A scalable, causal, adaptive rule-based energy management for fuel cell hybrid railway vehicles learned from results of dynamic programming
A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is developed. The rules of this strategy are initiated by the results of two-dimensional dynamic programming under different driving conditions and utilize the convexity of the characteristic specific cons...
Saved in:
| Published in: | eTransportation (Amsterdam) Vol. 4; p. 100057 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.05.2020
|
| Subjects: | |
| ISSN: | 2590-1168, 2590-1168 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is developed. The rules of this strategy are initiated by the results of two-dimensional dynamic programming under different driving conditions and utilize the convexity of the characteristic specific consumption curve of the fuel cell system. According to the strategy, the fuel cell power follows the estimated average load power. This average value is updated each time when the train leaves a station by using prior knowledge, which ensures its causality. Furthermore, the power demand due to the gradient slope is excluded while estimating the average value because the gravitational energy is recyclable. In this way, the fuel cell system works more stably without being influenced by the strongly changeable power demand due to the gradient slopes. In order to avoid over-charging of batteries during long hold time, which is often the case for regional railway vehicles, the pre-known driving, holding, and travel time available in railway transportation are used to improve the estimation of the average values. After comparison with the results of dynamic programming, an excellent fuel economy is observed under different driving cycles and weather. More consumption of 0.01% and 0.09% in summer and winter, respectively, compared to dynamic programming, results under a typical driving cycle of regional railway vehicles in Berlin. Because the rules are based on the component characteristics, this strategy can be transferred to other vehicle configurations or driving situations without a loss of effectiveness. In addition to the excellent fuel economy, the lifetime of fuel cell systems benefits from its less dynamic operation.
•Extraction of rules from the results of two-dimensional dynamic programming.•Derivation of formulas utilizing the convexity of specific consumption curves.•Estimate of the average fuel cell power corrected with gradient force excluded.•Stable operation of the fuel cell system with high fuel economy.•Scalability of the rule-based strategy due to its model-based characteristics. |
|---|---|
| AbstractList | A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is developed. The rules of this strategy are initiated by the results of two-dimensional dynamic programming under different driving conditions and utilize the convexity of the characteristic specific consumption curve of the fuel cell system. According to the strategy, the fuel cell power follows the estimated average load power. This average value is updated each time when the train leaves a station by using prior knowledge, which ensures its causality. Furthermore, the power demand due to the gradient slope is excluded while estimating the average value because the gravitational energy is recyclable. In this way, the fuel cell system works more stably without being influenced by the strongly changeable power demand due to the gradient slopes. In order to avoid over-charging of batteries during long hold time, which is often the case for regional railway vehicles, the pre-known driving, holding, and travel time available in railway transportation are used to improve the estimation of the average values. After comparison with the results of dynamic programming, an excellent fuel economy is observed under different driving cycles and weather. More consumption of 0.01% and 0.09% in summer and winter, respectively, compared to dynamic programming, results under a typical driving cycle of regional railway vehicles in Berlin. Because the rules are based on the component characteristics, this strategy can be transferred to other vehicle configurations or driving situations without a loss of effectiveness. In addition to the excellent fuel economy, the lifetime of fuel cell systems benefits from its less dynamic operation.
