A scalable, causal, adaptive rule-based energy management for fuel cell hybrid railway vehicles learned from results of dynamic programming

A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is developed. The rules of this strategy are initiated by the results of two-dimensional dynamic programming under different driving conditions and utilize the convexity of the characteristic specific cons...

Full description

Saved in:
Bibliographic Details
Published in:eTransportation (Amsterdam) Vol. 4; p. 100057
Main Authors: Peng, Hujun, Li, Jianxiang, Thul, Andreas, Deng, Kai, Ünlübayir, Cem, Löwenstein, Lars, Hameyer, Kay
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2020
Subjects:
ISSN:2590-1168, 2590-1168
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is developed. The rules of this strategy are initiated by the results of two-dimensional dynamic programming under different driving conditions and utilize the convexity of the characteristic specific consumption curve of the fuel cell system. According to the strategy, the fuel cell power follows the estimated average load power. This average value is updated each time when the train leaves a station by using prior knowledge, which ensures its causality. Furthermore, the power demand due to the gradient slope is excluded while estimating the average value because the gravitational energy is recyclable. In this way, the fuel cell system works more stably without being influenced by the strongly changeable power demand due to the gradient slopes. In order to avoid over-charging of batteries during long hold time, which is often the case for regional railway vehicles, the pre-known driving, holding, and travel time available in railway transportation are used to improve the estimation of the average values. After comparison with the results of dynamic programming, an excellent fuel economy is observed under different driving cycles and weather. More consumption of 0.01% and 0.09% in summer and winter, respectively, compared to dynamic programming, results under a typical driving cycle of regional railway vehicles in Berlin. Because the rules are based on the component characteristics, this strategy can be transferred to other vehicle configurations or driving situations without a loss of effectiveness. In addition to the excellent fuel economy, the lifetime of fuel cell systems benefits from its less dynamic operation. •Extraction of rules from the results of two-dimensional dynamic programming.•Derivation of formulas utilizing the convexity of specific consumption curves.•Estimate of the average fuel cell power corrected with gradient force excluded.•Stable operation of the fuel cell system with high fuel economy.•Scalability of the rule-based strategy due to its model-based characteristics.
AbstractList A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is developed. The rules of this strategy are initiated by the results of two-dimensional dynamic programming under different driving conditions and utilize the convexity of the characteristic specific consumption curve of the fuel cell system. According to the strategy, the fuel cell power follows the estimated average load power. This average value is updated each time when the train leaves a station by using prior knowledge, which ensures its causality. Furthermore, the power demand due to the gradient slope is excluded while estimating the average value because the gravitational energy is recyclable. In this way, the fuel cell system works more stably without being influenced by the strongly changeable power demand due to the gradient slopes. In order to avoid over-charging of batteries during long hold time, which is often the case for regional railway vehicles, the pre-known driving, holding, and travel time available in railway transportation are used to improve the estimation of the average values. After comparison with the results of dynamic programming, an excellent fuel economy is observed under different driving cycles and weather. More consumption of 0.01% and 0.09% in summer and winter, respectively, compared to dynamic programming, results under a typical driving cycle of regional railway vehicles in Berlin. Because the rules are based on the component characteristics, this strategy can be transferred to other vehicle configurations or driving situations without a loss of effectiveness. In addition to the excellent fuel economy, the lifetime of fuel cell systems benefits from its less dynamic operation. •Extraction of rules from the results of two-dimensional dynamic programming.•Derivation of formulas utilizing the convexity of specific consumption curves.•Estimate of the average fuel cell power corrected with gradient force excluded.•Stable operation of the fuel cell system with high fuel economy.•Scalability of the rule-based strategy due to its model-based characteristics.
