort estimation: finding the essential content of software effort estimation data publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2012.88 – volume: 21 start-page: 43 issue: 1 year: 2016 ident: 10.1016/j.scico.2021.102744_br0170 article-title: Value-cognitive boosting with a support vector machine for cross-project defect prediction publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-014-9346-4 – volume: 86 start-page: 1879 issue: 7 year: 2013 ident: 10.1016/j.scico.2021.102744_br0570 article-title: Software effort models should be assessed via leave-one-out validation publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2013.02.053 – year: 2008 ident: 10.1016/j.scico.2021.102744_br0440 article-title: Adjusting analogy software effort estimation based on fuzzy logic – volume: 22 start-page: 1 issue: 4 year: 2013 ident: 10.1016/j.scico.2021.102744_br0300 article-title: Software effort estimation as a multiobjective learning problem publication-title: ACM Trans. Softw. Eng. Methodol. doi: 10.1145/2522920.2522928 – start-page: 170 year: 1995 ident: 10.1016/j.scico.2021.102744_br0490 article-title: Effort estimation using analogy – volume: 18 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.scico.2021.102744_br0230 article-title: Kernel methods for software effort estimation: effects of different kernel functions and bandwidths on estimation accuracy publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-011-9189-1 – volume: 19 start-page: 213 issue: 1 year: 2018 ident: 10.1016/j.scico.2021.102744_br0220 article-title: Locally weighted regression models for surrogate-assisted design optimization publication-title: Optim. Eng. doi: 10.1007/s11081-017-9370-5 – volume: 58 year: 2015 ident: 10.1016/j.scico.2021.102744_br0450 article-title: Analogy-based software development effort estimation: a systematic mapping and review publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2014.07.013 |
| SSID | ssj0006471 |
| Score | 2.4296443 |
| Snippet | •Locally Weighted Regression method provides an efficient solution to learn from local effort data.•A comprehensive experiment with 1080 Locally Weighted... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102744 |
| SubjectTerms | Effort estimation k-nearest neighbors Kernel function Locally weighted regression |
| Title | Locally weighted regression with different kernel smoothers for software effort estimation |
| URI | https://dx.doi.org/10.1016/j.scico.2021.102744 |
| Volume | 214 |
| WOSCitedRecordID | wos000720929000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2021 customDbUrl: eissn: 1872-7964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006471 issn: 0167-6423 databaseCode: AIEXJ dateStart: 20211208 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5By4ELb0TLQ3vgZixt7LXXe6xQESCokChSxMVar8ekbeKU2DSlv57Zlw0NqgCJi504Wa-182V2ZjLzDSHPOe7BSqU6ZniKuUoglvZfdlHJTNeGIpzbZhPi4KCYTuUHH9DvbDsB0bbF-bk8_a-ixmsobFM6-xfiHm6KF_A1Ch2PKHY8_pHg35ndaf49WtugJ5jqlC8u2dVVbA89UfroBFYtzKNusbR1WJaaIepQMa9NPhg0-LaPDA3HYpSfN2SDTvBZ6aYxRMj1WoTd0OBo_lV1K7W2OQOoWTpoho8uLsDGdN4vZzhI1WMaSTeDo5PZpSE-NIFeLfslzWOzZsaFMFE1o9fj1Bo4tVsItPOl4zMPejlx1aUbOt6FG47R-8ffCnr4ycTwTwhHI3mJPPujmc1Mlkwsgyq_TrYTkUnUf9t7b_anb4ddO3fO-fB0gaHK5gJuTPV7K-Yny-TwDrnlXQq656Bwl1yD9h65Hdp1UC-p--SzRwYNyKAjMqhBBh2QQR0y6IAMilCgARnUIYOOyHhAPr3aP3z5OvatNWKNNksfG5pF2TSTohG5ZFox9JuFKhpAcxJy9EErpnnRMAE8B1ApyAkUWcGySqtcsDp9SLbaZQuPCOUc6jRjtVK84ugQS9BoNao0baoM7UG-Q5KwVKX2vPOm_cm8DAmGx6Vd39Ksb-nWd4e8GAadOtqVq7-eBxmU3nJ0FmGJoLlq4O6_DnxMbo6If0K2-tU3eEpu6LP-qFs98-D6AW0Hl1k |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locally+weighted+regression+with+different+kernel+smoothers+for+software+effort+estimation&rft.jtitle=Science+of+computer+programming&rft.au=Alqasrawi%2C+Yousef&rft.au=Azzeh%2C+Mohammad&rft.au=Elsheikh%2C+Yousef&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-6423&rft.eissn=1872-7964&rft.volume=214&rft_id=info:doi/10.1016%2Fj.scico.2021.102744&rft.externalDocID=S0167642321001374 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6423&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6423&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6423&client=summon |