•Extraction of rules from the results of two-dimensional dynamic programming.•Derivation of formulas utilizing the convexity of specific consumption curves.•Estimate of the average fuel cell power corrected with gradient force excluded.•Stable operation of the fuel cell system with high fuel economy.•Scalability of the rule-based strategy due to its model-based characteristics. |
| ArticleNumber | 100057 |
| Author | Löwenstein, Lars Hameyer, Kay Deng, Kai Ünlübayir, Cem Peng, Hujun Thul, Andreas Li, Jianxiang |
| Author_xml | – sequence: 1 givenname: Hujun surname: Peng fullname: Peng, Hujun email: hujun.peng@iem.rwth-aachen.de organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany – sequence: 2 givenname: Jianxiang surname: Li fullname: Li, Jianxiang organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany – sequence: 3 givenname: Andreas surname: Thul fullname: Thul, Andreas organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany – sequence: 4 givenname: Kai surname: Deng fullname: Deng, Kai organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany – sequence: 5 givenname: Cem surname: Ünlübayir fullname: Ünlübayir, Cem organization: Chair for Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Germany – sequence: 6 givenname: Lars surname: Löwenstein fullname: Löwenstein, Lars organization: Siemens Mobility GmbH, Vienna, Austria – sequence: 7 givenname: Kay surname: Hameyer fullname: Hameyer, Kay organization: Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany |
| BookMark | eNqFkM1u2zAMgIWiBZq1fYJe-AB1Ksf132GHINjaAQF62c4CLVGpAlkOKCWDn2EvPbvZYdihgwCKIPgR5PdJXIYhkBD3uVzmMq8e90tKjGG5kqu5ImVZX4jFqmxlludVc_lXfi3uYtxPLau2KpqmXIhfa4gaPXaeHkDjMaJ_ADR4SO5EwEdPWYeRDFAg3o3QY8Ad9RQS2IHBHsmDJu_hbezYGWB0_ieOcKI3pz1F8IQcJt7y0ANTPPoUYbBgxoC903DgYcfY9y7sbsWVRR_p7s9_I358_fJ985JtX5-_bdbbTBeySFltrSltZyrZUZ2XpjbSYCOpqow1U2jmZ1vZNda0pba6sUVdW0lPjayf8rq4Ee15ruYhRiartEuY3BDSvL7KpZrFqr16F6tmseosdmKLf9gDux55_A_1-UzRdNbJEauoHQVNxjHppMzgPuR_A6i7mQE |
| CitedBy_id | crossref_primary_10_3390_en16083325 crossref_primary_10_1016_j_enconman_2023_117362 crossref_primary_10_1016_j_fuel_2021_120940 crossref_primary_10_1016_j_rser_2023_113470 crossref_primary_10_1016_j_enconman_2024_118977 crossref_primary_10_1016_j_enconman_2025_119629 crossref_primary_10_1109_TITS_2023_3309052 crossref_primary_10_1016_j_seta_2023_103379 crossref_primary_10_1016_j_enconman_2022_115735 crossref_primary_10_3390_en14238151 crossref_primary_10_1016_j_apenergy_2024_125138 crossref_primary_10_3390_en14185920 crossref_primary_10_1016_j_ijhydene_2024_12_150 crossref_primary_10_1016_j_fuel_2024_131247 crossref_primary_10_1016_j_apenergy_2021_118036 crossref_primary_10_1016_j_est_2022_105038 crossref_primary_10_1016_j_ast_2024_109266 crossref_primary_10_1109_TTE_2024_3510057 crossref_primary_10_3390_s23208571 crossref_primary_10_1016_j_est_2024_111797 crossref_primary_10_1016_j_apenergy_2024_124078 crossref_primary_10_1016_j_enconman_2020_113568 crossref_primary_10_1016_j_enconman_2021_113871 crossref_primary_10_1016_j_etran_2020_100094 crossref_primary_10_1016_j_jrtpm_2022_100338 crossref_primary_10_1109_ACCESS_2022_3208365 crossref_primary_10_1016_j_etran_2024_100332 crossref_primary_10_1016_j_ijhydene_2021_12_121 crossref_primary_10_3390_vehicles4040072 crossref_primary_10_1016_j_energy_2025_136730 crossref_primary_10_1016_j_enconman_2020_113734 crossref_primary_10_1016_j_etran_2021_100120 crossref_primary_10_1109_TTE_2024_3399054 crossref_primary_10_1016_j_applthermaleng_2024_124013 crossref_primary_10_1039_D1RA06395B crossref_primary_10_3389_fenrg_2022_888787 crossref_primary_10_1016_j_applthermaleng_2022_119509 crossref_primary_10_1080_15567036_2021_1999347 crossref_primary_10_1016_j_apenergy_2020_116152 crossref_primary_10_3390_en18082112 crossref_primary_10_1016_j_rser_2023_114154 crossref_primary_10_1177_09544097221128765 