ArticleNumber 100057
Author Löwenstein, Lars
Hameyer, Kay
Deng, Kai
Ünlübayir, Cem
Peng, Hujun
Thul, Andreas
Li, Jianxiang
Author_xml – sequence: 1
  givenname: Hujun
  surname: Peng
  fullname: Peng, Hujun
  email: hujun.peng@iem.rwth-aachen.de
  organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany
– sequence: 2
  givenname: Jianxiang
  surname: Li
  fullname: Li, Jianxiang
  organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany
– sequence: 3
  givenname: Andreas
  surname: Thul
  fullname: Thul, Andreas
  organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany
– sequence: 4
  givenname: Kai
  surname: Deng
  fullname: Deng, Kai
  organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany
– sequence: 5
  givenname: Cem
  surname: Ünlübayir
  fullname: Ünlübayir, Cem
  organization: Chair for Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Germany
– sequence: 6
  givenname: Lars
  surname: Löwenstein
  fullname: Löwenstein, Lars
  organization: Siemens Mobility GmbH, Vienna, Austria
– sequence: 7
  givenname: Kay
  surname: Hameyer
  fullname: Hameyer, Kay
  organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany
BookMark eNqFkM1u2zAMgIWiBZq1fYJe-AB1Ksf132GHINjaAQF62c4CLVGpAlkOKCWDn2EvPbvZYdihgwCKIPgR5PdJXIYhkBD3uVzmMq8e90tKjGG5kqu5ImVZX4jFqmxlludVc_lXfi3uYtxPLau2KpqmXIhfa4gaPXaeHkDjMaJ_ADR4SO5EwEdPWYeRDFAg3o3QY8Ad9RQS2IHBHsmDJu_hbezYGWB0_ieOcKI3pz1F8IQcJt7y0ANTPPoUYbBgxoC903DgYcfY9y7sbsWVRR_p7s9_I358_fJ985JtX5-_bdbbTBeySFltrSltZyrZUZ2XpjbSYCOpqow1U2jmZ1vZNda0pba6sUVdW0lPjayf8rq4Ee15ruYhRiartEuY3BDSvL7KpZrFqr16F6tmseosdmKLf9gDux55_A_1-UzRdNbJEauoHQVNxjHppMzgPuR_A6i7mQE
CitedBy_id crossref_primary_10_3390_en16083325
crossref_primary_10_1016_j_enconman_2023_117362
crossref_primary_10_1016_j_fuel_2021_120940
crossref_primary_10_1016_j_rser_2023_113470
crossref_primary_10_1016_j_enconman_2024_118977
crossref_primary_10_1016_j_enconman_2025_119629
crossref_primary_10_1109_TITS_2023_3309052
crossref_primary_10_1016_j_seta_2023_103379
crossref_primary_10_1016_j_enconman_2022_115735
crossref_primary_10_3390_en14238151
crossref_primary_10_1016_j_apenergy_2024_125138
crossref_primary_10_3390_en14185920
crossref_primary_10_1016_j_ijhydene_2024_12_150
crossref_primary_10_1016_j_fuel_2024_131247
crossref_primary_10_1016_j_apenergy_2021_118036
crossref_primary_10_1016_j_est_2022_105038
crossref_primary_10_1016_j_ast_2024_109266
crossref_primary_10_1109_TTE_2024_3510057
crossref_primary_10_3390_s23208571
crossref_primary_10_1016_j_est_2024_111797
crossref_primary_10_1016_j_apenergy_2024_124078
crossref_primary_10_1016_j_enconman_2020_113568
crossref_primary_10_1016_j_enconman_2021_113871
crossref_primary_10_1016_j_etran_2020_100094
crossref_primary_10_1016_j_jrtpm_2022_100338
crossref_primary_10_1109_ACCESS_2022_3208365
crossref_primary_10_1016_j_etran_2024_100332
crossref_primary_10_1016_j_ijhydene_2021_12_121
crossref_primary_10_3390_vehicles4040072
crossref_primary_10_1016_j_energy_2025_136730
crossref_primary_10_1016_j_enconman_2020_113734
crossref_primary_10_1016_j_etran_2021_100120
crossref_primary_10_1109_TTE_2024_3399054
crossref_primary_10_1016_j_applthermaleng_2024_124013
crossref_primary_10_1039_D1RA06395B
crossref_primary_10_3389_fenrg_2022_888787
crossref_primary_10_1016_j_applthermaleng_2022_119509
crossref_primary_10_1080_15567036_2021_1999347
crossref_primary_10_1016_j_apenergy_2020_116152
crossref_primary_10_3390_en18082112
crossref_primary_10_1016_j_rser_2023_114154
crossref_primary_10_1177_09544097221128765
crossref_primary_10_1016_j_ijepes_2022_108149
crossref_primary_10_1016_j_enconman_2023_117973
crossref_primary_10_3390_en17071586
crossref_primary_10_3390_math12121849
crossref_primary_10_1016_j_apenergy_2025_126257
crossref_primary_10_1016_j_enconman_2020_113788
