Q-learning guided algorithms for bi-criteria minimization of total flow time and makespan in no-wait permutation flowshops

Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic methods in the context of production scheduling. Q-learning is a prominent reinforcement learning in which its utilization aims to direct th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Swarm and evolutionary computation Ročník 89; s. 101617
Hlavní autoři: Yüksel, Damla, Kandiller, Levent, Taşgetiren, Mehmet Fatih
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2024
Témata:
ISSN:2210-6502
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic methods in the context of production scheduling. Q-learning is a prominent reinforcement learning in which its utilization aims to direct the selection of actions, thus preventing the necessity for a random exploration in the iterative process of the metaheuristics. In this study, we provide Q-learning guided algorithms for the Bi-Criteria No-Wait Flowshop Scheduling Problem (NWFSP). The problem is treated as a bi-criteria combinatorial optimization problem where total flow time and makespan are optimized simultaneously. Firstly, a deterministic mixed-integer linear programming (MILP) model is provided. Then, Q-learning guided algorithms are developed: Bi-Criteria Iterated Greedy Algorithm with Q-Learning (BC-IGQL). Bi-Criteria Block Insertion Heuristic Algorithm with Q-Learning (BC-BIHQL). Moreover, the performance of the proposed Q-learning guided algorithms is compared over a collection of Bi-Criteria Genetic Local Search Algorithms (BC-GLS), Bi-Criteria Iterated Greedy Algorithm (BC-IG), Bi-Criteria Iterated Greedy Algorithm with a Local Search (BC-IGALL) and Bi-Criteria Variable Block Insertion Heuristic Algorithm (BC-VBIH). The complete computational experiment, performed on 480 problem instances of Vallada et al. (2015), which is known as the VRF benchmark set, indicates that the BC-BIHQL and the BC-IGQL algorithms outperform the BC-GLS, BC-IG, BC-IGALL, and BC-VBIH algorithms in comparative performance metrics. More specifically, the proposed BC-BIHQL and BC-IGQL algorithms can yield more non-dominated bi-criteria solutions with the most substantial competitiveness than the remaining algorithms. At the same time, both are competitive with each other on the benchmark problems. Moreover, the BC-IGQL algorithm dominates almost 97% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets. Similarly, The BC-BIHQL algorithm dominates almost 98% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets, respectively. This means that, among all the features that have been compared, the Q-learning-guided algorithms demonstrate the highest level of competitiveness. The outcomes of this study encourage us to discover many more bi-criteria NWFSPs to reveal the trade-off between other conflicting objectives, such as makespan & the number of early jobs, to overcome various industries' problems.
AbstractList Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic methods in the context of production scheduling. Q-learning is a prominent reinforcement learning in which its utilization aims to direct the selection of actions, thus preventing the necessity for a random exploration in the iterative process of the metaheuristics. In this study, we provide Q-learning guided algorithms for the Bi-Criteria No-Wait Flowshop Scheduling Problem (NWFSP). The problem is treated as a bi-criteria combinatorial optimization problem where total flow time and makespan are optimized simultaneously. Firstly, a deterministic mixed-integer linear programming (MILP) model is provided. Then, Q-learning guided algorithms are developed: Bi-Criteria Iterated Greedy Algorithm with Q-Learning (BC-IGQL). Bi-Criteria Block Insertion Heuristic Algorithm with Q-Learning (BC-BIHQL). Moreover, the performance of the proposed Q-learning guided algorithms is compared over a collection of Bi-Criteria Genetic Local Search Algorithms (BC-GLS), Bi-Criteria Iterated Greedy Algorithm (BC-IG), Bi-Criteria Iterated Greedy Algorithm with a Local Search (BC-IGALL) and Bi-Criteria Variable Block Insertion Heuristic Algorithm (BC-VBIH). The complete computational experiment, performed on 480 problem instances of Vallada et al. (2015), which is known as the VRF benchmark set, indicates that the BC-BIHQL and the BC-IGQL algorithms outperform the BC-GLS, BC-IG, BC-IGALL, and BC-VBIH algorithms in comparative performance metrics. More specifically, the proposed BC-BIHQL and BC-IGQL algorithms can yield more non-dominated bi-criteria solutions with the most substantial competitiveness than the remaining algorithms. At the same time, both are competitive with each other on the benchmark problems. Moreover, the BC-IGQL algorithm dominates almost 97% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets. Similarly, The BC-BIHQL algorithm dominates almost 98% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets, respectively. This means that, among all the features that have been compared, the Q-learning-guided algorithms demonstrate the highest level of competitiveness. The outcomes of this study encourage us to discover many more bi-criteria NWFSPs to reveal the trade-off between other conflicting objectives, such as makespan & the number of early jobs, to overcome various industries' problems.
ArticleNumber 101617
Author Taşgetiren, Mehmet Fatih
Yüksel, Damla
Kandiller, Levent
Author_xml – sequence: 1
  givenname: Damla
  orcidid: 0000-0003-4630-3325
  surname: Yüksel
  fullname: Yüksel, Damla
  email: damla.yuksel@stu.yasar.edu.tr
  organization: Department of Industrial Engineering, Yasar University, Bornova, 35100, Izmir, Turkey
– sequence: 2
  givenname: Levent
  surname: Kandiller
  fullname: Kandiller, Levent
  organization: Department of Industrial Engineering, Yasar University, Bornova, 35100, Izmir, Turkey
– sequence: 3
  givenname: Mehmet Fatih
  surname: Taşgetiren
  fullname: Taşgetiren, Mehmet Fatih
  organization: Department of Industrial Engineering, Baskent University, TR-06790, Ankara, Turkey