crossref_primary_10_1016_j_ijepes_2022_108149 crossref_primary_10_1016_j_enconman_2023_117973 crossref_primary_10_3390_en17071586 crossref_primary_10_3390_math12121849 crossref_primary_10_1016_j_apenergy_2025_126257 crossref_primary_10_1016_j_enconman_2020_113788 crossref_primary_10_1016_j_energy_2022_125095 crossref_primary_10_1016_j_est_2024_114722 crossref_primary_10_1016_j_energy_2020_119607 crossref_primary_10_1016_j_fuel_2021_120252 crossref_primary_10_1016_j_ijhydene_2023_07_304 crossref_primary_10_1016_j_enconman_2021_114222 crossref_primary_10_1016_j_ijhydene_2025_151621 crossref_primary_10_1016_j_enconman_2021_115030 |
| Cites_doi | 10.1016/j.apenergy.2014.11.020 10.1016/j.energy.2019.116142 10.1016/j.energy.2019.116151 10.1016/j.ijhydene.2009.11.108 10.3390/en11030476 10.1016/j.apenergy.2013.06.056 10.1016/j.energy.2019.03.155 10.1016/j.apenergy.2019.113707 10.1016/j.est.2019.100950 10.1016/j.apenergy.2015.01.021 10.1016/j.apenergy.2018.12.032 10.1016/j.apenergy.2018.07.087 10.1016/j.rser.2015.03.093 10.1090/S0002-9904-1954-09848-8 10.1016/j.jpowsour.2013.10.145 10.1016/j.ijhydene.2016.08.157 10.1016/j.apenergy.2017.09.089 10.1016/j.applthermaleng.2010.12.010 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.etran.2020.100057 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2590-1168 |
| ExternalDocumentID | 10_1016_j_etran_2020_100057 S259011682030014X |
| GrantInformation_xml | – fundername: German Federal Ministry for Economic Affairs and Energy (BMWi) funderid: https://doi.org/10.13039/501100002765 – fundername: National Innovation Program Hydrogen and Fuel Cell Technology (NIP) grantid: 03B10502B; 03B10502B2 |
| GroupedDBID | AABXZ AAEDW AAHCO AAIAV AAKOC AALRI AAXUO ACDAQ ACRLP AEBSH AEZYN AFKWA AFRZQ AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BJAXD BKOJK EBS EFJIC EFLBG EJD FDB FYGXN KOM M41 M~E ROL SPC SPCBC SSM SSR SST T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS |
| ID | FETCH-LOGICAL-c303t-7ffd5fbd60be715d7d0da80e66dfd66d8d8d8f90b8fd95cfc8f377f0e48074173 |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658425300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2590-1168 |
| IngestDate | Tue Nov 18 22:10:05 EST 2025 Thu Nov 20 00:48:09 EST 2025 Fri Feb 23 02:47:40 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Fuel cell hybrid trains Rule-based strategy Dynamic programming Scalability Energy management |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-7ffd5fbd60be715d7d0da80e66dfd66d8d8d8f90b8fd95cfc8f377f0e48074173 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_etran_2020_100057 crossref_primary_10_1016_j_etran_2020_100057 elsevier_sciencedirect_doi_10_1016_j_etran_2020_100057 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 2020-05-00 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | eTransportation (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Brennstoffzellen (bib4) Zhang, Yan, Du (bib8) 2015; 48 Tran, Vafaeipour, El Baghdadi, Barrero, van Mierlo, Hegazy (bib7) 2019 Paganelli, Delprat, Guerra, Rimaux, Santin (bib19) 2002; vol. 4 Jürgen (bib3) 2017 Xie, Hu, Xin, Brighton (bib24) 2019; 236 Kirk (bib30) 2004 Wang, Sun, Li, Yang, Chen (bib13) 2019; 189 Serrao, Onori, Rizzoni (bib28) 2011; 133 Fletcher, Thring, Watkinson (bib5) 2016; 41 Hu, Murgovski, Johannesson, Egardt (bib27) 2013; 111 Wang, Sun, Chen (bib12) 2019; 254 Rezaei, Burl, Solouk, Zhou, Rezaei, Shahbakhti (bib22) 2017; 208 Wang, Li, Wang, Sun (bib11) 2019; 26 Sulaiman, Hannan, Mohamed, Ker, Majlan, Wan Daud (bib6) 2018; 228 Song, Hofmann, Li, Han, Ouyang (bib15) 2015; 139 Onori, Tribioli (bib23) 2015; 147 I. Pielecha, W. Cieślik, A. Szałek, The use of electric drive in urban driving conditions using a hydrogen powered vehicle-toyota mirai, Combustion Engines 57. bib26 Caux, Hankache, Fadel, Hissel (bib14) 2010; 