crossref_primary_10_1016_j_energy_2022_125095
crossref_primary_10_1016_j_est_2024_114722
crossref_primary_10_1016_j_energy_2020_119607
crossref_primary_10_1016_j_fuel_2021_120252
crossref_primary_10_1016_j_ijhydene_2023_07_304
crossref_primary_10_1016_j_enconman_2021_114222
crossref_primary_10_1016_j_ijhydene_2025_151621
crossref_primary_10_1016_j_enconman_2021_115030
Cites_doi 10.1016/j.apenergy.2014.11.020
10.1016/j.energy.2019.116142
10.1016/j.energy.2019.116151
10.1016/j.ijhydene.2009.11.108
10.3390/en11030476
10.1016/j.apenergy.2013.06.056
10.1016/j.energy.2019.03.155
10.1016/j.apenergy.2019.113707
10.1016/j.est.2019.100950
10.1016/j.apenergy.2015.01.021
10.1016/j.apenergy.2018.12.032
10.1016/j.apenergy.2018.07.087
10.1016/j.rser.2015.03.093
10.1090/S0002-9904-1954-09848-8
10.1016/j.jpowsour.2013.10.145
10.1016/j.ijhydene.2016.08.157
10.1016/j.apenergy.2017.09.089
10.1016/j.applthermaleng.2010.12.010
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.etran.2020.100057
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1168
ExternalDocumentID 10_1016_j_etran_2020_100057
S259011682030014X
GrantInformation_xml – fundername: German Federal Ministry for Economic Affairs and Energy (BMWi)
  funderid: https://doi.org/10.13039/501100002765
– fundername: National Innovation Program Hydrogen and Fuel Cell Technology (NIP)
  grantid: 03B10502B; 03B10502B2
GroupedDBID AABXZ
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAXUO
ACDAQ
ACRLP
AEBSH
AEZYN
AFKWA
AFRZQ
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FYGXN
KOM
M41
M~E
ROL
SPC
SPCBC
SSM
SSR
SST
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c303t-7ffd5fbd60be715d7d0da80e66dfd66d8d8d8f90b8fd95cfc8f377f0e48074173
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658425300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-1168
IngestDate Tue Nov 18 22:10:05 EST 2025
Thu Nov 20 00:48:09 EST 2025
Fri Feb 23 02:47:40 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Fuel cell hybrid trains
Rule-based strategy
Dynamic programming
Scalability
Energy management
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-7ffd5fbd60be715d7d0da80e66dfd66d8d8d8f90b8fd95cfc8f377f0e48074173
ParticipantIDs crossref_citationtrail_10_1016_j_etran_2020_100057
crossref_primary_10_1016_j_etran_2020_100057
elsevier_sciencedirect_doi_10_1016_j_etran_2020_100057
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle eTransportation (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brennstoffzellen (bib4)
Zhang, Yan, Du (bib8) 2015; 48
Tran, Vafaeipour, El Baghdadi, Barrero, van Mierlo, Hegazy (bib7) 2019
Paganelli, Delprat, Guerra, Rimaux, Santin (bib19) 2002; vol. 4
Jürgen (bib3) 2017
Xie, Hu, Xin, Brighton (bib24) 2019; 236
Kirk (bib30) 2004
Wang, Sun, Li, Yang, Chen (bib13) 2019; 189
Serrao, Onori, Rizzoni (bib28) 2011; 133
Fletcher, Thring, Watkinson (bib5) 2016; 41
Hu, Murgovski, Johannesson, Egardt (bib27) 2013; 111
Wang, Sun, Chen (bib12) 2019; 254
Rezaei, Burl, Solouk, Zhou, Rezaei, Shahbakhti (bib22) 2017; 208
Wang, Li, Wang, Sun (bib11) 2019; 26
Sulaiman, Hannan, Mohamed, Ker, Majlan, Wan Daud (bib6) 2018; 228
Song, Hofmann, Li, Han, Ouyang (bib15) 2015; 139
Onori, Tribioli (bib23) 2015; 147
I. Pielecha, W. Cieślik, A. Szałek, The use of electric drive in urban driving conditions using a hydrogen powered vehicle-toyota mirai, Combustion Engines 57.
bib26
Caux, Hankache, Fadel, Hissel (bib14) 2010; 35
Ansarey, Panahi, Ziarati, Mahjoob (bib17) 2014; 250
Peng, Li, Deng, Thul, Li, Löwenstein, Sauer, Hameyer (bib18) 2019
Railway electrification: Germany only average, https://www.allianz-pro-schiene.de/en/press-releases/˙2012-19-electric-transport-federal-government-still-has-homework-/ to-do/, accessed December 18, 2019.