BookMark eNqFkM1OwzAMgHMYEmPsCbjkBTry02bbgQOa-JMmISQ4R2nqbh5tMiXZJvb0dCsnDuCLZcufZX9XZOC8A0JuOJtwxtXtZhIPsPcTwUR-7vDpgAyF4CxTBROXZBzjhnWhmCiK-ZAc37IGTHDoVnS1wwoqapqVD5jWbaS1D7TEzHYlBDS0RYctHk1C76ivafLJNLRu_IEmbIEaV9HWfELcGkfRUeezg8FEtxDaXeqx03Rc-228Jhe1aSKMf_KIfDw-vC-es-Xr08vifplZyWTKprVlc26hu7eohFTcqjKf5VNe1XNQtZBWcFnOWKlKWag8Z8pObWG4AakKa4UckXm_1wYfY4BaW-xvScFgoznTJ1N6o8_u9Mmd7t11rPzFbgO2Jnz9Q931FHRv7RGCjhbBWagwgE268vgn_w2PvpBO
CitedBy_id crossref_primary_10_1002_cpe_70272
crossref_primary_10_1007_s10462_025_11266_y
crossref_primary_10_1016_j_asoc_2025_113815
crossref_primary_10_3390_systems13080659
crossref_primary_10_1007_s11227_025_07234_6
crossref_primary_10_23919_CSMS_2024_0040
crossref_primary_10_1016_j_eswa_2025_129512
crossref_primary_10_1016_j_compeleceng_2024_109780
crossref_primary_10_1007_s10696_025_09611_y
Cites_doi 10.1016/j.ejor.2005.12.009
10.1016/j.cor.2006.12.030
10.1080/01605682.2022.2039569
10.1007/s00170-013-5376-0
10.1080/00207543.2021.1887533
10.1016/j.ejor.2014.07.033
10.1007/s00170-013-4924-y
10.1016/j.jfranklin.2007.12.003
10.1007/s10479-015-2034-y
10.1109/TCYB.2022.3192112
10.1080/00207543.2022.2031331
10.1007/s10951-013-0351-z
10.1007/978-3-662-44874-8_4
10.1109/TASE.2022.3212786
10.1016/S0167-5060(08)70356-X
10.1016/j.swevo.2023.101233
10.1613/jair.301
10.1007/s00170-006-0906-7
10.1016/j.swevo.2023.101358
10.1287/opre.8.2.219
10.1016/j.cor.2011.08.022
10.1016/j.swevo.2023.101399
10.1016/S0377-2217(02)00646-X
10.1016/j.ejor.2004.08.038
10.1007/s00170-014-6177-9
10.1016/j.cor.2008.10.008
10.3390/a9040071
10.3390/pr10040760
10.1007/s00500-008-0350-8
10.1080/00207543.2019.1630777
10.1016/j.swevo.2023.101414
10.1016/j.ejor.2018.08.048
10.1016/j.cie.2020.106778
10.1145/62.65
10.1016/j.promfg.2020.01.347
10.1016/j.cie.2020.106431
10.1080/00207543.2014.883472
10.1016/j.swevo.2023.101338
10.1016/j.cie.2020.107082
10.3390/a12050100
10.1287/opre.20.3.689
10.1080/00207543.2010.543937
10.1016/j.swevo.2023.101387
10.1080/00207543.2022.2070786
10.1016/j.swevo.2023.101335
10.1016/j.eswa.2022.117796
10.1016/j.jmsy.2023.02.002
10.1016/j.swevo.2023.101398
10.1016/j.asoc.2023.110714
10.1016/j.cor.2021.105616
10.1016/j.ejor.2022.03.054
10.1016/j.cor.2016.12.021
10.1016/j.ejor.2017.11.070
10.1109/TSMC.2022.3219380
10.1016/j.jmsy.2011.08.002
10.1016/j.rcim.2022.102412
10.1007/s00170-013-4836-x
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2024.101617
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2024_101617
S221065022400155X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-7fc091ce2555d2361c6b48471df9e6f23c213b80b6b3564406c7c5a1ae365cc23
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001255634500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Sat Nov 29 05:45:03 EST 2025
Tue Nov 18 22:41:13 EST 2025
Sat Jul 20 16:35:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Total flow time
Bi-criteria heuristic optimization
Bi-criteria scheduling problems
Makespan
No-wait flowshop scheduling problem
Mixed-integer linear programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-7fc091ce2555d2361c6b48471df9e6f23c213b80b6b3564406c7c5a1ae365cc23
ORCID 0000-0003-4630-3325
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2024_101617
crossref_primary_10_1016_j_swevo_2024_101617
elsevier_sciencedirect_doi_10_1016_j_swevo_2024_101617
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tasgetiren, Pan, Kizilay, Gao (bib0077) 2016; 9
Khalili, Tavakkoli-Moghaddam (bib0036) 2012; 31
Kim, Lee (bib0037) 2023; 68
Eiben, Smith (bib0019) 2015
Allahverdi, Aydilek, Aydilek (bib0005) 2018; 269
Naderi, Aminnayeri, Piri, Ha'iri Yazdi (bib0053) 2012; 50
Subramanian, Battarra, Potts (bib0071) 2014; 52
Ren, Gao, Fu, Sang, Li, Luo (bib0066) 2023
Kizilay, Tasgetiren, Pan, Gao (bib0040) 2019; 12
González, Vela (bib0023) 2015; 37
Bao, Pan, Ruiz, Gao (bib0009) 2023; 83
Li, Mitchell, Nault (bib0046) 2014
Tasgetiren, Kizilay, Kandiller (bib0076) 2024; 9
Kirlik, Oguz (bib0038) 2012; 39
Xu, Lü, Cheng (bib0087) 2014; 17
Röck (bib0067) 1984; 31
Keskin, Engin (bib0033) 2021; 36
Yu, Gao, Ma, Pan (bib0089) 2023; 80
Weise (bib0084) 2009
Ishibuchi, Murata (bib0026) 1998
Ye, Li, Nault (bib0088) 2020; 58
Li, Nault, Ye (bib0047) 2019; 273
Mavrotas (bib0051) 2009; 213
Nawaz, Enscore, Ham (bib0056) 1983; 11
Zhao, Hu, Wang, Xu, Zhu, Jonrinaldi (bib0098) 2023; 61
Yüksel, Taşgetiren, Kandiller, Gao (bib0094) 2020; 145
Li, Wang, He, Wang (bib0045) 2023
Khalili (bib0035) 2012; 7
Li, Gao, Duan, Li, Zhang (bib0043) 2022; 53
Pan, Wang, Qian (bib0061) 2009; 36
Rahimi-Vahed, Javadi, Rabbani, Tavakkoli-Moghaddam (bib0065) 2008; 40
Wang, Gao, Lin, Huang, Suganthan (bib0082) 2023; 147
Cai, Lei, Wang, Wang (bib0010) 2023
Chang, Yu, Hu, He, Yu (bib0011) 2022; 10
Ruben, Stützle (bib0068) 2007
Yüksel, Kandiller, Tasgetiren (bib0091) 2023
Gao, Gao, Ma, Tang (bib0021) 2023; 82
Wu, Che (bib0086) 2020; 94
Manne (bib0050) 1960; 8
Talbi (bib0073) 2016; 240
Mitchell (bib0052) 1998
Tavakkoli-Moghaddam, Rahimi-Vahed, Mirzaei (bib0080) 2008; 36
Asefi, Jolai, Rabiee, Araghi (bib0007) 2014; 75
Yüksel, Kandiller, Taşgetiren (bib0092) 2023
Wismer (bib0085) 1972; 20
Sutton, Barto (bib0072) 2018
Nagano, de Almeida, Miyata (bib0055) 2020
Pan, Wang, Qian (bib0062) 2008
Ou, Xing, Yao, Li, Lv, He, Song, Wu, Zhang (bib0057) 2023; 77
Pan, Tasgetiren, Liang (bib0060) 2008; 35
Jolai, Asefi, Rabiee, Ramezani (bib0030) 2013; 20
Zhao, Jiang, Wang (bib0099) 2022
Taşgetiren, Yüksel, Gao, Pan, Li (bib0079) 2019; 39
Yüksel, Kandiller, Taşgetiren (bib0093) 2022
Tan, Goh, Yang, Lee (bib0074) 2006
Zhao, Di, Wang (bib0097) 2023; 53
Kaelbling, Littman, Moore (bib0031) 1996; 4
Dubois-Lacoste, Pagnozzi, Stützle (bib0018) 2017; 81
Karimi-Mamaghan, Mohammadi, Pasdeloup, Meyer (bib0032) 2023; 304
Javadi, Saidi-Mehrabad, Haji, Mahdavi, Jolai, Mahdavi-Amiri (bib0028) 2008; 345
Chen, Li, Xu (bib0013) 2023
Hu, Gong, Pedrycz, Li (bib0025) 2023; 83
Lin, Gao, Wu, Suganthan (bib0048) 2023
Ishibuchi, Murata (bib0027) 1996
Kizilay, Tasgetiren, Oztop, Kandiller, Suganthan (bib0039) 2020
Yüksel, Taşgetiren, Kandiller, Pan (bib0095) 2020
Graham, Lawler, Lenstra, Kan (bib0024) 1979; 5
Khalili (bib0034) 2014; 70
Zhang, Zhu, Tang, Zhou, Gui (bib0096) 2022; 78
Vallada, Ruiz, Framinan (bib0081) 2015; 240
Sapkal, Laha (bib0070) 2013; 68
Tao, Liu (bib0075) 2019
Allahverdi, Aydilek, Aydilek (bib0004) 2022; 13
Oztop, Tasgetiren, Kandiller, Pan (bib0058) 2020
Öztop, Tasgetiren, Kandiller, Pan (bib0059) 2022; 138