35 Ansarey, Panahi, Ziarati, Mahjoob (bib17) 2014; 250 Peng, Li, Deng, Thul, Li, Löwenstein, Sauer, Hameyer (bib18) 2019 Railway electrification: Germany only average, https://www.allianz-pro-schiene.de/en/press-releases/˙2012-19-electric-transport-federal-government-still-has-homework-/ to-do/, accessed December 18, 2019. Bellman (bib16) 1954; 60 Pei, Leamy (bib20) 2013; 135 Liu, Deng, Huang, Liu (bib29) 2011; 31 Tian, Cai, Sun, Zhu, Xu (bib21) 2019; 189 bib2 Wang, Sun, Chen (bib10) 2019; 175 Ali, Söffker (bib25) 2018; 11 Wang (10.1016/j.etran.2020.100057_bib13) 2019; 189 Serrao (10.1016/j.etran.2020.100057_bib28) 2011; 133 Fletcher (10.1016/j.etran.2020.100057_bib5) 2016; 41 Jürgen (10.1016/j.etran.2020.100057_bib3) 2017 Caux (10.1016/j.etran.2020.100057_bib14) 2010; 35 Brennstoffzellen (10.1016/j.etran.2020.100057_bib4) Liu (10.1016/j.etran.2020.100057_bib29) 2011; 31 Ali (10.1016/j.etran.2020.100057_bib25) 2018; 11 Xie (10.1016/j.etran.2020.100057_bib24) 2019; 236 Peng (10.1016/j.etran.2020.100057_bib18) 2019 Wang (10.1016/j.etran.2020.100057_bib12) 2019; 254 Hu (10.1016/j.etran.2020.100057_bib27) 2013; 111 Rezaei (10.1016/j.etran.2020.100057_bib22) 2017; 208 Sulaiman (10.1016/j.etran.2020.100057_bib6) 2018; 228 Pei (10.1016/j.etran.2020.100057_bib20) 2013; 135 Kirk (10.1016/j.etran.2020.100057_bib30) 2004 10.1016/j.etran.2020.100057_bib9 Wang (10.1016/j.etran.2020.100057_bib11) 2019; 26 10.1016/j.etran.2020.100057_bib1 Tian (10.1016/j.etran.2020.100057_bib21) 2019; 189 Paganelli (10.1016/j.etran.2020.100057_bib19) 2002; vol. 4 Tran (10.1016/j.etran.2020.100057_bib7) 2019 Ansarey (10.1016/j.etran.2020.100057_bib17) 2014; 250 Song (10.1016/j.etran.2020.100057_bib15) 2015; 139 Onori (10.1016/j.etran.2020.100057_bib23) 2015; 147 Bellman (10.1016/j.etran.2020.100057_bib16) 1954; 60 Wang (10.1016/j.etran.2020.100057_bib10) 2019; 175 Zhang (10.1016/j.etran.2020.100057_bib8) 2015; 48 |
| References_xml | – reference: Railway electrification: Germany only average, https://www.allianz-pro-schiene.de/en/press-releases/˙2012-19-electric-transport-federal-government-still-has-homework-/ to-do/, accessed December 18, 2019. – volume: 208 start-page: 655 year: 2017 end-page: 665 ident: bib22 article-title: Catch energy saving opportunity (ceso), an instantaneous optimal energy management strategy for series hybrid electric vehicles publication-title: Appl Energy – volume: 236 start-page: 893 year: 2019 end-page: 905 ident: bib24 article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus publication-title: Appl Energy – volume: 41 start-page: 21503 year: 2016 end-page: 21515 ident: bib5 article-title: An energy management strategy to concurrently optimise fuel consumption & pem fuel cell lifetime in a hybrid vehicle publication-title: Int J Hydrogen Energy – volume: 111 start-page: 1001 year: 2013 end-page: 1009 ident: bib27 article-title: Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes publication-title: Appl Energy – volume: 254 start-page: 113707 year: 2019 ident: bib12 article-title: Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine publication-title: Appl Energy – start-page: 41 year: 2017 ident: bib3 article-title: Auf dem weg zur null-emmision, eisenbahn-magazin – volume: 228 start-page: 2061 year: 2018 end-page: 2079 ident: bib6 article-title: Optimization of energy management system for fuel-cell hybrid electric vehicles: issues and recommendations publication-title: Appl Energy – volume: 133 start-page: 60 year: 2011 ident: bib28 article-title: A comparative analysis of energy management strategies for hybrid electric vehicles publication-title: Proc Inst Mech Eng - Part D J Automob Eng – volume: vol. 4 start-page: 2076 year: 2002 end-page: 2081 ident: bib19 article-title: Equivalent consumption minimization strategy for parallel hybrid powertrains publication-title: Vehicular technology conference. IEEE 55th vehicular technology conference. VTC spring 2002 (cat. No. 02CH37367) – volume: 250 start-page: 359 year: 2014 end-page: 371 ident: bib17 article-title: Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming publication-title: J Power Sources – ident: bib2 article-title: Jr east to trial fuel cell multiple-unit – volume: 60 start-page: 503 year: 1954 end-page: 515 ident: bib16 article-title: The theory of dynamic programming publication-title: Bull Am Math Soc – ident: bib26 article-title: Coradia ilint: alstoms emissionsfreier zug – volume: 26 start-page: 100950 year: 2019 ident: bib11 article-title: Multiple-grained velocity prediction and energy management strategy for hybrid propulsion systems publication-title: Journal of Energy Storage – reference: I. Pielecha, W. Cieślik, A. Szałek, The use of electric drive in urban driving conditions using a hydrogen powered vehicle-toyota mirai, Combustion Engines 57. – volume: 135 year: 2013 ident: bib20 article-title: Dynamic programming-informed equivalent cost minimization control strategies for hybrid-electric vehicles publication-title: J Dyn Syst Meas Contr – start-page: 1 year: 2019 end-page: 7 ident: bib18 article-title: An efficient optimum energy management strategy using parallel dynamic programming for a hybrid train powered by fuel-cells and batteries publication-title: 2019 IEEE vehicle power and propulsion conference (VPPC) – ident: bib4 article-title: Siemens beauftragt ballard power – volume: 11 start-page: 476 year: 2018 ident: bib25 article-title: Towards optimal power management of hybrid electric vehicles in real-time: a review on methods, challenges, and state-of-the-art solutions publication-title: Energies – volume: 48 start-page: 88 year: 2015 end-page: 104 ident: bib8 article-title: A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics publication-title: Renew Sustain Energy Rev – volume: 175 start-page: 1055 year: 2019 end-page: 1066 ident: bib10 article-title: Development of energy management system based on a rule-based power distribution strategy for hybrid power sources publication-title: Energy – volume: 189 start-page: 116151 year: 2019 ident: bib21 article-title: An adaptive ecms with driving style recognition for energy optimization of parallel hybrid electric buses publication-title: Energy – year: 2004 ident: bib30 article-title: Optimal control theory: an introduction – volume: 139 start-page: 151 year: 2015 end-page: 162 ident: bib15 article-title: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach publication-title: Appl Energy – volume: 147 start-page: 224 year: 2015 end-page: 234 ident: bib23 article-title: Adaptive pontryagin’s minimum principle supervisory controller design for the plug-in hybrid gm chevrolet volt publication-title: Appl Energy – volume: 189 start-page: 116142 year: 2019 ident: bib13 article-title: A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems publication-title: Energy – volume: 35 start-page: 2134 year: 2010 end-page: 2143 ident: bib14 article-title: On-line fuzzy energy management for hybrid fuel cell systems publication-title: Int J Hydrogen Energy – volume: 31 start-page: 1150 year: 2011 end-page: 1162 ident: bib29 article-title: Variation in cooling load of a moving air-conditioned train compartment under the effects of ambient conditions and body thermal storage publication-title: Appl Therm Eng – start-page: 109596 year: 2019 ident: bib7 article-title: Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: topologies and integrated energy management strategies publication-title: Renew Sustain Energy Rev – year: 2004 ident: 10.1016/j.etran.2020.100057_bib30 – ident: 10.1016/j.etran.2020.100057_bib4 – start-page: 1 year: 2019 ident: 10.1016/j.etran.2020.100057_bib18 article-title: An efficient optimum energy