Bellman (bib16) 1954; 60
Pei, Leamy (bib20) 2013; 135
Liu, Deng, Huang, Liu (bib29) 2011; 31
Tian, Cai, Sun, Zhu, Xu (bib21) 2019; 189
bib2
Wang, Sun, Chen (bib10) 2019; 175
Ali, Söffker (bib25) 2018; 11
Wang (10.1016/j.etran.2020.100057_bib13) 2019; 189
Serrao (10.1016/j.etran.2020.100057_bib28) 2011; 133
Fletcher (10.1016/j.etran.2020.100057_bib5) 2016; 41
Jürgen (10.1016/j.etran.2020.100057_bib3) 2017
Caux (10.1016/j.etran.2020.100057_bib14) 2010; 35
Brennstoffzellen (10.1016/j.etran.2020.100057_bib4)
Liu (10.1016/j.etran.2020.100057_bib29) 2011; 31
Ali (10.1016/j.etran.2020.100057_bib25) 2018; 11
Xie (10.1016/j.etran.2020.100057_bib24) 2019; 236
Peng (10.1016/j.etran.2020.100057_bib18) 2019
Wang (10.1016/j.etran.2020.100057_bib12) 2019; 254
Hu (10.1016/j.etran.2020.100057_bib27) 2013; 111
Rezaei (10.1016/j.etran.2020.100057_bib22) 2017; 208
Sulaiman (10.1016/j.etran.2020.100057_bib6) 2018; 228
Pei (10.1016/j.etran.2020.100057_bib20) 2013; 135
Kirk (10.1016/j.etran.2020.100057_bib30) 2004
10.1016/j.etran.2020.100057_bib9
Wang (10.1016/j.etran.2020.100057_bib11) 2019; 26
10.1016/j.etran.2020.100057_bib1
Tian (10.1016/j.etran.2020.100057_bib21) 2019; 189
Paganelli (10.1016/j.etran.2020.100057_bib19) 2002; vol. 4
Tran (10.1016/j.etran.2020.100057_bib7) 2019
Ansarey (10.1016/j.etran.2020.100057_bib17) 2014; 250
Song (10.1016/j.etran.2020.100057_bib15) 2015; 139
Onori (10.1016/j.etran.2020.100057_bib23) 2015; 147
Bellman (10.1016/j.etran.2020.100057_bib16) 1954; 60
Wang (10.1016/j.etran.2020.100057_bib10) 2019; 175
Zhang (10.1016/j.etran.2020.100057_bib8) 2015; 48
References_xml – reference: Railway electrification: Germany only average, https://www.allianz-pro-schiene.de/en/press-releases/˙2012-19-electric-transport-federal-government-still-has-homework-/ to-do/, accessed December 18, 2019.