Davis (bib0015) 1991
Zhao, Wang, Wang (bib0100) 2023; 20
Allahverdi, Aldowaisan (bib0002) 2004; 152
Chen, Yang, Li, Wang (bib0012) 2020; 149
Qian, Wang, Huang, Wang, Qian, Wang, Huang, Wang (bib0064) 2009; 13
Deb (bib0016) 2001; 16
Liu, Zhu, Li (bib0049) 2008; 2
Coello, Lamont, Van Veldhuizen (bib0014) 2002; 5
Allahverdi, Aydilek (bib0003) 2013; 68
Goldberg, Lingle (bib0022) 1985
Pinedo (bib0063) 2012
Lee, Kim (bib0041) 2022; 60
Jenabi, Naderi, Ghomi (bib0029) 2010; 2010
Yüksel (bib0090) 2019
Watkins (bib0083) 1989
Du, Li, Chen, Duan, Pan (bib0017) 2022
Zhao, Zhang, Cao, Tang (bib0101) 2021; 153
Ruiz, Stützle (bib0069) 2007; 177
Naderi, Sadeghi (bib0054) 2012; 5
Tasgetiren, Pan, Ozturkoglu, Chen (bib0078) 2016
Eshelman (bib0020) 1989
Lei, Guo, Zhao, Wang, Qian, Meng, Tang (bib0042) 2022; 205
Almeida, Nagano (bib0006) 2023; 74
Aydilek, Allahverdi (bib0008) 2012
Manne (10.1016/j.swevo.2024.101617_bib0050) 1960; 8
Yüksel (10.1016/j.swevo.2024.101617_bib0093) 2022
Taşgetiren (10.1016/j.swevo.2024.101617_bib0079) 2019; 39
Rahimi-Vahed (10.1016/j.swevo.2024.101617_bib0065) 2008; 40
Allahverdi (10.1016/j.swevo.2024.101617_bib0005) 2018; 269
Graham (10.1016/j.swevo.2024.101617_bib0024) 1979; 5
Kizilay (10.1016/j.swevo.2024.101617_bib0040) 2019; 12
Hu (10.1016/j.swevo.2024.101617_bib0025) 2023; 83
Talbi (10.1016/j.swevo.2024.101617_bib0073) 2016; 240
Tasgetiren (10.1016/j.swevo.2024.101617_bib0078) 2016
Tavakkoli-Moghaddam (10.1016/j.swevo.2024.101617_bib0080) 2008; 36
Allahverdi (10.1016/j.swevo.2024.101617_bib0002) 2004; 152
Allahverdi (10.1016/j.swevo.2024.101617_bib0004) 2022; 13
Wismer (10.1016/j.swevo.2024.101617_bib0085) 1972; 20
Yüksel (10.1016/j.swevo.2024.101617_bib0094) 2020; 145
Tao (10.1016/j.swevo.2024.101617_bib0075) 2019
Li (10.1016/j.swevo.2024.101617_bib0047) 2019; 273
Tasgetiren (10.1016/j.swevo.2024.101617_bib0076) 2024; 9
Oztop (10.1016/j.swevo.2024.101617_bib0058) 2020
Qian (10.1016/j.swevo.2024.101617_bib0064) 2009; 13
Jolai (10.1016/j.swevo.2024.101617_bib0030) 2013; 20
Naderi (10.1016/j.swevo.2024.101617_bib0053) 2012; 50
Ou (10.1016/j.swevo.2024.101617_bib0057) 2023; 77
Coello (10.1016/j.swevo.2024.101617_bib0014) 2002; 5
Zhao (10.1016/j.swevo.2024.101617_bib0097) 2023; 53
Keskin (10.1016/j.swevo.2024.101617_bib0033) 2021; 36
Xu (10.1016/j.swevo.2024.101617_bib0087) 2014; 17
Kirlik (10.1016/j.swevo.2024.101617_bib0038) 2012; 39
Cai (10.1016/j.swevo.2024.101617_bib0010) 2023
Sutton (10.1016/j.swevo.2024.101617_bib0072) 2018
Tasgetiren (10.1016/j.swevo.2024.101617_bib0077) 2016; 9
Pan (10.1016/j.swevo.2024.101617_bib0060) 2008; 35
Sapkal (10.1016/j.swevo.2024.101617_bib0070) 2013; 68
Wang (10.1016/j.swevo.2024.101617_bib0082) 2023; 147
Ishibuchi (10.1016/j.swevo.2024.101617_bib0027) 1996
Khalili (10.1016/j.swevo.2024.101617_bib0036) 2012; 31
Ren (10.1016/j.swevo.2024.101617_bib0066) 2023
Li (10.1016/j.swevo.2024.101617_bib0043) 2022; 53
Du (10.1016/j.swevo.2024.101617_bib0017) 2022
Naderi (10.1016/j.swevo.2024.101617_bib0054) 2012; 5
Javadi (10.1016/j.swevo.2024.101617_bib0028) 2008; 345
Chen (10.1016/j.swevo.2024.101617_bib0013) 2023
Yüksel (10.1016/j.swevo.2024.101617_bib0090) 2019
Eshelman (10.1016/j.swevo.2024.101617_bib0020) 1989
Subramanian (10.1016/j.swevo.2024.101617_bib0071) 2014; 52
Zhao (10.1016/j.swevo.2024.101617_bib0098) 2023; 61
González (10.1016/j.swevo.2024.101617_bib0023) 2015; 37
Allahverdi (10.1016/j.swevo.2024.101617_bib0003) 2013; 68
Kaelbling (10.1016/j.swevo.2024.101617_bib0031) 1996; 4
Tan (10.1016/j.swevo.2024.101617_bib0074) 2006
Ye (10.1016/j.swevo.2024.101617_bib0088) 2020; 58
Yüksel (10.1016/j.swevo.2024.101617_bib0095) 2020
Lin (10.1016/j.swevo.2024.101617_bib0048) 2023
Liu (10.1016/j.swevo.2024.101617_bib0049) 2008; 2
Zhao (10.1016/j.swevo.2024.101617_bib0099) 2022
Bao (10.1016/j.swevo.2024.101617_bib0009) 2023; 83
Chen (10.1016/j.swevo.2024.101617_bib0012) 2020; 149
Almeida (10.1016/j.swevo.2024.101617_bib0006) 2023; 74
Watkins (10.1016/j.swevo.2024.101617_bib0083) 1989
Jenabi (10.1016/j.swevo.2024.101617_bib0029) 2010; 2010
Asefi (10.1016/j.swevo.2024.101617_bib0007) 2014; 75
Weise (10.1016/j.swevo.2024.101617_bib0084) 2009
Nagano (10.1016/j.swevo.2024.101617_bib0055) 2020
Zhao (10.1016/j.swevo.2024.101617_bib0100) 2023; 20
Mitchell (10.1016/j.swevo.2024.101617_bib0052) 1998
Chang (10.1016/j.swevo.2024.101617_bib0011) 2022; 10
Ruiz (10.1016/j.swevo.2024.101617_bib0069) 2007; 177
Ishibuchi (10.1016/j.swevo.2024.101617_bib0026) 1998
Pinedo (10.1016/j.swevo.2024.101617_bib0063) 2012
Yu (10.1016/j.swevo.2024.101617_bib0089) 2023; 80
Aydilek (10.1016/j.swevo.2024.101617_bib0008) 2012
Röck (10.1016/j.swevo.2024.101617_bib0067) 1984; 31
Gao (10.1016/j.swevo.2024.101617_bib0021) 2023; 82
Zhang (10.1016/j.swevo.2024.101617_bib0096) 2022; 78
Vallada (10.1016/j.swevo.2024.101617_bib0081) 2015; 240
Eiben (10.1016/j.swevo.2024.101617_bib0019) 2015
Deb (10.1016/j.swevo.2024.101617_bib0016) 2001; 16
Lee (10.1016/j.swevo.2024.101617_bib0041) 2022; 60
Davis (10.1016/j.swevo.2024.101617_bib0015) 1991
Kim (10.1016/j.swevo.2024.101617_bib0037) 2023; 68
Karimi-Mamaghan (10.1016/j.swevo.2024.101617_bib0032) 2023; 304
Pan (10.1016/j.swevo.2024.101617_bib0061) 2009; 36
Zhao (10.1016/j.swevo.2024.101617_bib0101) 2021; 153
Wu (10.1016/j.swevo.2024.101617_bib0086) 2020; 94
Pan (10.1016/j.swevo.2024.101617_bib0062) 2008
Kizilay (10.1016/j.swevo.2024.101617_bib0039) 2020
Mavrotas (10.1016/j.swevo.2024.101617_bib0051) 2009; 213
Yüksel (10.1016/j.swevo.2024.101617_bib0091) 2023
Khalili (10.1016/j.swevo.2024.101617_bib0035) 2012; 7
Öztop (10.1016/j.swevo.2024.101617_bib0059) 2022; 138
Yüksel (10.1016/j.swevo.2024.101617_bib0092) 2023
Li (10.1016/j.swevo.2024.101617_bib0045) 2023
Li (10.1016/j.swevo.2024.101617_bib0046) 2014
Dubois-Lacoste (10.1016/j.swevo.2024.101617_bib0018) 2017; 81
Nawaz (10.1016/j.swevo.2024.101617_bib0056) 1983; 11
Ruben (10.1016/j.swevo.2024.101617_bib0068) 2007
Goldberg (10.1016/j.swevo.2024.101617_bib0022) 1985
Khalili (10.1016/j.swevo.2024.101617_bib0034) 2014; 70
Lei (10.1016/j.swevo.2024.101617_bib0042) 2022; 205
References_xml – volume: 36
  start-page: 2498
  year: 2009
  end-page: 2511
  ident: bib0061
  article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems
  publication-title: Comput. Oper. Res.