management strategy using parallel dynamic programming for a hybrid train powered by fuel-cells and batteries – volume: 139 start-page: 151 year: 2015 ident: 10.1016/j.etran.2020.100057_bib15 article-title: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.11.020 – volume: 189 start-page: 116142 year: 2019 ident: 10.1016/j.etran.2020.100057_bib13 article-title: A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems publication-title: Energy doi: 10.1016/j.energy.2019.116142 – volume: 135 issue: 5 year: 2013 ident: 10.1016/j.etran.2020.100057_bib20 article-title: Dynamic programming-informed equivalent cost minimization control strategies for hybrid-electric vehicles publication-title: J Dyn Syst Meas Contr – volume: 189 start-page: 116151 year: 2019 ident: 10.1016/j.etran.2020.100057_bib21 article-title: An adaptive ecms with driving style recognition for energy optimization of parallel hybrid electric buses publication-title: Energy doi: 10.1016/j.energy.2019.116151 – volume: 35 start-page: 2134 issue: 5 year: 2010 ident: 10.1016/j.etran.2020.100057_bib14 article-title: On-line fuzzy energy management for hybrid fuel cell systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.108 – volume: 133 start-page: 60 issue: 3 year: 2011 ident: 10.1016/j.etran.2020.100057_bib28 article-title: A comparative analysis of energy management strategies for hybrid electric vehicles publication-title: Proc Inst Mech Eng - Part D J Automob Eng – volume: 11 start-page: 476 issue: 3 year: 2018 ident: 10.1016/j.etran.2020.100057_bib25 article-title: Towards optimal power management of hybrid electric vehicles in real-time: a review on methods, challenges, and state-of-the-art solutions publication-title: Energies doi: 10.3390/en11030476 – volume: 111 start-page: 1001 year: 2013 ident: 10.1016/j.etran.2020.100057_bib27 article-title: Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.06.056 – ident: 10.1016/j.etran.2020.100057_bib9 – volume: 175 start-page: 1055 year: 2019 ident: 10.1016/j.etran.2020.100057_bib10 article-title: Development of energy management system based on a rule-based power distribution strategy for hybrid power sources publication-title: Energy doi: 10.1016/j.energy.2019.03.155 – volume: 254 start-page: 113707 year: 2019 ident: 10.1016/j.etran.2020.100057_bib12 article-title: Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113707 – start-page: 41 year: 2017 ident: 10.1016/j.etran.2020.100057_bib3 – volume: 26 start-page: 100950 year: 2019 ident: 10.1016/j.etran.2020.100057_bib11 article-title: Multiple-grained velocity prediction and energy management strategy for hybrid propulsion systems publication-title: Journal of Energy Storage doi: 10.1016/j.est.2019.100950 – volume: 147 start-page: 224 year: 2015 ident: 10.1016/j.etran.2020.100057_bib23 article-title: Adaptive pontryagin’s minimum principle supervisory controller design for the plug-in hybrid gm chevrolet volt publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.021 – start-page: 109596 year: 2019 ident: 10.1016/j.etran.2020.100057_bib7 article-title: Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: topologies and integrated energy management strategies publication-title: Renew Sustain Energy Rev – volume: 236 start-page: 893 year: 2019 ident: 10.1016/j.etran.2020.100057_bib24 article-title: Pontryagin’s minimum principle based model predictive control of energy management for a plug-in hybrid electric bus publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.12.032 – ident: 10.1016/j.etran.2020.100057_bib1 – volume: 228 start-page: 2061 year: 2018 ident: 10.1016/j.etran.2020.100057_bib6 article-title: Optimization of energy management system for fuel-cell hybrid electric vehicles: issues and recommendations publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.07.087 – volume: 48 start-page: 88 