– volume: 208
  start-page: 655
  year: 2017
  end-page: 665
  ident: bib22
  article-title: Catch energy saving opportunity (ceso), an instantaneous optimal energy management strategy for series hybrid electric vehicles
  publication-title: Appl Energy
– volume: 236
  start-page: 893
  year: 2019
  end-page: 905
  ident: bib24
  article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl Energy
– volume: 41
  start-page: 21503
  year: 2016
  end-page: 21515
  ident: bib5
  article-title: An energy management strategy to concurrently optimise fuel consumption & pem fuel cell lifetime in a hybrid vehicle
  publication-title: Int J Hydrogen Energy
– volume: 111
  start-page: 1001
  year: 2013
  end-page: 1009
  ident: bib27
  article-title: Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes
  publication-title: Appl Energy
– volume: 254
  start-page: 113707
  year: 2019
  ident: bib12
  article-title: Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine
  publication-title: Appl Energy
– start-page: 41
  year: 2017
  ident: bib3
  article-title: Auf dem weg zur null-emmision, eisenbahn-magazin
– volume: 228
  start-page: 2061
  year: 2018
  end-page: 2079
  ident: bib6
  article-title: Optimization of energy management system for fuel-cell hybrid electric vehicles: issues and recommendations
  publication-title: Appl Energy
– volume: 133
  start-page: 60
  year: 2011
  ident: bib28
  article-title: A comparative analysis of energy management strategies for hybrid electric vehicles
  publication-title: Proc Inst Mech Eng - Part D J Automob Eng
– volume: vol. 4
  start-page: 2076
  year: 2002
  end-page: 2081
  ident: bib19
  article-title: Equivalent consumption minimization strategy for parallel hybrid powertrains
  publication-title: Vehicular technology conference. IEEE 55th vehicular technology conference. VTC spring 2002 (cat. No. 02CH37367)
– volume: 250
  start-page: 359
  year: 2014
  end-page: 371
  ident: bib17
  article-title: Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming
  publication-title: J Power Sources
– ident: bib2
  article-title: Jr east to trial fuel cell multiple-unit
– volume: 60
  start-page: 503
  year: 1954
  end-page: 515
  ident: bib16
  article-title: The theory of dynamic programming
  publication-title: Bull Am Math Soc
– ident: bib26
  article-title: Coradia ilint: alstoms emissionsfreier zug
– volume: 26
  start-page: 100950
  year: 2019
  ident: bib11
  article-title: Multiple-grained velocity prediction and energy management strategy for hybrid propulsion systems
  publication-title: Journal of Energy Storage
– reference: I. Pielecha, W. Cieślik, A. Szałek, The use of electric drive in urban driving conditions using a hydrogen powered vehicle-toyota mirai, Combustion Engines 57.
– volume: 135
  year: 2013
  ident: bib20
  article-title: Dynamic programming-informed equivalent cost minimization control strategies for hybrid-electric vehicles
  publication-title: J Dyn Syst Meas Contr
– start-page: 1
  year: 2019
  end-page: 7
  ident: bib18
  article-title: An efficient optimum energy management strategy using parallel dynamic programming for a hybrid train powered by fuel-cells and batteries
  publication-title: 2019 IEEE vehicle power and propulsion conference (VPPC)
– ident: bib4
  article-title: Siemens beauftragt ballard power
– volume: 11
  start-page: 476
  year: 2018
  ident: bib25
  article-title: Towards optimal power management of hybrid electric vehicles in real-time: a review on methods, challenges, and state-of-the-art solutions
  publication-title: Energies
– volume: 48
  start-page: 88
  year: 2015
  end-page: 104
  ident: bib8
  article-title: A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics
  publication-title: Renew Sustain Energy Rev
– volume: 175
  start-page: 1055
  year: 2019
  end-page: 1066
  ident: bib10
  article-title: Development of energy management system based on a rule-based power distribution strategy for hybrid power sources
  publication-title: Energy
– volume: 189
  start-page: 116151
  year: 2019
  ident: bib21
  article-title: An adaptive ecms with driving style recognition for energy optimization of parallel hybrid electric buses
  publication-title: Energy
– year: 2004
  ident: bib30
  article-title: Optimal control theory: an introduction
– volume: 139
  start-page: 151
  year: 2015
  end-page: 162
  ident: bib15
  article-title: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach
  publication-title: Appl Energy
– volume: 147
  start-page: 224
  year: 2015
  end-page: 234
  ident: bib23
  article-title: Adaptive pontryagin’s minimum principle supervisory controller design for the plug-in hybrid gm chevrolet volt
  publication-title: Appl Energy
– volume: 189
  start-page: 116142
  year: 2019
  ident: bib13
  article-title: A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems
  publication-title: Energy
– volume: 35
  start-page: 2134
  year: 2010
  end-page: 2143
  ident: bib14
  article-title: On-line fuzzy energy management for hybrid fuel cell systems
  publication-title: Int J Hydrogen Energy
– volume: 31
  start-page: 1150
  year: 2011
  end-page: 1162
  ident: bib29
  article-title: Variation in cooling load of a moving air-conditioned train compartment under the effects of ambient conditions and body thermal storage
  publication-title: Appl Therm Eng
– start-page: 109596
  year: 2019
  ident: bib7
  article-title: Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: topologies and integrated energy management strategies
  publication-title: Renew Sustain Energy Rev
– year: 2004
  ident: 10.1016/j.etran.2020.100057_bib30
– ident: 10.1016/j.etran.2020.100057_bib4
– start-page: 1
  year: 2019
  ident: 10.1016/j.etran.2020.100057_bib18
  article-title: An efficient optimum energy management strategy using parallel dynamic programming for a hybrid train powered by fuel-cells and batteries
– volume: 139
  start-page: 151
  year: 2015
  ident: 10.1016/j.etran.2020.100057_bib15
  article-title: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.11.020
– volume: 189
  start-page: 116142
  year: 2019
  ident: 10.1016/j.etran.2020.100057_bib13
  article-title: A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116142
– volume: 135
  issue: 5
  year: 2013
  ident: 10.1016/j.etran.2020.100057_bib20
  article-title: Dynamic programming-informed equivalent cost minimization control strategies for hybrid-electric vehicles
  publication-title: J Dyn Syst Meas Contr
– volume: 189
  start-page: 116151
  year: 2019
  ident: 10.1016/j.etran.2020.100057_bib21
  article-title: An adaptive ecms with driving style recognition for energy optimization of parallel hybrid electric buses
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116151
– volume: 35
  start-page: 2134
  issue: 5
  year: 2010
  ident: 10.1016/j.etran.2020.100057_bib14
  article-title: On-line fuzzy energy management for hybrid fuel cell systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.108
– volume: 133
  start-page: 60
  issue: 3
  year: 2011
  ident: 10.1016/j.etran.2020.100057_bib28
  article-title: A comparative analysis of energy management strategies for hybrid electric vehicles
  publication-title: Proc Inst Mech Eng - Part D J Automob Eng
– volume: 11
  start-page: 476
  issue: 3
  year: 2018
  ident: 10.1016/j.etran.2020.100057_bib25
  article-title: Towards optimal power management of hybrid electric vehicles in real-time: a review on methods, challenges, and state-of-the-art solutions
  publication-title: Energies
  doi: 10.3390/en11030476
– volume: 111
  start-page: 1001
  year: 2013
  ident: 10.1016/j.etran.2020.100057_bib27
  article-title: Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.06.056
– ident: 10.1016/j.etran.2020.100057_bib9
– volume: 175
  start-page: 1055
  year: 2019
  ident: 10.1016/j.etran.2020.100057_bib10
  article-title: Development of energy management system based on a rule-based power distribution strategy for hybrid power sources
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.155
– volume: 254
  start-page: 113707
  year: 2019
  ident: 10.1016/j.etran.2020.100057_bib12
  article-title: Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113707
– start-page: 41
  year: 2017
  ident: 10.1016/j.etran.2020.100057_bib3
– volume: 26
  start-page: 100950
  year: 2019
  ident: 10.1016/j.etran.2020.100057_bib11
  article-title: Multiple-grained velocity prediction and energy management strategy for hybrid propulsion systems
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2019.100950
– volume: 147
  start-page: 224
  year: 2015
  ident: 10.1016/j.etran.2020.100057_bib23
  article-title: Adaptive pontryagin’s minimum principle supervisory controller design for the plug-in hybrid gm chevrolet volt
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.021
– start-page: 109596
  year: 2019
  ident: 10.1016/j.etran.2020.100057_bib7
  article-title: Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: topologies and integrated energy management strategies
  publication-title: Renew Sustain Energy Rev
– volume: 236
  start-page: 893
  year: 2019
  ident: 10.1016/j.etran.2020.100057_bib24
  article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.032
– ident: 10.1016/j.etran.2020.100057_bib1
– volume: 228
  start-page: 2061
  year: 2018
  ident: 10.1016/j.etran.2020.100057_bib6
  article-title: Optimization of energy management system for fuel-cell hybrid electric vehicles: issues and recommendations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.07.087
– volume: 48
  start-page: 88
  year: 2015
  ident: 10.1016/j.etran.2020.100057_bib8
  article-title: A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.03.093
– volume: 60
  start-page: 503
  issue: 6
  year: 1954
  ident: 10.1016/j.etran.2020.100057_bib16
  article-title: The theory of dynamic programming
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0002-9904-1954-09848-8
– volume: 250
  start-page: 359
  year: 2014
  ident: 10.1016/j.etran.2020.100057_bib17
  article-title: Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.10.145
– volume: vol. 4
  start-page: 2076
  year: 2002
  ident: 10.1016/j.etran.2020.100057_bib19
  article-title: Equivalent consumption minimization strategy for parallel hybrid powertrains
– volume: 41
  start-page: 21503
  issue: 46
  year: 2016
  ident: 10.1016/j.etran.2020.100057_bib5
  article-title: An energy management strategy to concurrently optimise fuel consumption & pem fuel cell lifetime in a hybrid vehicle
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.157
– volume: 208
  start-page: 655
  year: 2017
  ident: 10.1016/j.etran.2020.100057_bib22
  article-title: Catch energy saving opportunity (ceso), an instantaneous optimal energy management strategy for series hybrid electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.09.089
– volume: 31
  start-page: 1150
  issue: 6–7
  year: 2011
  ident: 10.1016/j.etran.2020.100057_bib29
  article-title: Variation in cooling load of a moving air-conditioned train compartment under the effects of ambient conditions and body thermal storage
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.12.010
SSID ssj0002963885
Score 2.3824337
Snippet A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is developed. The rules of this strategy are initiated by the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100057
SubjectTerms Dynamic programming
Energy management
Fuel cell hybrid trains
Rule-based strategy
Scalability
Title A scalable, causal, adaptive rule-based energy management for fuel cell hybrid railway vehicles learned from results of dynamic programming
URI https://dx.doi.org/10.1016/j.etran.2020.100057
Volume 4
WOSCitedRecordID wos000658425300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2590-1168
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002963885
  issn: 2590-1168
  databaseCode: AIEXJ
  dateStart: 20190801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKlwMcEL9i-ZMP3NJUTpvEzjGCRcsirTgsUm-RE9tsqzRbtU3pPgMvxaMxju0ksKuKPaCqVmXFTur5OjN2v5lB6D1VPIqKQPg8FERvUGKfR0T5U5LnExFKMBmsKTZBz8_ZbJZ8HQx-uViYXUmriu33yeq_ihr6QNg6dPYO4m4nhQ74DEKHFsQO7T8JPvU2sO46IkovX8HrTZPT3-OCrxqe0Loupa-tl_CkifxbthyYhnWoall6-kTfu7zWAV3ems_LH_za28nLhkVnak3A-CY4BTbsdWkoIcLUt3esr6Wzi9b7lW0qdQc7li51pgahYZl0atoooNN6UXeMoYZ2cAZo3sP7e0doqcuWmMnbDcJHO8UXPu-fa0xIxyI06g_2ZcQPAlN0Zyxv6bP6O-zpX_1vhUl4fcM0mFOKxVhu4auO9R3H3dV_JuL-y0C2tEXHiFtkzSSZniQzk9xDRxMaJWyIjtLPJ7Oz9pxvojVcUxm2fXiX_KqhGd54nNsdpJ7Tc_EYPbK7FZwalD1BA1k9RQ97OSyfoZ8pdngbYYO2EXZYwx3WsMEa7rCGAWtYYw1rrGGDNWyxhh3WsMUa1ljDFmv4SmGLNdzD2nP07dPJxYdT31b48AtwnbY-VUpEKhcxySUNIkEFEZwRGcdCCWiYfqmE5EyJJCpUwdSUUkWkToQQBnT6Ag2rq0q-RJjFTBIuEi4VC6ch5SSRrJARBxMjRECP0cQta1bY9Pe6CkuZHZDqMRq1g1Ym-8vhy2Mnr8w6sMYxzQCEhwa-utt9XqMH3S_mDRpu17V8i-4Xu-18s35nEfgbp4XBdg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scalable%2C+causal%2C+adaptive+rule-based+energy+management+for+fuel+cell+hybrid+railway+vehicles+learned+from+results+of+dynamic+programming&rft.jtitle=eTransportation+%28Amsterdam%29&rft.au=Peng%2C+Hujun&rft.au=Li%2C+Jianxiang&rft.au=Thul%2C+Andreas&rft.au=Deng%2C+Kai&rft.date=2020-05-01&rft.issn=2590-1168&rft.eissn=2590-1168&rft.volume=4&rft.spage=100057&rft_id=info:doi/10.1016%2Fj.etran.2020.100057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_etran_2020_100057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1168&client=summon