– volume: 50
  start-page: 2592
  year: 2012
  end-page: 2608
  ident: bib0053
  article-title: Multi-objective no-wait flowshop scheduling problems: models and algorithms
  publication-title: Int. J. Prod. Res.
– volume: 9
  start-page: 85
  year: 2024
  end-page: 100
  ident: bib0076
  article-title: Solving blocking flowshop scheduling problem with makespan criterion using q-learning-based iterated greedy algorithms
  publication-title: J. Proj. Manag.
– volume: 17
  start-page: 271
  year: 2014
  end-page: 287
  ident: bib0087
  article-title: Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness
  publication-title: J. Sched.
– volume: 240
  start-page: 666
  year: 2015
  end-page: 677
  ident: bib0081
  article-title: New hard benchmark for flowshop scheduling problems minimising makespan
  publication-title: Eur. J. Oper. Res.
– volume: 138
  year: 2022
  ident: bib0059
  article-title: Metaheuristics with restart and learning mechanisms for the no-idle flowshop scheduling problem with makespan criterion
  publication-title: Comput. Oper. Res.
– volume: 304
  start-page: 1296
  year: 2023
  end-page: 1330
  ident: bib0032
  article-title: Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 94
  year: 2020
  ident: bib0086
  article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search
  publication-title: Omega (Westport)
– volume: 177
  start-page: 2033
  year: 2007
  end-page: 2049
  ident: bib0069
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 39
  start-page: 1506
  year: 2012
  end-page: 1520
  ident: bib0038
  article-title: A variable neighborhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine
  publication-title: Comput. Oper. Res.
– volume: 5
  start-page: 287
  year: 1979
  end-page: 326
  ident: bib0024
  article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey
  publication-title: Ann. Discret. Math.
– volume: 53
  start-page: 3337
  year: 2023
  end-page: 3350
  ident: bib0097
  article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem
  publication-title: IEEE Trans. Cybern.
– volume: 147
  year: 2023
  ident: bib0082
  article-title: Problem feature based meta-heuristics with Q-learning for solving urban traffic light scheduling problems
  publication-title: Appl. Soft Comput.
– volume: 152
  start-page: 132
  year: 2004
  end-page: 147
  ident: bib0002
  article-title: No-wait flowshops with bicriteria of makespan and maximum lateness
  publication-title: Eur. J. Oper. Res.
– year: 2023
  ident: bib0048
  article-title: Scheduling eight-phase urban traffic light problems via ensemble meta-heuristics and Q-learning based local search
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 78
  year: 2022
  ident: bib0096
  article-title: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 52
  start-page: 2729
  year: 2014
  end-page: 2742
  ident: bib0071
  article-title: An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times
  publication-title: Int. J. Prod. Res.
– year: 1998
  ident: bib0052
  article-title: An Introduction to Genetic Algorithms
– volume: 269
  start-page: 590
  year: 2018
  end-page: 601
  ident: bib0005
  article-title: No-wait flowshop scheduling problem with two criteria; total tardiness and makespan
  publication-title: Eur. J. Oper. Res.
– volume: 7
  start-page: 147
  year: 2012
  end-page: 154
  ident: bib0035
  article-title: Multi-objective no-wait hybrid flowshop scheduling problem with transportation times
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 13
  start-page: 847
  year: 2009
  end-page: 869
  ident: bib0064
  article-title: Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution
  publication-title: Soft Comput.
– volume: 83
  start-page: 70
  year: 2023
  end-page: 74
  ident: bib0009
  article-title: A collaborative iterated greedy algorithm with reinforcement learning for energy-aware distributed blocking flow-shop scheduling
  publication-title: Swarm Evol. Comput.
– volume: 31
  start-page: 232
  year: 2012
  end-page: 239
  ident: bib0036
  article-title: A multi-objective electromagnetism algorithm for a bi-objective flowshop scheduling problem
  publication-title: J. Manuf. Syst.
– year: 2022
  ident: bib0017
  article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– year: 2018
  ident: bib0072
  article-title: Reinforcement learning: An introduction
– volume: 70
  start-page: 1591
  year: 2014
  end-page: 1601
  ident: bib0034
  article-title: A multi-objective electromagnetism algorithm for a bi-objective hybrid no-wait flowshop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 20
  start-page: 2305
  year: 2023
  end-page: 2320
  ident: bib0100
  article-title: A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous no-wait flowshop scheduling problem with sequence-dependent setup times
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 5
  start-page: 79
  year: 2002
  end-page: 104
  ident: bib0014
  publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– year: 2020
  ident: bib0058
  article-title: A novel general variable neighborhood search through Q-learning for no-idle flowshop scheduling
  publication-title: 2020 IEEE Congr. Evol. Comput. CEC 2020 - Conf. Proc
– volume: 40
  start-page: 331
  year: 2008
  end-page: 346
  ident: bib0065
  article-title: Engineering Optimization A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem
  publication-title: Taylor Fr.
– volume: 205
  year: 2022
  ident: bib0042
  article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 60
  start-page: 2346
  year: 2022
  end-page: 2368
  ident: bib0041
  article-title: Reinforcement learning for robotic flow shop scheduling with processing time variations
  publication-title: Int. J. Prod. Res.
– volume: 68
  start-page: 160
  year: 2023
  end-page: 175
  ident: bib0037
  article-title: Look-ahead based reinforcement learning for robotic flow shop scheduling
  publication-title: J. Manuf. Syst.