year: 2015 ident: 10.1016/j.etran.2020.100057_bib8 article-title: A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.03.093 – volume: 60 start-page: 503 issue: 6 year: 1954 ident: 10.1016/j.etran.2020.100057_bib16 article-title: The theory of dynamic programming publication-title: Bull Am Math Soc doi: 10.1090/S0002-9904-1954-09848-8 – volume: 250 start-page: 359 year: 2014 ident: 10.1016/j.etran.2020.100057_bib17 article-title: Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.10.145 – volume: vol. 4 start-page: 2076 year: 2002 ident: 10.1016/j.etran.2020.100057_bib19 article-title: Equivalent consumption minimization strategy for parallel hybrid powertrains – volume: 41 start-page: 21503 issue: 46 year: 2016 ident: 10.1016/j.etran.2020.100057_bib5 article-title: An energy management strategy to concurrently optimise fuel consumption & pem fuel cell lifetime in a hybrid vehicle publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.157 – volume: 208 start-page: 655 year: 2017 ident: 10.1016/j.etran.2020.100057_bib22 article-title: Catch energy saving opportunity (ceso), an instantaneous optimal energy management strategy for series hybrid electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.09.089 – volume: 31 start-page: 1150 issue: 6–7 year: 2011 ident: 10.1016/j.etran.2020.100057_bib29 article-title: Variation in cooling load of a moving air-conditioned train compartment under the effects of ambient conditions and body thermal storage publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2010.12.010 |
| SSID | ssj0002963885 |
| Score | 2.3824337 |
| Snippet | A scalable, causal, adaptive rule-based energy management strategy for fuel cell hybrid trains is developed. The rules of this strategy are initiated by the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100057 |
| SubjectTerms | Dynamic programming Energy management Fuel cell hybrid trains Rule-based strategy Scalability |
| Title | A scalable, causal, adaptive rule-based energy management for fuel cell hybrid railway vehicles learned from results of dynamic programming |
| URI | https://dx.doi.org/10.1016/j.etran.2020.100057 |
| Volume | 4 |
| WOSCitedRecordID | wos000658425300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2590-1168 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002963885 issn: 2590-1168 databaseCode: AIEXJ dateStart: 20190801 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKlwMcEL9i-ZMP3NJUTpvEzjGCRcsirTgsUm-RE9tsqzRbtU3pPgMvxaMxju0ksKuKPaCqVmXFTur5OjN2v5lB6D1VPIqKQPg8FERvUGKfR0T5U5LnExFKMBmsKTZBz8_ZbJZ8HQx-uViYXUmriu33yeq_ihr6QNg6dPYO4m4nhQ74DEKHFsQO7T8JPvU2sO46IkovX8HrTZPT3-OCrxqe0Loupa-tl_CkifxbthyYhnWoall6-kTfu7zWAV3ems_LH_za28nLhkVnak3A-CY4BTbsdWkoIcLUt3esr6Wzi9b7lW0qdQc7li51pgahYZl0atoooNN6UXeMoYZ2cAZo3sP7e0doqcuWmMnbDcJHO8UXPu-fa0xIxyI06g_2ZcQPAlN0Zyxv6bP6O-zpX_1vhUl4fcM0mFOKxVhu4auO9R3H3dV_JuL-y0C2tEXHiFtkzSSZniQzk9xDRxMaJWyIjtLPJ7Oz9pxvojVcUxm2fXiX_KqhGd54nNsdpJ7Tc_EYPbK7FZwalD1BA1k9RQ97OSyfoZ8pdngbYYO2EXZYwx3WsMEa7rCGAWtYYw1rrGGDNWyxhh3WsMUa1ljDFmv4SmGLNdzD2nP07dPJxYdT31b48AtwnbY-VUpEKhcxySUNIkEFEZwRGcdCCWiYfqmE5EyJJCpUwdSUUkWkToQQBnT6Ag2rq0q-RJjFTBIuEi4VC6ch5SSRrJARBxMjRECP0cQta1bY9Pe6CkuZHZDqMRq1g1Ym-8vhy2Mnr8w6sMYxzQCEhwa-utt9XqMH3S_mDRpu17V8i-4Xu-18s35nEfgbp4XBdg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scalable%2C+causal%2C+adaptive+rule-based+energy+management+for+fuel+cell+hybrid+railway+vehicles+learned+from+results+of+dynamic+programming&rft.jtitle=eTransportation+%28Amsterdam%29&rft.au=Peng%2C+Hujun&rft.au=Li%2C+Jianxiang&rft.au=Thul%2C+Andreas&rft.au=Deng%2C+Kai&rft.date=2020-05-01&rft.issn=2590-1168&rft.eissn=2590-1168&rft.volume=4&rft.spage=100057&rft_id=info:doi/10.1016%2Fj.etran.2020.100057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_etran_2020_100057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1168&client=summon |