– start-page: 519
  year: 2008
  end-page: 539
  ident: bib0062
  article-title: A novel multi-objective particle swarm optimization algorithm for no-wait flow shop scheduling problems
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
– start-page: 10
  year: 1989
  end-page: 19
  ident: bib0020
  article-title: Biases in the crossover landscape
  publication-title: Proc. Int. Conf. Genetic Algorithms
– start-page: 2911
  year: 2016
  end-page: 2918
  ident: bib0078
  article-title: A memetic algorithm with a variable block insertion heuristic for single machine total weighted tardiness problem with sequence dependent setup times
  publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC)
– volume: 240
  start-page: 171
  year: 2016
  end-page: 215
  ident: bib0073
  article-title: Combining metaheuristics with mathematical programming, constraint programming and machine learning
  publication-title: Ann. Oper. Res.
– volume: 16
  year: 2001
  ident: bib0016
  publication-title: Multi-objective Optimization Using Evolutionary Algorithms
– volume: 5
  start-page: 33
  year: 2012
  end-page: 41
  ident: bib0054
  article-title: A multi-objective simulated annealing algorithm for solving the flexible no-wait flowshop scheduling problem with transportation times
  publication-title: J. Optim. Ind. Eng.
– start-page: 154
  year: 1985
  end-page: 159
  ident: bib0022
  article-title: Alleles, loci, and the traveling salesman problem
  publication-title: Proceedings of the First International Conference on Genetic Algorithms and Their Applications
– year: 2019
  ident: bib0090
  article-title: Master's Thesis
– volume: 4
  start-page: 237
  year: 1996
  end-page: 285
  ident: bib0031
  article-title: Reinforcement learning: a survey
  publication-title: J. Artif. Intell. Res.
– start-page: 554
  year: 2023
  end-page: 565
  ident: bib0092
  article-title: Mathematical models for no-wait permutation flowshop scheduling problems
  publication-title: Towards Industry 5.0
– year: 2023
  ident: bib0045
  article-title: Deep reinforcement learning for multi-objective combinatorial optimization: a case study on multi-objective traveling salesman problem
  publication-title: Swarm Evol. Comput.
– start-page: 392
  year: 1998
  end-page: 403
  ident: bib0026
  article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib0039
  article-title: A Differential Evolution Algorithm With Q-Learning For Solving Engineering Design Problems
– year: 2006
  ident: bib0074
  article-title: Evolving better population distribution and exploration in evolutionary multi-objective optimization
  publication-title: Eur. J. Oper. Res.
– volume: 31
  start-page: 336
  year: 1984
  end-page: 345
  ident: bib0067
  article-title: The three-machine no-wait flow shop is NP-complete
  publication-title: J. ACM
– start-page: 119
  year: 1996
  end-page: 124
  ident: bib0027
  article-title: Multi-objective genetic local search algorithm
  publication-title: Proceedings of IEEE International Conference on Evolutionary Computation
– volume: 80
  year: 2023
  ident: bib0089
  article-title: Improved meta-heuristics with Q-learning for solving distributed assembly permutation flowshop scheduling problems
  publication-title: Swarm Evol. Comput.
– year: 2023
  ident: bib0066
  article-title: A novel Q-learning based variable neighborhood iterative search algorithm for solving disassembly line scheduling problems
  publication-title: Swarm Evol. Comput.
– year: 2020
  ident: bib0055
  article-title: An iterated greedy algorithm for the no-wait flowshop scheduling problem to minimize makespan subject to total completion time
  publication-title: Eng. Optim.
– volume: 213
  start-page: 455
  year: 2009
  end-page: 465
  ident: bib0051
  article-title: Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems
  publication-title: Appl. Math. Comput.
– year: 2007
  ident: bib0068
  article-title: A Simple and Effective Iterated Greedy Algorithm for the Permutation Flowshop Scheduling Problem
– start-page: 1233
  year: 2023
  end-page: 1251
  ident: bib0010
  article-title: A novel shuffled frog-leaping algorithm with reinforcement learning for distributed assembly hybrid flow shop scheduling
  publication-title: Int. J. Prod. Res.
– volume: 53
  start-page: 2684
  year: 2022
  end-page: 2693
  ident: bib0043
  article-title: An improved artificial bee colony algorithm with q-learning for solving permutation flow-shop scheduling problems
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– start-page: 914
  year: 2022
  end-page: 922
  ident: bib0093
  article-title: Intelligent valid inequalities for no-wait permutation flowshop scheduling problems
  publication-title: Intelligent and Fuzzy Systems. INFUS 2022. Lecture Notes in Networks and Systems
– volume: 12
  start-page: 100
  year: 2019
  ident: bib0040
  article-title: A variable block insertion heuristic for solving permutation flow shop scheduling problem with makespan criterion
  publication-title: Algorithms
– volume: 20
  start-page: 689
  year: 1972
  end-page: 697
  ident: bib0085
  article-title: Solution of the flowshop-scheduling problem with no intermediate queues
  publication-title: Oper. Res.
– year: 1991
  ident: bib0015
  article-title: Handbook of Genetic Algorithms
– year: 2015
  ident: bib0019
  article-title: Recombination for Permutation Representation
  publication-title: Introduction to Evolutionary Computing. Natural Computing Series
– volume: 8
  start-page: 219
  year: 1960
  end-page: 223
  ident: bib0050
  article-title: On the job-shop scheduling problem
  publication-title: Oper. Res.
– year: 2012
  ident: bib0063
  article-title: Scheduling
– year: 2022
  ident: bib0099
  article-title: A reinforcement learning driven cooperative meta-heuristic algorithm for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent setup time
  publication-title: IEEE Trans. Ind. Informat.
– volume: 82
  year: 2023
  ident: bib0021
  article-title: Ensemble meta-heuristics and Q-learning for solving unmanned surface vessels scheduling problems
  publication-title: Swarm Evol. Comput.
– volume: 10
  start-page: 760
  year: 2022
  ident: bib0011
  article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival
  publication-title: Processes
– year: 2009
  ident: bib0084
  article-title: Global Optimization Algorithms-Theory and Application
– volume: 81
  start-page: 160
  year: 2017
  end-page: 166
  ident: bib0018
  article-title: An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem
  publication-title: Comput. Oper. Res.
– volume: 37
  year: 2015
  ident: bib0023
  article-title: An efficient memetic algorithm for total weighted tardiness minimization in a single machine with setups
  publication-title: Appl. Soft Comput. Soft Comput
– volume: 58
  start-page: 3235
  year: 2020
  end-page: 3251
  ident: bib0088
  article-title: Trade-off balancing between maximum and total completion times for no-wait flow shop production
  publication-title: Int. J. Prod. Res.
– volume: 36
  start-page: 969
  year: 2008
  end-page: 981
  ident: bib0080
  article-title: Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 35
  start-page: 2807
  year: 2008
  end-page: 2839
  ident: bib0060
  article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 2010
  start-page: 1048
  year: 2010
  end-page: 1056
  ident: bib0029
  article-title: A bi-objective case of no-wait flowshops
  publication-title: Proc. 2010 IEEE 5th Int. Conf. Bio-Inspired Comput. Theor. Appl. BIC-TA
– volume: 345
  start-page: 452
  year: 2008
  end-page: 467
  ident: bib0028
  article-title: No-wait flow shop scheduling using fuzzy multi-objective linear programming
  publication-title: J. Franklin Inst.
– volume: 75
  start-page: 1017
  year: 2014
  end-page: 1033
  ident: bib0007
  article-title: A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop scheduling problem
  publication-title: J. Adv. Manuf. Technol.
– volume: 61
  start-page: 2854
  year: 2023
  end-page: 2872
  ident: bib0098
  article-title: A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem
  publication-title: Int. J. Prod. Res.
– volume: 13
  start-page: 43
  year: 2022
  end-page: 50
  ident: bib0004
  article-title: An algorithm for a no-wait flowshop scheduling problem for minimizing total tardiness with a constraint on total completion time
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 74
  start-page: 362
  year: 2023
  end-page: 373
  ident: bib0006
  article-title: Heuristics to optimize total completion time subject to makespan in no-wait flow shops with sequence-dependent setup times
  publication-title: J. Oper. Res. Soc.
– volume: 9
  start-page: 71
  year: 2016
  ident: bib0077
  article-title: A variable block insertion heuristic for the blocking flowshop scheduling problem with total flowtime criterion
  publication-title: Algorithms
– volume: 20
  start-page: 861
  year: 2013
  end-page: 872
  ident: bib0030
  article-title: Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem
  publication-title: Sci. Iran.
– volume: 68
  start-page: 1327
  year: 2013
  end-page: 1338
  ident: bib0070
  article-title: A heuristic for no-wait flow shop scheduling
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 153
  year: 2021
  ident: bib0101
  article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem
  publication-title: Comput. Ind. Eng.
– year: 1989
  ident: bib0083
  article-title: Learning from Delayed Rewards
– volume: 273
  start-page: 817
  year: 2019
  end-page: 830
  ident: bib0047
  article-title: Trade-off balancing in scheduling for flow shop production and perioperative processes
  publication-title: Eur. J. Oper. Res.
– year: 2023
  ident: bib0091
  article-title: Bi-criteria optimization of makespan and total flow time in no-wait flowshops
  publication-title: The 15th International Conference on Multiple Objective Programming MOPGP 2023
– volume: 11
  start-page: 91
  year: 1983
  end-page: 95
  ident: bib0056
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega (Westport)
– year: 2023
  ident: bib0013
  article-title: Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions
  publication-title: Swarm Evol. Comput.
– start-page: 2020
  year: 2020
  ident: bib0095
  article-title: Metaheuristics for energy-efficient no-wait flowshops: a trade-off between makespan and total energy consumption
  publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC)
– volume: 39
  start-page: 1223
  year: 2019
  end-page: 1231
  ident: bib0079
  article-title: A discrete artificial bee colony algorithm for the energy-efficient no-wait flowshop scheduling problem
  publication-title: Proced. Manuf.
– volume: 77
  year: 2023
  ident: bib0057
  article-title: Deep reinforcement learning method for satellite range scheduling problem
  publication-title: Swarm Evol. Comput.
– volume: 149
  year: 2020
  ident: bib0012
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 2
  start-page: 883
  year: 2008
  end-page: 888
  ident: bib0049
  article-title: A new hybrid genetic algorithm for the Bi-criteria no-wait flowshop scheduling problem with makespan and total flow time minimization
  publication-title: Proc. 7th Int. Conf. Mach. Learn. Cybern. ICMLC
– start-page: 457
  year: 2019
  end-page: 468
  ident: bib0075
  article-title: Study on no-wait flexible flow shop scheduling with multi-objective
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 11745 LNAI
– volume: 68
  start-page: 2237
  year: 2013
  end-page: 2251
  ident: bib0003
  article-title: Algorithms for no-wait flowshops with total completion time subject to makespan
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 83
  year: 2023
  ident: bib0025
  article-title: Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization
  publication-title: Swarm Evol. Comput.
– volume: 36
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib0033
  article-title: A hybrid genetic local and global search algorithm for solving no-wait flow shop problem with bi criteria
  publication-title: SN Appl. Sci.
– start-page: 727
  year: 2014
  ident: bib0046
  article-title: Inconsistent objectives in operating room scheduling
  publication-title: IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE)
– start-page: 351
  year: 2012
  end-page: 359
  ident: bib0008
  article-title: Heuristics for no-wait flowshops with makespan subject to mean completion time
  publication-title: Applied Mathematics and Computation
– volume: 145
  year: 2020
  ident: bib0094
  article-title: An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption
  publication-title: Comput. Ind. Eng.
– volume: 177
  start-page: 2033
  year: 2007
  ident: 10.1016/j.swevo.2024.101617_bib0069
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.009
– volume: 5
  start-page: 33
  year: 2012
  ident: 10.1016/j.swevo.2024.101617_bib0054
  article-title: A multi-objective simulated annealing algorithm for solving the flexible no-wait flowshop scheduling problem with transportation times
  publication-title: J. Optim. Ind. Eng.
– year: 2007
  ident: 10.1016/j.swevo.2024.101617_bib0068
– volume: 35
  start-page: 2807
  year: 2008
  ident: 10.1016/j.swevo.2024.101617_bib0060
  article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2006.12.030
– start-page: 914
  year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0093
  article-title: Intelligent valid inequalities for no-wait permutation flowshop scheduling problems
– volume: 36
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.swevo.2024.101617_bib0033
  article-title: A hybrid genetic local and global search algorithm for solving no-wait flow shop problem with bi criteria
  publication-title: SN Appl. Sci.
– year: 2020
  ident: 10.1016/j.swevo.2024.101617_bib0055
  article-title: An iterated greedy algorithm for the no-wait flowshop scheduling problem to minimize makespan subject to total completion time
  publication-title: Eng. Optim.
– year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0091
  article-title: Bi-criteria optimization of makespan and total flow time in no-wait flowshops
– year: 1991
  ident: 10.1016/j.swevo.2024.101617_bib0015
– volume: 2
  start-page: 883
  year: 2008
  ident: 10.1016/j.swevo.2024.101617_bib0049
  article-title: A new hybrid genetic algorithm for the Bi-criteria no-wait flowshop scheduling problem with makespan and total flow time minimization
– start-page: 2020
  year: 2020
  ident: 10.1016/j.swevo.2024.101617_bib0095
  article-title: Metaheuristics for energy-efficient no-wait flowshops: a trade-off between makespan and total energy consumption
– volume: 7
  start-page: 147
  year: 2012
  ident: 10.1016/j.swevo.2024.101617_bib0035
  article-title: Multi-objective no-wait hybrid flowshop scheduling problem with transportation times
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 74
  start-page: 362
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0006
  article-title: Heuristics to optimize total completion time subject to makespan in no-wait flow shops with sequence-dependent setup times
  publication-title: J. Oper. Res. Soc.
  doi: 10.1080/01605682.2022.2039569
– year: 2018
  ident: 10.1016/j.swevo.2024.101617_bib0072
– volume: 94
  year: 2020
  ident: 10.1016/j.swevo.2024.101617_bib0086
  article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search
  publication-title: Omega (Westport)
– volume: 70
  start-page: 1591
  year: 2014
  ident: 10.1016/j.swevo.2024.101617_bib0034
  article-title: A multi-objective electromagnetism algorithm for a bi-objective hybrid no-wait flowshop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-5376-0
– volume: 60
  start-page: 2346
  year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0041
  article-title: Reinforcement learning for robotic flow shop scheduling with processing time variations
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1887533
– volume: 240
  start-page: 666
  year: 2015
  ident: 10.1016/j.swevo.2024.101617_bib0081
  article-title: New hard benchmark for flowshop scheduling problems minimising makespan
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.07.033
– volume: 68
  start-page: 1327
  year: 2013
  ident: 10.1016/j.swevo.2024.101617_bib0070
  article-title: A heuristic for no-wait flow shop scheduling
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-4924-y
– volume: 345
  start-page: 452
  year: 2008
  ident: 10.1016/j.swevo.2024.101617_bib0028
  article-title: No-wait flow shop scheduling using fuzzy multi-objective linear programming
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2007.12.003
– volume: 240
  start-page: 171
  year: 2016
  ident: 10.1016/j.swevo.2024.101617_bib0073
  article-title: Combining metaheuristics with mathematical programming, constraint programming and machine learning
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-015-2034-y
– start-page: 2911
  year: 2016
  ident: 10.1016/j.swevo.2024.101617_bib0078
  article-title: A memetic algorithm with a variable block insertion heuristic for single machine total weighted tardiness problem with sequence dependent setup times
– start-page: 554
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0092
  article-title: Mathematical models for no-wait permutation flowshop scheduling problems
– volume: 53
  start-page: 3337
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0097
  article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3192112
– start-page: 154
  year: 1985
  ident: 10.1016/j.swevo.2024.101617_bib0022
  article-title: Alleles, loci, and the traveling salesman problem
– year: 2019
  ident: 10.1016/j.swevo.2024.101617_bib0090
– start-page: 1233
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0010
  article-title: A novel shuffled frog-leaping algorithm with reinforcement learning for distributed assembly hybrid flow shop scheduling
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2022.2031331
– volume: 17
  start-page: 271
  year: 2014
  ident: 10.1016/j.swevo.2024.101617_bib0087
  article-title: Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness
  publication-title: J. Sched.
  doi: 10.1007/s10951-013-0351-z
– year: 2015
  ident: 10.1016/j.swevo.2024.101617_bib0019
  article-title: Recombination for Permutation Representation
  doi: 10.1007/978-3-662-44874-8_4
– volume: 16
  year: 2001
  ident: 10.1016/j.swevo.2024.101617_bib0016
– volume: 5
  start-page: 79
  year: 2002
  ident: 10.1016/j.swevo.2024.101617_bib0014
– volume: 20
  start-page: 2305
  issue: 4
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0100
  article-title: A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous no-wait flowshop scheduling problem with sequence-dependent setup times
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2022.3212786
– volume: 5
  start-page: 287
  year: 1979
  ident: 10.1016/j.swevo.2024.101617_bib0024
  article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey
  publication-title: Ann. Discret. Math.
  doi: 10.1016/S0167-5060(08)70356-X
– volume: 77
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0057
  article-title: Deep reinforcement learning method for satellite range scheduling problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101233
– volume: 4
  start-page: 237
  year: 1996
  ident: 10.1016/j.swevo.2024.101617_bib0031
  article-title: Reinforcement learning: a survey
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.301
– volume: 36
  start-page: 969
  year: 2008
  ident: 10.1016/j.swevo.2024.101617_bib0080
  article-title: Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0906-7
– volume: 82
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0021
  article-title: Ensemble meta-heuristics and Q-learning for solving unmanned surface vessels scheduling problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101358
– volume: 8
  start-page: 219
  year: 1960
  ident: 10.1016/j.swevo.2024.101617_bib0050
  article-title: On the job-shop scheduling problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.8.2.219
– volume: 39
  start-page: 1506
  year: 2012
  ident: 10.1016/j.swevo.2024.101617_bib0038
  article-title: A variable neighborhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.08.022
– volume: 83
  start-page: 70
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0009
  article-title: A collaborative iterated greedy algorithm with reinforcement learning for energy-aware distributed blocking flow-shop scheduling
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101399
– volume: 152
  start-page: 132
  year: 2004
  ident: 10.1016/j.swevo.2024.101617_bib0002
  article-title: No-wait flowshops with bicriteria of makespan and maximum lateness
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(02)00646-X
– year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0048
  article-title: Scheduling eight-phase urban traffic light problems via ensemble meta-heuristics and Q-learning based local search
– year: 2006
  ident: 10.1016/j.swevo.2024.101617_bib0074
  article-title: Evolving better population distribution and exploration in evolutionary multi-objective optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.08.038
– volume: 75
  start-page: 1017
  year: 2014
  ident: 10.1016/j.swevo.2024.101617_bib0007
  article-title: A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop scheduling problem
  publication-title: J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-6177-9
– volume: 9
  start-page: 85
  year: 2024
  ident: 10.1016/j.swevo.2024.101617_bib0076
  article-title: Solving blocking flowshop scheduling problem with makespan criterion using q-learning-based iterated greedy algorithms
  publication-title: J. Proj. Manag.
– volume: 36
  start-page: 2498
  year: 2009
  ident: 10.1016/j.swevo.2024.101617_bib0061
  article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.10.008
– start-page: 457
  year: 2019
  ident: 10.1016/j.swevo.2024.101617_bib0075
  article-title: Study on no-wait flexible flow shop scheduling with multi-objective
– volume: 9
  start-page: 71
  year: 2016
  ident: 10.1016/j.swevo.2024.101617_bib0077
  article-title: A variable block insertion heuristic for the blocking flowshop scheduling problem with total flowtime criterion
  publication-title: Algorithms
  doi: 10.3390/a9040071
– start-page: 10
  year: 1989
  ident: 10.1016/j.swevo.2024.101617_bib0020
  article-title: Biases in the crossover landscape
– volume: 10
  start-page: 760
  year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0011
  article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival
  publication-title: Processes
  doi: 10.3390/pr10040760
– year: 1989
  ident: 10.1016/j.swevo.2024.101617_bib0083
– volume: 13
  start-page: 847
  year: 2009
  ident: 10.1016/j.swevo.2024.101617_bib0064
  article-title: Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0350-8
– volume: 58
  start-page: 3235
  year: 2020
  ident: 10.1016/j.swevo.2024.101617_bib0088
  article-title: Trade-off balancing between maximum and total completion times for no-wait flow shop production
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1630777
– year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0013
  article-title: Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101414
– volume: 273
  start-page: 817
  year: 2019
  ident: 10.1016/j.swevo.2024.101617_bib0047
  article-title: Trade-off balancing in scheduling for flow shop production and perioperative processes
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.08.048
– volume: 13
  start-page: 43
  year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0004
  article-title: An algorithm for a no-wait flowshop scheduling problem for minimizing total tardiness with a constraint on total completion time
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 149
  year: 2020
  ident: 10.1016/j.swevo.2024.101617_bib0012
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106778
– year: 2012
  ident: 10.1016/j.swevo.2024.101617_bib0063
– start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2024.101617_bib0039
– volume: 2010
  start-page: 1048
  year: 2010
  ident: 10.1016/j.swevo.2024.101617_bib0029
  article-title: A bi-objective case of no-wait flowshops
– year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0099
  article-title: A reinforcement learning driven cooperative meta-heuristic algorithm for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent setup time
  publication-title: IEEE Trans. Ind. Informat.
– volume: 37
  year: 2015
  ident: 10.1016/j.swevo.2024.101617_bib0023
  article-title: An efficient memetic algorithm for total weighted tardiness minimization in a single machine with setups
  publication-title: Appl. Soft Comput. Soft Comput
– year: 2009
  ident: 10.1016/j.swevo.2024.101617_bib0084
– volume: 31
  start-page: 336
  year: 1984
  ident: 10.1016/j.swevo.2024.101617_bib0067
  article-title: The three-machine no-wait flow shop is NP-complete
  publication-title: J. ACM
  doi: 10.1145/62.65
– volume: 39
  start-page: 1223
  year: 2019
  ident: 10.1016/j.swevo.2024.101617_bib0079
  article-title: A discrete artificial bee colony algorithm for the energy-efficient no-wait flowshop scheduling problem
  publication-title: Proced. Manuf.
  doi: 10.1016/j.promfg.2020.01.347
– volume: 145
  year: 2020
  ident: 10.1016/j.swevo.2024.101617_bib0094
  article-title: An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106431
– volume: 52
  start-page: 2729
  year: 2014
  ident: 10.1016/j.swevo.2024.101617_bib0071
  article-title: An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2014.883472
– start-page: 519
  year: 2008
  ident: 10.1016/j.swevo.2024.101617_bib0062
  article-title: A novel multi-objective particle swarm optimization algorithm for no-wait flow shop scheduling problems
– volume: 20
  start-page: 861
  year: 2013
  ident: 10.1016/j.swevo.2024.101617_bib0030
  article-title: Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem
  publication-title: Sci. Iran.
– volume: 11
  start-page: 91
  year: 1983
  ident: 10.1016/j.swevo.2024.101617_bib0056
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega (Westport)
– volume: 213
  start-page: 455
  year: 2009
  ident: 10.1016/j.swevo.2024.101617_bib0051
  article-title: Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems
  publication-title: Appl. Math. Comput.
– year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0066
  article-title: A novel Q-learning based variable neighborhood iterative search algorithm for solving disassembly line scheduling problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101338
– volume: 153
  year: 2021
  ident: 10.1016/j.swevo.2024.101617_bib0101
  article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107082
– year: 2020
  ident: 10.1016/j.swevo.2024.101617_bib0058
  article-title: A novel general variable neighborhood search through Q-learning for no-idle flowshop scheduling
– volume: 12
  start-page: 100
  year: 2019
  ident: 10.1016/j.swevo.2024.101617_bib0040
  article-title: A variable block insertion heuristic for solving permutation flow shop scheduling problem with makespan criterion
  publication-title: Algorithms
  doi: 10.3390/a12050100
– start-page: 392
  year: 1998
  ident: 10.1016/j.swevo.2024.101617_bib0026
  article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling
– start-page: 119
  year: 1996
  ident: 10.1016/j.swevo.2024.101617_bib0027
  article-title: Multi-objective genetic local search algorithm
– volume: 20
  start-page: 689
  year: 1972
  ident: 10.1016/j.swevo.2024.101617_bib0085
  article-title: Solution of the flowshop-scheduling problem with no intermediate queues
  publication-title: Oper. Res.
  doi: 10.1287/opre.20.3.689
– volume: 50
  start-page: 2592
  year: 2012
  ident: 10.1016/j.swevo.2024.101617_bib0053
  article-title: Multi-objective no-wait flowshop scheduling problems: models and algorithms
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2010.543937
– volume: 83
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0025
  article-title: Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101387
– volume: 61
  start-page: 2854
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0098
  article-title: A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2022.2070786
– volume: 40
  start-page: 331
  year: 2008
  ident: 10.1016/j.swevo.2024.101617_bib0065
  article-title: Engineering Optimization A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem
  publication-title: Taylor Fr.
– volume: 80
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0089
  article-title: Improved meta-heuristics with Q-learning for solving distributed assembly permutation flowshop scheduling problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101335
– volume: 205
  year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0042
  article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117796
– start-page: 727
  year: 2014
  ident: 10.1016/j.swevo.2024.101617_bib0046
  article-title: Inconsistent objectives in operating room scheduling
– volume: 68
  start-page: 160
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0037
  article-title: Look-ahead based reinforcement learning for robotic flow shop scheduling
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2023.02.002
– year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0045
  article-title: Deep reinforcement learning for multi-objective combinatorial optimization: a case study on multi-objective traveling salesman problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101398
– volume: 147
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0082
  article-title: Problem feature based meta-heuristics with Q-learning for solving urban traffic light scheduling problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110714
– year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0017
  article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 138
  year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0059
  article-title: Metaheuristics with restart and learning mechanisms for the no-idle flowshop scheduling problem with makespan criterion
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105616
– volume: 304
  start-page: 1296
  year: 2023
  ident: 10.1016/j.swevo.2024.101617_bib0032
  article-title: Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2022.03.054
– volume: 81
  start-page: 160
  year: 2017
  ident: 10.1016/j.swevo.2024.101617_bib0018
  article-title: An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.12.021
– volume: 269
  start-page: 590
  year: 2018
  ident: 10.1016/j.swevo.2024.101617_bib0005
  article-title: No-wait flowshop scheduling problem with two criteria; total tardiness and makespan
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.070
– volume: 53
  start-page: 2684
  year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0043
  article-title: An improved artificial bee colony algorithm with q-learning for solving permutation flow-shop scheduling problems
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2022.3219380
– start-page: 351
  year: 2012
  ident: 10.1016/j.swevo.2024.101617_bib0008
  article-title: Heuristics for no-wait flowshops with makespan subject to mean completion time
– volume: 31
  start-page: 232
  year: 2012
  ident: 10.1016/j.swevo.2024.101617_bib0036
  article-title: A multi-objective electromagnetism algorithm for a bi-objective flowshop scheduling problem
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2011.08.002
– volume: 78
  year: 2022
  ident: 10.1016/j.swevo.2024.101617_bib0096
  article-title: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102412
– volume: 68
  start-page: 2237
  year: 2013
  ident: 10.1016/j.swevo.2024.101617_bib0003
  article-title: Algorithms for no-wait flowshops with total completion time subject to makespan
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-4836-x
– year: 1998
  ident: 10.1016/j.swevo.2024.101617_bib0052
SSID ssj0000602559
Score 2.3951411
Snippet Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101617
SubjectTerms Bi-criteria heuristic optimization
Bi-criteria scheduling problems
Makespan
Mixed-integer linear programming
No-wait flowshop scheduling problem
Total flow time
Title Q-learning guided algorithms for bi-criteria minimization of total flow time and makespan in no-wait permutation flowshops
URI https://dx.doi.org/10.1016/j.swevo.2024.101617
Volume 89
WOSCitedRecordID wos001255634500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMXyirKpjnQU5jI9sTbsQ2NWEoFokjhZI3H48atlyhrxd_hj_LGM-M4FEX0wMWyLHti-335_M2btyD0xqKpxROLEcaoSwbAf4SJgBKLOVJPUODl2tKn_tlZMB6HXzqdXyYXZpX7ZRlcX4fT_2pqOAbGlqmztzB3MygcgH0wOmzB7LD9J8N_Jblxd1wsswQEJcsvqlm2mKjaC704I0AVskYz68nKIoVOxazDBSqZHJnmstFcVqilhYJdCeCdOiSyrMiaZXW142JpAhXh7Pmkms7bQvfbms1U9w2x0o8r4_N43URia_X_h1yrPx5ezVW8wDtW5M2n4pNMujHJiqd1samNq-Fw6B6GI5kmN1Pc-VlMCrHojWD4Sdub4QyaWDpNeg5MQQmoxi2GVk2GNMVKd4NK97zB_soRcdmfr-HR-nL4_ubs7Vrbf3wDm8hEE_R2GdWDRHKQSA1yB-05vhsGXbR39OFk_LFx5VlePTGTbQzN3Zv6VnUk4Y3b-bsGauma8wfovp6Q4CMFpIeoI8pHaN80-8Ca-x-jnxtcYYUrvMEVBlzhFq5wG1e4SnGNKyyRgiWuMNgVG1zhrMQaV7iFK9zg6gn6Pjo5H74nunEH4aCIFsRPOchQLuCtuIms7sO9WNKAnaSh8FKHcsemcWDFXkxdEOSWx33uMpsJ6rmcO_Qp6pZVKZ4hnMRUtkf3KTDeIKRhIBfKqc1CkN12Yg8OkGNeZcR1VXvZXCWPdljyAL1tLpqqoi67T_eMjSKtS5XejAB4uy58frvfeYHubf4SL1F3MVuKV-guXy2y-ey1Rt1vmhyz-w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Q-learning+guided+algorithms+for+bi-criteria+minimization+of+total+flow+time+and+makespan+in+no-wait+permutation+flowshops&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Y%C3%BCksel%2C+Damla&rft.au=Kandiller%2C+Levent&rft.au=Ta%C5%9Fgetiren%2C+Mehmet+Fatih&rft.date=2024-08-01&rft.issn=2210-6502&rft.volume=89&rft.spage=101617&rft_id=info:doi/10.1016%2Fj.swevo.2024.101617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2024_101617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon