Q-learning guided algorithms for bi-criteria minimization of total flow time and makespan in no-wait permutation flowshops
Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic methods in the context of production scheduling. Q-learning is a prominent reinforcement learning in which its utilization aims to direct th...
Uloženo v:
| Vydáno v: | Swarm and evolutionary computation Ročník 89; s. 101617 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2024
|
| Témata: | |
| ISSN: | 2210-6502 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic methods in the context of production scheduling. Q-learning is a prominent reinforcement learning in which its utilization aims to direct the selection of actions, thus preventing the necessity for a random exploration in the iterative process of the metaheuristics. In this study, we provide Q-learning guided algorithms for the Bi-Criteria No-Wait Flowshop Scheduling Problem (NWFSP). The problem is treated as a bi-criteria combinatorial optimization problem where total flow time and makespan are optimized simultaneously. Firstly, a deterministic mixed-integer linear programming (MILP) model is provided. Then, Q-learning guided algorithms are developed: Bi-Criteria Iterated Greedy Algorithm with Q-Learning (BC-IGQL). Bi-Criteria Block Insertion Heuristic Algorithm with Q-Learning (BC-BIHQL). Moreover, the performance of the proposed Q-learning guided algorithms is compared over a collection of Bi-Criteria Genetic Local Search Algorithms (BC-GLS), Bi-Criteria Iterated Greedy Algorithm (BC-IG), Bi-Criteria Iterated Greedy Algorithm with a Local Search (BC-IGALL) and Bi-Criteria Variable Block Insertion Heuristic Algorithm (BC-VBIH). The complete computational experiment, performed on 480 problem instances of Vallada et al. (2015), which is known as the VRF benchmark set, indicates that the BC-BIHQL and the BC-IGQL algorithms outperform the BC-GLS, BC-IG, BC-IGALL, and BC-VBIH algorithms in comparative performance metrics. More specifically, the proposed BC-BIHQL and BC-IGQL algorithms can yield more non-dominated bi-criteria solutions with the most substantial competitiveness than the remaining algorithms. At the same time, both are competitive with each other on the benchmark problems. Moreover, the BC-IGQL algorithm dominates almost 97% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets. Similarly, The BC-BIHQL algorithm dominates almost 98% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets, respectively. This means that, among all the features that have been compared, the Q-learning-guided algorithms demonstrate the highest level of competitiveness. The outcomes of this study encourage us to discover many more bi-criteria NWFSPs to reveal the trade-off between other conflicting objectives, such as makespan & the number of early jobs, to overcome various industries' problems. |
|---|---|
| AbstractList | Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic methods in the context of production scheduling. Q-learning is a prominent reinforcement learning in which its utilization aims to direct the selection of actions, thus preventing the necessity for a random exploration in the iterative process of the metaheuristics. In this study, we provide Q-learning guided algorithms for the Bi-Criteria No-Wait Flowshop Scheduling Problem (NWFSP). The problem is treated as a bi-criteria combinatorial optimization problem where total flow time and makespan are optimized simultaneously. Firstly, a deterministic mixed-integer linear programming (MILP) model is provided. Then, Q-learning guided algorithms are developed: Bi-Criteria Iterated Greedy Algorithm with Q-Learning (BC-IGQL). Bi-Criteria Block Insertion Heuristic Algorithm with Q-Learning (BC-BIHQL). Moreover, the performance of the proposed Q-learning guided algorithms is compared over a collection of Bi-Criteria Genetic Local Search Algorithms (BC-GLS), Bi-Criteria Iterated Greedy Algorithm (BC-IG), Bi-Criteria Iterated Greedy Algorithm with a Local Search (BC-IGALL) and Bi-Criteria Variable Block Insertion Heuristic Algorithm (BC-VBIH). The complete computational experiment, performed on 480 problem instances of Vallada et al. (2015), which is known as the VRF benchmark set, indicates that the BC-BIHQL and the BC-IGQL algorithms outperform the BC-GLS, BC-IG, BC-IGALL, and BC-VBIH algorithms in comparative performance metrics. More specifically, the proposed BC-BIHQL and BC-IGQL algorithms can yield more non-dominated bi-criteria solutions with the most substantial competitiveness than the remaining algorithms. At the same time, both are competitive with each other on the benchmark problems. Moreover, the BC-IGQL algorithm dominates almost 97% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets. Similarly, The BC-BIHQL algorithm dominates almost 98% and 99% of the solutions reached by the BC-IG, BC-IGALL, and BC-VBIH algorithms in small and large datasets, respectively. This means that, among all the features that have been compared, the Q-learning-guided algorithms demonstrate the highest level of competitiveness. The outcomes of this study encourage us to discover many more bi-criteria NWFSPs to reveal the trade-off between other conflicting objectives, such as makespan & the number of early jobs, to overcome various industries' problems. |
| ArticleNumber | 101617 |
| Author | Taşgetiren, Mehmet Fatih Yüksel, Damla Kandiller, Levent |
| Author_xml | – sequence: 1 givenname: Damla orcidid: 0000-0003-4630-3325 surname: Yüksel fullname: Yüksel, Damla email: damla.yuksel@stu.yasar.edu.tr organization: Department of Industrial Engineering, Yasar University, Bornova, 35100, Izmir, Turkey – sequence: 2 givenname: Levent surname: Kandiller fullname: Kandiller, Levent organization: Department of Industrial Engineering, Yasar University, Bornova, 35100, Izmir, Turkey – sequence: 3 givenname: Mehmet Fatih surname: Taşgetiren fullname: Taşgetiren, Mehmet Fatih organization: Department of Industrial Engineering, Baskent University, TR-06790, Ankara, Turkey |
| BookMark | eNqFkM1OwzAMgHMYEmPsCbjkBTry02bbgQOa-JMmISQ4R2nqbh5tMiXZJvb0dCsnDuCLZcufZX9XZOC8A0JuOJtwxtXtZhIPsPcTwUR-7vDpgAyF4CxTBROXZBzjhnWhmCiK-ZAc37IGTHDoVnS1wwoqapqVD5jWbaS1D7TEzHYlBDS0RYctHk1C76ivafLJNLRu_IEmbIEaV9HWfELcGkfRUeezg8FEtxDaXeqx03Rc-228Jhe1aSKMf_KIfDw-vC-es-Xr08vifplZyWTKprVlc26hu7eohFTcqjKf5VNe1XNQtZBWcFnOWKlKWag8Z8pObWG4AakKa4UckXm_1wYfY4BaW-xvScFgoznTJ1N6o8_u9Mmd7t11rPzFbgO2Jnz9Q931FHRv7RGCjhbBWagwgE268vgn_w2PvpBO |
| CitedBy_id | crossref_primary_10_1002_cpe_70272 crossref_primary_10_1007_s10462_025_11266_y crossref_primary_10_1016_j_asoc_2025_113815 crossref_primary_10_3390_systems13080659 crossref_primary_10_1007_s11227_025_07234_6 crossref_primary_10_23919_CSMS_2024_0040 crossref_primary_10_1016_j_eswa_2025_129512 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1007_s10696_025_09611_y |
| Cites_doi | 10.1016/j.ejor.2005.12.009 10.1016/j.cor.2006.12.030 10.1080/01605682.2022.2039569 10.1007/s00170-013-5376-0 10.1080/00207543.2021.1887533 10.1016/j.ejor.2014.07.033 10.1007/s00170-013-4924-y 10.1016/j.jfranklin.2007.12.003 10.1007/s10479-015-2034-y 10.1109/TCYB.2022.3192112 10.1080/00207543.2022.2031331 10.1007/s10951-013-0351-z 10.1007/978-3-662-44874-8_4 10.1109/TASE.2022.3212786 10.1016/S0167-5060(08)70356-X 10.1016/j.swevo.2023.101233 10.1613/jair.301 10.1007/s00170-006-0906-7 10.1016/j.swevo.2023.101358 10.1287/opre.8.2.219 10.1016/j.cor.2011.08.022 10.1016/j.swevo.2023.101399 10.1016/S0377-2217(02)00646-X 10.1016/j.ejor.2004.08.038 10.1007/s00170-014-6177-9 10.1016/j.cor.2008.10.008 10.3390/a9040071 10.3390/pr10040760 10.1007/s00500-008-0350-8 10.1080/00207543.2019.1630777 10.1016/j.swevo.2023.101414 10.1016/j.ejor.2018.08.048 10.1016/j.cie.2020.106778 10.1145/62.65 10.1016/j.promfg.2020.01.347 10.1016/j.cie.2020.106431 10.1080/00207543.2014.883472 10.1016/j.swevo.2023.101338 10.1016/j.cie.2020.107082 10.3390/a12050100 10.1287/opre.20.3.689 10.1080/00207543.2010.543937 10.1016/j.swevo.2023.101387 10.1080/00207543.2022.2070786 10.1016/j.swevo.2023.101335 10.1016/j.eswa.2022.117796 10.1016/j.jmsy.2023.02.002 10.1016/j.swevo.2023.101398 10.1016/j.asoc.2023.110714 10.1016/j.cor.2021.105616 10.1016/j.ejor.2022.03.054 10.1016/j.cor.2016.12.021 10.1016/j.ejor.2017.11.070 10.1109/TSMC.2022.3219380 10.1016/j.jmsy.2011.08.002 10.1016/j.rcim.2022.102412 10.1007/s00170-013-4836-x |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2024.101617 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2024_101617 S221065022400155X |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c303t-7fc091ce2555d2361c6b48471df9e6f23c213b80b6b3564406c7c5a1ae365cc23 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001255634500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Sat Nov 29 05:45:03 EST 2025 Tue Nov 18 22:41:13 EST 2025 Sat Jul 20 16:35:16 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Total flow time Bi-criteria heuristic optimization Bi-criteria scheduling problems Makespan No-wait flowshop scheduling problem Mixed-integer linear programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-7fc091ce2555d2361c6b48471df9e6f23c213b80b6b3564406c7c5a1ae365cc23 |
| ORCID | 0000-0003-4630-3325 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_swevo_2024_101617 crossref_primary_10_1016_j_swevo_2024_101617 elsevier_sciencedirect_doi_10_1016_j_swevo_2024_101617 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tasgetiren, Pan, Kizilay, Gao (bib0077) 2016; 9 Khalili, Tavakkoli-Moghaddam (bib0036) 2012; 31 Kim, Lee (bib0037) 2023; 68 Eiben, Smith (bib0019) 2015 Allahverdi, Aydilek, Aydilek (bib0005) 2018; 269 Naderi, Aminnayeri, Piri, Ha'iri Yazdi (bib0053) 2012; 50 Subramanian, Battarra, Potts (bib0071) 2014; 52 Ren, Gao, Fu, Sang, Li, Luo (bib0066) 2023 Kizilay, Tasgetiren, Pan, Gao (bib0040) 2019; 12 González, Vela (bib0023) 2015; 37 Bao, Pan, Ruiz, Gao (bib0009) 2023; 83 Li, Mitchell, Nault (bib0046) 2014 Tasgetiren, Kizilay, Kandiller (bib0076) 2024; 9 Kirlik, Oguz (bib0038) 2012; 39 Xu, Lü, Cheng (bib0087) 2014; 17 Röck (bib0067) 1984; 31 Keskin, Engin (bib0033) 2021; 36 Yu, Gao, Ma, Pan (bib0089) 2023; 80 Weise (bib0084) 2009 Ishibuchi, Murata (bib0026) 1998 Ye, Li, Nault (bib0088) 2020; 58 Li, Nault, Ye (bib0047) 2019; 273 Mavrotas (bib0051) 2009; 213 Nawaz, Enscore, Ham (bib0056) 1983; 11 Zhao, Hu, Wang, Xu, Zhu, Jonrinaldi (bib0098) 2023; 61 Yüksel, Taşgetiren, Kandiller, Gao (bib0094) 2020; 145 Li, Wang, He, Wang (bib0045) 2023 Khalili (bib0035) 2012; 7 Li, Gao, Duan, Li, Zhang (bib0043) 2022; 53 Pan, Wang, Qian (bib0061) 2009; 36 Rahimi-Vahed, Javadi, Rabbani, Tavakkoli-Moghaddam (bib0065) 2008; 40 Wang, Gao, Lin, Huang, Suganthan (bib0082) 2023; 147 Cai, Lei, Wang, Wang (bib0010) 2023 Chang, Yu, Hu, He, Yu (bib0011) 2022; 10 Ruben, Stützle (bib0068) 2007 Yüksel, Kandiller, Tasgetiren (bib0091) 2023 Gao, Gao, Ma, Tang (bib0021) 2023; 82 Wu, Che (bib0086) 2020; 94 Manne (bib0050) 1960; 8 Talbi (bib0073) 2016; 240 Mitchell (bib0052) 1998 Tavakkoli-Moghaddam, Rahimi-Vahed, Mirzaei (bib0080) 2008; 36 Asefi, Jolai, Rabiee, Araghi (bib0007) 2014; 75 Yüksel, Kandiller, Taşgetiren (bib0092) 2023 Wismer (bib0085) 1972; 20 Sutton, Barto (bib0072) 2018 Nagano, de Almeida, Miyata (bib0055) 2020 Pan, Wang, Qian (bib0062) 2008 Ou, Xing, Yao, Li, Lv, He, Song, Wu, Zhang (bib0057) 2023; 77 Pan, Tasgetiren, Liang (bib0060) 2008; 35 Jolai, Asefi, Rabiee, Ramezani (bib0030) 2013; 20 Zhao, Jiang, Wang (bib0099) 2022 Taşgetiren, Yüksel, Gao, Pan, Li (bib0079) 2019; 39 Yüksel, Kandiller, Taşgetiren (bib0093) 2022 Tan, Goh, Yang, Lee (bib0074) 2006 Zhao, Di, Wang (bib0097) 2023; 53 Kaelbling, Littman, Moore (bib0031) 1996; 4 Dubois-Lacoste, Pagnozzi, Stützle (bib0018) 2017; 81 Karimi-Mamaghan, Mohammadi, Pasdeloup, Meyer (bib0032) 2023; 304 Javadi, Saidi-Mehrabad, Haji, Mahdavi, Jolai, Mahdavi-Amiri (bib0028) 2008; 345 Chen, Li, Xu (bib0013) 2023 Hu, Gong, Pedrycz, Li (bib0025) 2023; 83 Lin, Gao, Wu, Suganthan (bib0048) 2023 Ishibuchi, Murata (bib0027) 1996 Kizilay, Tasgetiren, Oztop, Kandiller, Suganthan (bib0039) 2020 Yüksel, Taşgetiren, Kandiller, Pan (bib0095) 2020 Graham, Lawler, Lenstra, Kan (bib0024) 1979; 5 Khalili (bib0034) 2014; 70 Zhang, Zhu, Tang, Zhou, Gui (bib0096) 2022; 78 Vallada, Ruiz, Framinan (bib0081) 2015; 240 Sapkal, Laha (bib0070) 2013; 68 Tao, Liu (bib0075) 2019 Allahverdi, Aydilek, Aydilek (bib0004) 2022; 13 Oztop, Tasgetiren, Kandiller, Pan (bib0058) 2020 Öztop, Tasgetiren, Kandiller, Pan (bib0059) 2022; 138 Davis (bib0015) 1991 Zhao, Wang, Wang (bib0100) 2023; 20 Allahverdi, Aldowaisan (bib0002) 2004; 152 Chen, Yang, Li, Wang (bib0012) 2020; 149 Qian, Wang, Huang, Wang, Qian, Wang, Huang, Wang (bib0064) 2009; 13 Deb (bib0016) 2001; 16 Liu, Zhu, Li (bib0049) 2008; 2 Coello, Lamont, Van Veldhuizen (bib0014) 2002; 5 Allahverdi, Aydilek (bib0003) 2013; 68 Goldberg, Lingle (bib0022) 1985 Pinedo (bib0063) 2012 Lee, Kim (bib0041) 2022; 60 Jenabi, Naderi, Ghomi (bib0029) 2010; 2010 Yüksel (bib0090) 2019 Watkins (bib0083) 1989 Du, Li, Chen, Duan, Pan (bib0017) 2022 Zhao, Zhang, Cao, Tang (bib0101) 2021; 153 Ruiz, Stützle (bib0069) 2007; 177 Naderi, Sadeghi (bib0054) 2012; 5 Tasgetiren, Pan, Ozturkoglu, Chen (bib0078) 2016 Eshelman (bib0020) 1989 Lei, Guo, Zhao, Wang, Qian, Meng, Tang (bib0042) 2022; 205 Almeida, Nagano (bib0006) 2023; 74 Aydilek, Allahverdi (bib0008) 2012 Manne (10.1016/j.swevo.2024.101617_bib0050) 1960; 8 Yüksel (10.1016/j.swevo.2024.101617_bib0093) 2022 Taşgetiren (10.1016/j.swevo.2024.101617_bib0079) 2019; 39 Rahimi-Vahed (10.1016/j.swevo.2024.101617_bib0065) 2008; 40 Allahverdi (10.1016/j.swevo.2024.101617_bib0005) 2018; 269 Graham (10.1016/j.swevo.2024.101617_bib0024) 1979; 5 Kizilay (10.1016/j.swevo.2024.101617_bib0040) 2019; 12 Hu (10.1016/j.swevo.2024.101617_bib0025) 2023; 83 Talbi (10.1016/j.swevo.2024.101617_bib0073) 2016; 240 Tasgetiren (10.1016/j.swevo.2024.101617_bib0078) 2016 Tavakkoli-Moghaddam (10.1016/j.swevo.2024.101617_bib0080) 2008; 36 Allahverdi (10.1016/j.swevo.2024.101617_bib0002) 2004; 152 Allahverdi (10.1016/j.swevo.2024.101617_bib0004) 2022; 13 Wismer (10.1016/j.swevo.2024.101617_bib0085) 1972; 20 Yüksel (10.1016/j.swevo.2024.101617_bib0094) 2020; 145 Tao (10.1016/j.swevo.2024.101617_bib0075) 2019 Li (10.1016/j.swevo.2024.101617_bib0047) 2019; 273 Tasgetiren (10.1016/j.swevo.2024.101617_bib0076) 2024; 9 Oztop (10.1016/j.swevo.2024.101617_bib0058) 2020 Qian (10.1016/j.swevo.2024.101617_bib0064) 2009; 13 Jolai (10.1016/j.swevo.2024.101617_bib0030) 2013; 20 Naderi (10.1016/j.swevo.2024.101617_bib0053) 2012; 50 Ou (10.1016/j.swevo.2024.101617_bib0057) 2023; 77 Coello (10.1016/j.swevo.2024.101617_bib0014) 2002; 5 Zhao (10.1016/j.swevo.2024.101617_bib0097) 2023; 53 Keskin (10.1016/j.swevo.2024.101617_bib0033) 2021; 36 Xu (10.1016/j.swevo.2024.101617_bib0087) 2014; 17 Kirlik (10.1016/j.swevo.2024.101617_bib0038) 2012; 39 Cai (10.1016/j.swevo.2024.101617_bib0010) 2023 Sutton (10.1016/j.swevo.2024.101617_bib0072) 2018 Tasgetiren (10.1016/j.swevo.2024.101617_bib0077) 2016; 9 Pan (10.1016/j.swevo.2024.101617_bib0060) 2008; 35 Sapkal (10.1016/j.swevo.2024.101617_bib0070) 2013; 68 Wang (10.1016/j.swevo.2024.101617_bib0082) 2023; 147 Ishibuchi (10.1016/j.swevo.2024.101617_bib0027) 1996 Khalili (10.1016/j.swevo.2024.101617_bib0036) 2012; 31 Ren (10.1016/j.swevo.2024.101617_bib0066) 2023 Li (10.1016/j.swevo.2024.101617_bib0043) 2022; 53 Du (10.1016/j.swevo.2024.101617_bib0017) 2022 Naderi (10.1016/j.swevo.2024.101617_bib0054) 2012; 5 Javadi (10.1016/j.swevo.2024.101617_bib0028) 2008; 345 Chen (10.1016/j.swevo.2024.101617_bib0013) 2023 Yüksel (10.1016/j.swevo.2024.101617_bib0090) 2019 Eshelman (10.1016/j.swevo.2024.101617_bib0020) 1989 Subramanian (10.1016/j.swevo.2024.101617_bib0071) 2014; 52 Zhao (10.1016/j.swevo.2024.101617_bib0098) 2023; 61 González (10.1016/j.swevo.2024.101617_bib0023) 2015; 37 Allahverdi (10.1016/j.swevo.2024.101617_bib0003) 2013; 68 Kaelbling (10.1016/j.swevo.2024.101617_bib0031) 1996; 4 Tan (10.1016/j.swevo.2024.101617_bib0074) 2006 Ye (10.1016/j.swevo.2024.101617_bib0088) 2020; 58 Yüksel (10.1016/j.swevo.2024.101617_bib0095) 2020 Lin (10.1016/j.swevo.2024.101617_bib0048) 2023 Liu (10.1016/j.swevo.2024.101617_bib0049) 2008; 2 Zhao (10.1016/j.swevo.2024.101617_bib0099) 2022 Bao (10.1016/j.swevo.2024.101617_bib0009) 2023; 83 Chen (10.1016/j.swevo.2024.101617_bib0012) 2020; 149 Almeida (10.1016/j.swevo.2024.101617_bib0006) 2023; 74 Watkins (10.1016/j.swevo.2024.101617_bib0083) 1989 Jenabi (10.1016/j.swevo.2024.101617_bib0029) 2010; 2010 Asefi (10.1016/j.swevo.2024.101617_bib0007) 2014; 75 Weise (10.1016/j.swevo.2024.101617_bib0084) 2009 Nagano (10.1016/j.swevo.2024.101617_bib0055) 2020 Zhao (10.1016/j.swevo.2024.101617_bib0100) 2023; 20 Mitchell (10.1016/j.swevo.2024.101617_bib0052) 1998 Chang (10.1016/j.swevo.2024.101617_bib0011) 2022; 10 Ruiz (10.1016/j.swevo.2024.101617_bib0069) 2007; 177 Ishibuchi (10.1016/j.swevo.2024.101617_bib0026) 1998 Pinedo (10.1016/j.swevo.2024.101617_bib0063) 2012 Yu (10.1016/j.swevo.2024.101617_bib0089) 2023; 80 Aydilek (10.1016/j.swevo.2024.101617_bib0008) 2012 Röck (10.1016/j.swevo.2024.101617_bib0067) 1984; 31 Gao (10.1016/j.swevo.2024.101617_bib0021) 2023; 82 Zhang (10.1016/j.swevo.2024.101617_bib0096) 2022; 78 Vallada (10.1016/j.swevo.2024.101617_bib0081) 2015; 240 Eiben (10.1016/j.swevo.2024.101617_bib0019) 2015 Deb (10.1016/j.swevo.2024.101617_bib0016) 2001; 16 Lee (10.1016/j.swevo.2024.101617_bib0041) 2022; 60 Davis (10.1016/j.swevo.2024.101617_bib0015) 1991 Kim (10.1016/j.swevo.2024.101617_bib0037) 2023; 68 Karimi-Mamaghan (10.1016/j.swevo.2024.101617_bib0032) 2023; 304 Pan (10.1016/j.swevo.2024.101617_bib0061) 2009; 36 Zhao (10.1016/j.swevo.2024.101617_bib0101) 2021; 153 Wu (10.1016/j.swevo.2024.101617_bib0086) 2020; 94 Pan (10.1016/j.swevo.2024.101617_bib0062) 2008 Kizilay (10.1016/j.swevo.2024.101617_bib0039) 2020 Mavrotas (10.1016/j.swevo.2024.101617_bib0051) 2009; 213 Yüksel (10.1016/j.swevo.2024.101617_bib0091) 2023 Khalili (10.1016/j.swevo.2024.101617_bib0035) 2012; 7 Öztop (10.1016/j.swevo.2024.101617_bib0059) 2022; 138 Yüksel (10.1016/j.swevo.2024.101617_bib0092) 2023 Li (10.1016/j.swevo.2024.101617_bib0045) 2023 Li (10.1016/j.swevo.2024.101617_bib0046) 2014 Dubois-Lacoste (10.1016/j.swevo.2024.101617_bib0018) 2017; 81 Nawaz (10.1016/j.swevo.2024.101617_bib0056) 1983; 11 Ruben (10.1016/j.swevo.2024.101617_bib0068) 2007 Goldberg (10.1016/j.swevo.2024.101617_bib0022) 1985 Khalili (10.1016/j.swevo.2024.101617_bib0034) 2014; 70 Lei (10.1016/j.swevo.2024.101617_bib0042) 2022; 205 |
| References_xml | – volume: 36 start-page: 2498 year: 2009 end-page: 2511 ident: bib0061 article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems publication-title: Comput. Oper. Res. – volume: 50 start-page: 2592 year: 2012 end-page: 2608 ident: bib0053 article-title: Multi-objective no-wait flowshop scheduling problems: models and algorithms publication-title: Int. J. Prod. Res. – volume: 9 start-page: 85 year: 2024 end-page: 100 ident: bib0076 article-title: Solving blocking flowshop scheduling problem with makespan criterion using q-learning-based iterated greedy algorithms publication-title: J. Proj. Manag. – volume: 17 start-page: 271 year: 2014 end-page: 287 ident: bib0087 article-title: Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness publication-title: J. Sched. – volume: 240 start-page: 666 year: 2015 end-page: 677 ident: bib0081 article-title: New hard benchmark for flowshop scheduling problems minimising makespan publication-title: Eur. J. Oper. Res. – volume: 138 year: 2022 ident: bib0059 article-title: Metaheuristics with restart and learning mechanisms for the no-idle flowshop scheduling problem with makespan criterion publication-title: Comput. Oper. Res. – volume: 304 start-page: 1296 year: 2023 end-page: 1330 ident: bib0032 article-title: Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: Eur. J. Oper. Res. – volume: 94 year: 2020 ident: bib0086 article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search publication-title: Omega (Westport) – volume: 177 start-page: 2033 year: 2007 end-page: 2049 ident: bib0069 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: Eur. J. Oper. Res. – volume: 39 start-page: 1506 year: 2012 end-page: 1520 ident: bib0038 article-title: A variable neighborhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine publication-title: Comput. Oper. Res. – volume: 5 start-page: 287 year: 1979 end-page: 326 ident: bib0024 article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey publication-title: Ann. Discret. Math. – volume: 53 start-page: 3337 year: 2023 end-page: 3350 ident: bib0097 article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans. Cybern. – volume: 147 year: 2023 ident: bib0082 article-title: Problem feature based meta-heuristics with Q-learning for solving urban traffic light scheduling problems publication-title: Appl. Soft Comput. – volume: 152 start-page: 132 year: 2004 end-page: 147 ident: bib0002 article-title: No-wait flowshops with bicriteria of makespan and maximum lateness publication-title: Eur. J. Oper. Res. – year: 2023 ident: bib0048 article-title: Scheduling eight-phase urban traffic light problems via ensemble meta-heuristics and Q-learning based local search publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 78 year: 2022 ident: bib0096 article-title: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems publication-title: Robot. Comput. Integr. Manuf. – volume: 52 start-page: 2729 year: 2014 end-page: 2742 ident: bib0071 article-title: An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times publication-title: Int. J. Prod. Res. – year: 1998 ident: bib0052 article-title: An Introduction to Genetic Algorithms – volume: 269 start-page: 590 year: 2018 end-page: 601 ident: bib0005 article-title: No-wait flowshop scheduling problem with two criteria; total tardiness and makespan publication-title: Eur. J. Oper. Res. – volume: 7 start-page: 147 year: 2012 end-page: 154 ident: bib0035 article-title: Multi-objective no-wait hybrid flowshop scheduling problem with transportation times publication-title: Int. J. Comput. Sci. Eng. – volume: 13 start-page: 847 year: 2009 end-page: 869 ident: bib0064 article-title: Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution publication-title: Soft Comput. – volume: 83 start-page: 70 year: 2023 end-page: 74 ident: bib0009 article-title: A collaborative iterated greedy algorithm with reinforcement learning for energy-aware distributed blocking flow-shop scheduling publication-title: Swarm Evol. Comput. – volume: 31 start-page: 232 year: 2012 end-page: 239 ident: bib0036 article-title: A multi-objective electromagnetism algorithm for a bi-objective flowshop scheduling problem publication-title: J. Manuf. Syst. – year: 2022 ident: bib0017 article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – year: 2018 ident: bib0072 article-title: Reinforcement learning: An introduction – volume: 70 start-page: 1591 year: 2014 end-page: 1601 ident: bib0034 article-title: A multi-objective electromagnetism algorithm for a bi-objective hybrid no-wait flowshop scheduling problem publication-title: Int. J. Adv. Manuf. Technol. – volume: 20 start-page: 2305 year: 2023 end-page: 2320 ident: bib0100 article-title: A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous no-wait flowshop scheduling problem with sequence-dependent setup times publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 5 start-page: 79 year: 2002 end-page: 104 ident: bib0014 publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems – year: 2020 ident: bib0058 article-title: A novel general variable neighborhood search through Q-learning for no-idle flowshop scheduling publication-title: 2020 IEEE Congr. Evol. Comput. CEC 2020 - Conf. Proc – volume: 40 start-page: 331 year: 2008 end-page: 346 ident: bib0065 article-title: Engineering Optimization A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem publication-title: Taylor Fr. – volume: 205 year: 2022 ident: bib0042 article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem publication-title: Expert Syst. Appl. – volume: 60 start-page: 2346 year: 2022 end-page: 2368 ident: bib0041 article-title: Reinforcement learning for robotic flow shop scheduling with processing time variations publication-title: Int. J. Prod. Res. – volume: 68 start-page: 160 year: 2023 end-page: 175 ident: bib0037 article-title: Look-ahead based reinforcement learning for robotic flow shop scheduling publication-title: J. Manuf. Syst. – start-page: 519 year: 2008 end-page: 539 ident: bib0062 article-title: A novel multi-objective particle swarm optimization algorithm for no-wait flow shop scheduling problems publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture – start-page: 10 year: 1989 end-page: 19 ident: bib0020 article-title: Biases in the crossover landscape publication-title: Proc. Int. Conf. Genetic Algorithms – start-page: 2911 year: 2016 end-page: 2918 ident: bib0078 article-title: A memetic algorithm with a variable block insertion heuristic for single machine total weighted tardiness problem with sequence dependent setup times publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC) – volume: 240 start-page: 171 year: 2016 end-page: 215 ident: bib0073 article-title: Combining metaheuristics with mathematical programming, constraint programming and machine learning publication-title: Ann. Oper. Res. – volume: 16 year: 2001 ident: bib0016 publication-title: Multi-objective Optimization Using Evolutionary Algorithms – volume: 5 start-page: 33 year: 2012 end-page: 41 ident: bib0054 article-title: A multi-objective simulated annealing algorithm for solving the flexible no-wait flowshop scheduling problem with transportation times publication-title: J. Optim. Ind. Eng. – start-page: 154 year: 1985 end-page: 159 ident: bib0022 article-title: Alleles, loci, and the traveling salesman problem publication-title: Proceedings of the First International Conference on Genetic Algorithms and Their Applications – year: 2019 ident: bib0090 article-title: Master's Thesis – volume: 4 start-page: 237 year: 1996 end-page: 285 ident: bib0031 article-title: Reinforcement learning: a survey publication-title: J. Artif. Intell. Res. – start-page: 554 year: 2023 end-page: 565 ident: bib0092 article-title: Mathematical models for no-wait permutation flowshop scheduling problems publication-title: Towards Industry 5.0 – year: 2023 ident: bib0045 article-title: Deep reinforcement learning for multi-objective combinatorial optimization: a case study on multi-objective traveling salesman problem publication-title: Swarm Evol. Comput. – start-page: 392 year: 1998 end-page: 403 ident: bib0026 article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – start-page: 1 year: 2020 end-page: 8 ident: bib0039 article-title: A Differential Evolution Algorithm With Q-Learning For Solving Engineering Design Problems – year: 2006 ident: bib0074 article-title: Evolving better population distribution and exploration in evolutionary multi-objective optimization publication-title: Eur. J. Oper. Res. – volume: 31 start-page: 336 year: 1984 end-page: 345 ident: bib0067 article-title: The three-machine no-wait flow shop is NP-complete publication-title: J. ACM – start-page: 119 year: 1996 end-page: 124 ident: bib0027 article-title: Multi-objective genetic local search algorithm publication-title: Proceedings of IEEE International Conference on Evolutionary Computation – volume: 80 year: 2023 ident: bib0089 article-title: Improved meta-heuristics with Q-learning for solving distributed assembly permutation flowshop scheduling problems publication-title: Swarm Evol. Comput. – year: 2023 ident: bib0066 article-title: A novel Q-learning based variable neighborhood iterative search algorithm for solving disassembly line scheduling problems publication-title: Swarm Evol. Comput. – year: 2020 ident: bib0055 article-title: An iterated greedy algorithm for the no-wait flowshop scheduling problem to minimize makespan subject to total completion time publication-title: Eng. Optim. – volume: 213 start-page: 455 year: 2009 end-page: 465 ident: bib0051 article-title: Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems publication-title: Appl. Math. Comput. – year: 2007 ident: bib0068 article-title: A Simple and Effective Iterated Greedy Algorithm for the Permutation Flowshop Scheduling Problem – start-page: 1233 year: 2023 end-page: 1251 ident: bib0010 article-title: A novel shuffled frog-leaping algorithm with reinforcement learning for distributed assembly hybrid flow shop scheduling publication-title: Int. J. Prod. Res. – volume: 53 start-page: 2684 year: 2022 end-page: 2693 ident: bib0043 article-title: An improved artificial bee colony algorithm with q-learning for solving permutation flow-shop scheduling problems publication-title: IEEE Trans. Syst. Man, Cybern. Syst. – start-page: 914 year: 2022 end-page: 922 ident: bib0093 article-title: Intelligent valid inequalities for no-wait permutation flowshop scheduling problems publication-title: Intelligent and Fuzzy Systems. INFUS 2022. Lecture Notes in Networks and Systems – volume: 12 start-page: 100 year: 2019 ident: bib0040 article-title: A variable block insertion heuristic for solving permutation flow shop scheduling problem with makespan criterion publication-title: Algorithms – volume: 20 start-page: 689 year: 1972 end-page: 697 ident: bib0085 article-title: Solution of the flowshop-scheduling problem with no intermediate queues publication-title: Oper. Res. – year: 1991 ident: bib0015 article-title: Handbook of Genetic Algorithms – year: 2015 ident: bib0019 article-title: Recombination for Permutation Representation publication-title: Introduction to Evolutionary Computing. Natural Computing Series – volume: 8 start-page: 219 year: 1960 end-page: 223 ident: bib0050 article-title: On the job-shop scheduling problem publication-title: Oper. Res. – year: 2012 ident: bib0063 article-title: Scheduling – year: 2022 ident: bib0099 article-title: A reinforcement learning driven cooperative meta-heuristic algorithm for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent setup time publication-title: IEEE Trans. Ind. Informat. – volume: 82 year: 2023 ident: bib0021 article-title: Ensemble meta-heuristics and Q-learning for solving unmanned surface vessels scheduling problems publication-title: Swarm Evol. Comput. – volume: 10 start-page: 760 year: 2022 ident: bib0011 article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival publication-title: Processes – year: 2009 ident: bib0084 article-title: Global Optimization Algorithms-Theory and Application – volume: 81 start-page: 160 year: 2017 end-page: 166 ident: bib0018 article-title: An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem publication-title: Comput. Oper. Res. – volume: 37 year: 2015 ident: bib0023 article-title: An efficient memetic algorithm for total weighted tardiness minimization in a single machine with setups publication-title: Appl. Soft Comput. Soft Comput – volume: 58 start-page: 3235 year: 2020 end-page: 3251 ident: bib0088 article-title: Trade-off balancing between maximum and total completion times for no-wait flow shop production publication-title: Int. J. Prod. Res. – volume: 36 start-page: 969 year: 2008 end-page: 981 ident: bib0080 article-title: Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm publication-title: Int. J. Adv. Manuf. Technol. – volume: 35 start-page: 2807 year: 2008 end-page: 2839 ident: bib0060 article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem publication-title: Comput. Oper. Res. – volume: 2010 start-page: 1048 year: 2010 end-page: 1056 ident: bib0029 article-title: A bi-objective case of no-wait flowshops publication-title: Proc. 2010 IEEE 5th Int. Conf. Bio-Inspired Comput. Theor. Appl. BIC-TA – volume: 345 start-page: 452 year: 2008 end-page: 467 ident: bib0028 article-title: No-wait flow shop scheduling using fuzzy multi-objective linear programming publication-title: J. Franklin Inst. – volume: 75 start-page: 1017 year: 2014 end-page: 1033 ident: bib0007 article-title: A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop scheduling problem publication-title: J. Adv. Manuf. Technol. – volume: 61 start-page: 2854 year: 2023 end-page: 2872 ident: bib0098 article-title: A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem publication-title: Int. J. Prod. Res. – volume: 13 start-page: 43 year: 2022 end-page: 50 ident: bib0004 article-title: An algorithm for a no-wait flowshop scheduling problem for minimizing total tardiness with a constraint on total completion time publication-title: Int. J. Ind. Eng. Comput. – volume: 74 start-page: 362 year: 2023 end-page: 373 ident: bib0006 article-title: Heuristics to optimize total completion time subject to makespan in no-wait flow shops with sequence-dependent setup times publication-title: J. Oper. Res. Soc. – volume: 9 start-page: 71 year: 2016 ident: bib0077 article-title: A variable block insertion heuristic for the blocking flowshop scheduling problem with total flowtime criterion publication-title: Algorithms – volume: 20 start-page: 861 year: 2013 end-page: 872 ident: bib0030 article-title: Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem publication-title: Sci. Iran. – volume: 68 start-page: 1327 year: 2013 end-page: 1338 ident: bib0070 article-title: A heuristic for no-wait flow shop scheduling publication-title: Int. J. Adv. Manuf. Technol. – volume: 153 year: 2021 ident: bib0101 article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem publication-title: Comput. Ind. Eng. – year: 1989 ident: bib0083 article-title: Learning from Delayed Rewards – volume: 273 start-page: 817 year: 2019 end-page: 830 ident: bib0047 article-title: Trade-off balancing in scheduling for flow shop production and perioperative processes publication-title: Eur. J. Oper. Res. – year: 2023 ident: bib0091 article-title: Bi-criteria optimization of makespan and total flow time in no-wait flowshops publication-title: The 15th International Conference on Multiple Objective Programming MOPGP 2023 – volume: 11 start-page: 91 year: 1983 end-page: 95 ident: bib0056 article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem publication-title: Omega (Westport) – year: 2023 ident: bib0013 article-title: Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions publication-title: Swarm Evol. Comput. – start-page: 2020 year: 2020 ident: bib0095 article-title: Metaheuristics for energy-efficient no-wait flowshops: a trade-off between makespan and total energy consumption publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC) – volume: 39 start-page: 1223 year: 2019 end-page: 1231 ident: bib0079 article-title: A discrete artificial bee colony algorithm for the energy-efficient no-wait flowshop scheduling problem publication-title: Proced. Manuf. – volume: 77 year: 2023 ident: bib0057 article-title: Deep reinforcement learning method for satellite range scheduling problem publication-title: Swarm Evol. Comput. – volume: 149 year: 2020 ident: bib0012 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Comput. Ind. Eng. – volume: 2 start-page: 883 year: 2008 end-page: 888 ident: bib0049 article-title: A new hybrid genetic algorithm for the Bi-criteria no-wait flowshop scheduling problem with makespan and total flow time minimization publication-title: Proc. 7th Int. Conf. Mach. Learn. Cybern. ICMLC – start-page: 457 year: 2019 end-page: 468 ident: bib0075 article-title: Study on no-wait flexible flow shop scheduling with multi-objective publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 11745 LNAI – volume: 68 start-page: 2237 year: 2013 end-page: 2251 ident: bib0003 article-title: Algorithms for no-wait flowshops with total completion time subject to makespan publication-title: Int. J. Adv. Manuf. Technol. – volume: 83 year: 2023 ident: bib0025 article-title: Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization publication-title: Swarm Evol. Comput. – volume: 36 start-page: 1 year: 2021 end-page: 15 ident: bib0033 article-title: A hybrid genetic local and global search algorithm for solving no-wait flow shop problem with bi criteria publication-title: SN Appl. Sci. – start-page: 727 year: 2014 ident: bib0046 article-title: Inconsistent objectives in operating room scheduling publication-title: IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE) – start-page: 351 year: 2012 end-page: 359 ident: bib0008 article-title: Heuristics for no-wait flowshops with makespan subject to mean completion time publication-title: Applied Mathematics and Computation – volume: 145 year: 2020 ident: bib0094 article-title: An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption publication-title: Comput. Ind. Eng. – volume: 177 start-page: 2033 year: 2007 ident: 10.1016/j.swevo.2024.101617_bib0069 article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.12.009 – volume: 5 start-page: 33 year: 2012 ident: 10.1016/j.swevo.2024.101617_bib0054 article-title: A multi-objective simulated annealing algorithm for solving the flexible no-wait flowshop scheduling problem with transportation times publication-title: J. Optim. Ind. Eng. – year: 2007 ident: 10.1016/j.swevo.2024.101617_bib0068 – volume: 35 start-page: 2807 year: 2008 ident: 10.1016/j.swevo.2024.101617_bib0060 article-title: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2006.12.030 – start-page: 914 year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0093 article-title: Intelligent valid inequalities for no-wait permutation flowshop scheduling problems – volume: 36 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.swevo.2024.101617_bib0033 article-title: A hybrid genetic local and global search algorithm for solving no-wait flow shop problem with bi criteria publication-title: SN Appl. Sci. – year: 2020 ident: 10.1016/j.swevo.2024.101617_bib0055 article-title: An iterated greedy algorithm for the no-wait flowshop scheduling problem to minimize makespan subject to total completion time publication-title: Eng. Optim. – year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0091 article-title: Bi-criteria optimization of makespan and total flow time in no-wait flowshops – year: 1991 ident: 10.1016/j.swevo.2024.101617_bib0015 – volume: 2 start-page: 883 year: 2008 ident: 10.1016/j.swevo.2024.101617_bib0049 article-title: A new hybrid genetic algorithm for the Bi-criteria no-wait flowshop scheduling problem with makespan and total flow time minimization – start-page: 2020 year: 2020 ident: 10.1016/j.swevo.2024.101617_bib0095 article-title: Metaheuristics for energy-efficient no-wait flowshops: a trade-off between makespan and total energy consumption – volume: 7 start-page: 147 year: 2012 ident: 10.1016/j.swevo.2024.101617_bib0035 article-title: Multi-objective no-wait hybrid flowshop scheduling problem with transportation times publication-title: Int. J. Comput. Sci. Eng. – volume: 74 start-page: 362 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0006 article-title: Heuristics to optimize total completion time subject to makespan in no-wait flow shops with sequence-dependent setup times publication-title: J. Oper. Res. Soc. doi: 10.1080/01605682.2022.2039569 – year: 2018 ident: 10.1016/j.swevo.2024.101617_bib0072 – volume: 94 year: 2020 ident: 10.1016/j.swevo.2024.101617_bib0086 article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search publication-title: Omega (Westport) – volume: 70 start-page: 1591 year: 2014 ident: 10.1016/j.swevo.2024.101617_bib0034 article-title: A multi-objective electromagnetism algorithm for a bi-objective hybrid no-wait flowshop scheduling problem publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-5376-0 – volume: 60 start-page: 2346 year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0041 article-title: Reinforcement learning for robotic flow shop scheduling with processing time variations publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.1887533 – volume: 240 start-page: 666 year: 2015 ident: 10.1016/j.swevo.2024.101617_bib0081 article-title: New hard benchmark for flowshop scheduling problems minimising makespan publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.07.033 – volume: 68 start-page: 1327 year: 2013 ident: 10.1016/j.swevo.2024.101617_bib0070 article-title: A heuristic for no-wait flow shop scheduling publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-4924-y – volume: 345 start-page: 452 year: 2008 ident: 10.1016/j.swevo.2024.101617_bib0028 article-title: No-wait flow shop scheduling using fuzzy multi-objective linear programming publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2007.12.003 – volume: 240 start-page: 171 year: 2016 ident: 10.1016/j.swevo.2024.101617_bib0073 article-title: Combining metaheuristics with mathematical programming, constraint programming and machine learning publication-title: Ann. Oper. Res. doi: 10.1007/s10479-015-2034-y – start-page: 2911 year: 2016 ident: 10.1016/j.swevo.2024.101617_bib0078 article-title: A memetic algorithm with a variable block insertion heuristic for single machine total weighted tardiness problem with sequence dependent setup times – start-page: 554 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0092 article-title: Mathematical models for no-wait permutation flowshop scheduling problems – volume: 53 start-page: 3337 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0097 article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3192112 – start-page: 154 year: 1985 ident: 10.1016/j.swevo.2024.101617_bib0022 article-title: Alleles, loci, and the traveling salesman problem – year: 2019 ident: 10.1016/j.swevo.2024.101617_bib0090 – start-page: 1233 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0010 article-title: A novel shuffled frog-leaping algorithm with reinforcement learning for distributed assembly hybrid flow shop scheduling publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2022.2031331 – volume: 17 start-page: 271 year: 2014 ident: 10.1016/j.swevo.2024.101617_bib0087 article-title: Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness publication-title: J. Sched. doi: 10.1007/s10951-013-0351-z – year: 2015 ident: 10.1016/j.swevo.2024.101617_bib0019 article-title: Recombination for Permutation Representation doi: 10.1007/978-3-662-44874-8_4 – volume: 16 year: 2001 ident: 10.1016/j.swevo.2024.101617_bib0016 – volume: 5 start-page: 79 year: 2002 ident: 10.1016/j.swevo.2024.101617_bib0014 – volume: 20 start-page: 2305 issue: 4 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0100 article-title: A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous no-wait flowshop scheduling problem with sequence-dependent setup times publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3212786 – volume: 5 start-page: 287 year: 1979 ident: 10.1016/j.swevo.2024.101617_bib0024 article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey publication-title: Ann. Discret. Math. doi: 10.1016/S0167-5060(08)70356-X – volume: 77 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0057 article-title: Deep reinforcement learning method for satellite range scheduling problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101233 – volume: 4 start-page: 237 year: 1996 ident: 10.1016/j.swevo.2024.101617_bib0031 article-title: Reinforcement learning: a survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.301 – volume: 36 start-page: 969 year: 2008 ident: 10.1016/j.swevo.2024.101617_bib0080 article-title: Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-006-0906-7 – volume: 82 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0021 article-title: Ensemble meta-heuristics and Q-learning for solving unmanned surface vessels scheduling problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101358 – volume: 8 start-page: 219 year: 1960 ident: 10.1016/j.swevo.2024.101617_bib0050 article-title: On the job-shop scheduling problem publication-title: Oper. Res. doi: 10.1287/opre.8.2.219 – volume: 39 start-page: 1506 year: 2012 ident: 10.1016/j.swevo.2024.101617_bib0038 article-title: A variable neighborhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.08.022 – volume: 83 start-page: 70 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0009 article-title: A collaborative iterated greedy algorithm with reinforcement learning for energy-aware distributed blocking flow-shop scheduling publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101399 – volume: 152 start-page: 132 year: 2004 ident: 10.1016/j.swevo.2024.101617_bib0002 article-title: No-wait flowshops with bicriteria of makespan and maximum lateness publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(02)00646-X – year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0048 article-title: Scheduling eight-phase urban traffic light problems via ensemble meta-heuristics and Q-learning based local search – year: 2006 ident: 10.1016/j.swevo.2024.101617_bib0074 article-title: Evolving better population distribution and exploration in evolutionary multi-objective optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2004.08.038 – volume: 75 start-page: 1017 year: 2014 ident: 10.1016/j.swevo.2024.101617_bib0007 article-title: A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop scheduling problem publication-title: J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-6177-9 – volume: 9 start-page: 85 year: 2024 ident: 10.1016/j.swevo.2024.101617_bib0076 article-title: Solving blocking flowshop scheduling problem with makespan criterion using q-learning-based iterated greedy algorithms publication-title: J. Proj. Manag. – volume: 36 start-page: 2498 year: 2009 ident: 10.1016/j.swevo.2024.101617_bib0061 article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.10.008 – start-page: 457 year: 2019 ident: 10.1016/j.swevo.2024.101617_bib0075 article-title: Study on no-wait flexible flow shop scheduling with multi-objective – volume: 9 start-page: 71 year: 2016 ident: 10.1016/j.swevo.2024.101617_bib0077 article-title: A variable block insertion heuristic for the blocking flowshop scheduling problem with total flowtime criterion publication-title: Algorithms doi: 10.3390/a9040071 – start-page: 10 year: 1989 ident: 10.1016/j.swevo.2024.101617_bib0020 article-title: Biases in the crossover landscape – volume: 10 start-page: 760 year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0011 article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival publication-title: Processes doi: 10.3390/pr10040760 – year: 1989 ident: 10.1016/j.swevo.2024.101617_bib0083 – volume: 13 start-page: 847 year: 2009 ident: 10.1016/j.swevo.2024.101617_bib0064 article-title: Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution publication-title: Soft Comput. doi: 10.1007/s00500-008-0350-8 – volume: 58 start-page: 3235 year: 2020 ident: 10.1016/j.swevo.2024.101617_bib0088 article-title: Trade-off balancing between maximum and total completion times for no-wait flow shop production publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1630777 – year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0013 article-title: Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101414 – volume: 273 start-page: 817 year: 2019 ident: 10.1016/j.swevo.2024.101617_bib0047 article-title: Trade-off balancing in scheduling for flow shop production and perioperative processes publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.08.048 – volume: 13 start-page: 43 year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0004 article-title: An algorithm for a no-wait flowshop scheduling problem for minimizing total tardiness with a constraint on total completion time publication-title: Int. J. Ind. Eng. Comput. – volume: 149 year: 2020 ident: 10.1016/j.swevo.2024.101617_bib0012 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106778 – year: 2012 ident: 10.1016/j.swevo.2024.101617_bib0063 – start-page: 1 year: 2020 ident: 10.1016/j.swevo.2024.101617_bib0039 – volume: 2010 start-page: 1048 year: 2010 ident: 10.1016/j.swevo.2024.101617_bib0029 article-title: A bi-objective case of no-wait flowshops – year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0099 article-title: A reinforcement learning driven cooperative meta-heuristic algorithm for energy-efficient distributed no-wait flow-shop scheduling with sequence-dependent setup time publication-title: IEEE Trans. Ind. Informat. – volume: 37 year: 2015 ident: 10.1016/j.swevo.2024.101617_bib0023 article-title: An efficient memetic algorithm for total weighted tardiness minimization in a single machine with setups publication-title: Appl. Soft Comput. Soft Comput – year: 2009 ident: 10.1016/j.swevo.2024.101617_bib0084 – volume: 31 start-page: 336 year: 1984 ident: 10.1016/j.swevo.2024.101617_bib0067 article-title: The three-machine no-wait flow shop is NP-complete publication-title: J. ACM doi: 10.1145/62.65 – volume: 39 start-page: 1223 year: 2019 ident: 10.1016/j.swevo.2024.101617_bib0079 article-title: A discrete artificial bee colony algorithm for the energy-efficient no-wait flowshop scheduling problem publication-title: Proced. Manuf. doi: 10.1016/j.promfg.2020.01.347 – volume: 145 year: 2020 ident: 10.1016/j.swevo.2024.101617_bib0094 article-title: An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106431 – volume: 52 start-page: 2729 year: 2014 ident: 10.1016/j.swevo.2024.101617_bib0071 article-title: An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2014.883472 – start-page: 519 year: 2008 ident: 10.1016/j.swevo.2024.101617_bib0062 article-title: A novel multi-objective particle swarm optimization algorithm for no-wait flow shop scheduling problems – volume: 20 start-page: 861 year: 2013 ident: 10.1016/j.swevo.2024.101617_bib0030 article-title: Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem publication-title: Sci. Iran. – volume: 11 start-page: 91 year: 1983 ident: 10.1016/j.swevo.2024.101617_bib0056 article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem publication-title: Omega (Westport) – volume: 213 start-page: 455 year: 2009 ident: 10.1016/j.swevo.2024.101617_bib0051 article-title: Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems publication-title: Appl. Math. Comput. – year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0066 article-title: A novel Q-learning based variable neighborhood iterative search algorithm for solving disassembly line scheduling problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101338 – volume: 153 year: 2021 ident: 10.1016/j.swevo.2024.101617_bib0101 article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107082 – year: 2020 ident: 10.1016/j.swevo.2024.101617_bib0058 article-title: A novel general variable neighborhood search through Q-learning for no-idle flowshop scheduling – volume: 12 start-page: 100 year: 2019 ident: 10.1016/j.swevo.2024.101617_bib0040 article-title: A variable block insertion heuristic for solving permutation flow shop scheduling problem with makespan criterion publication-title: Algorithms doi: 10.3390/a12050100 – start-page: 392 year: 1998 ident: 10.1016/j.swevo.2024.101617_bib0026 article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling – start-page: 119 year: 1996 ident: 10.1016/j.swevo.2024.101617_bib0027 article-title: Multi-objective genetic local search algorithm – volume: 20 start-page: 689 year: 1972 ident: 10.1016/j.swevo.2024.101617_bib0085 article-title: Solution of the flowshop-scheduling problem with no intermediate queues publication-title: Oper. Res. doi: 10.1287/opre.20.3.689 – volume: 50 start-page: 2592 year: 2012 ident: 10.1016/j.swevo.2024.101617_bib0053 article-title: Multi-objective no-wait flowshop scheduling problems: models and algorithms publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2010.543937 – volume: 83 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0025 article-title: Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101387 – volume: 61 start-page: 2854 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0098 article-title: A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed assembly no-wait flow shop scheduling problem publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2022.2070786 – volume: 40 start-page: 331 year: 2008 ident: 10.1016/j.swevo.2024.101617_bib0065 article-title: Engineering Optimization A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem publication-title: Taylor Fr. – volume: 80 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0089 article-title: Improved meta-heuristics with Q-learning for solving distributed assembly permutation flowshop scheduling problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101335 – volume: 205 year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0042 article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117796 – start-page: 727 year: 2014 ident: 10.1016/j.swevo.2024.101617_bib0046 article-title: Inconsistent objectives in operating room scheduling – volume: 68 start-page: 160 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0037 article-title: Look-ahead based reinforcement learning for robotic flow shop scheduling publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2023.02.002 – year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0045 article-title: Deep reinforcement learning for multi-objective combinatorial optimization: a case study on multi-objective traveling salesman problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101398 – volume: 147 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0082 article-title: Problem feature based meta-heuristics with Q-learning for solving urban traffic light scheduling problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110714 – year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0017 article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 138 year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0059 article-title: Metaheuristics with restart and learning mechanisms for the no-idle flowshop scheduling problem with makespan criterion publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105616 – volume: 304 start-page: 1296 year: 2023 ident: 10.1016/j.swevo.2024.101617_bib0032 article-title: Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2022.03.054 – volume: 81 start-page: 160 year: 2017 ident: 10.1016/j.swevo.2024.101617_bib0018 article-title: An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.12.021 – volume: 269 start-page: 590 year: 2018 ident: 10.1016/j.swevo.2024.101617_bib0005 article-title: No-wait flowshop scheduling problem with two criteria; total tardiness and makespan publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.11.070 – volume: 53 start-page: 2684 year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0043 article-title: An improved artificial bee colony algorithm with q-learning for solving permutation flow-shop scheduling problems publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2022.3219380 – start-page: 351 year: 2012 ident: 10.1016/j.swevo.2024.101617_bib0008 article-title: Heuristics for no-wait flowshops with makespan subject to mean completion time – volume: 31 start-page: 232 year: 2012 ident: 10.1016/j.swevo.2024.101617_bib0036 article-title: A multi-objective electromagnetism algorithm for a bi-objective flowshop scheduling problem publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2011.08.002 – volume: 78 year: 2022 ident: 10.1016/j.swevo.2024.101617_bib0096 article-title: Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2022.102412 – volume: 68 start-page: 2237 year: 2013 ident: 10.1016/j.swevo.2024.101617_bib0003 article-title: Algorithms for no-wait flowshops with total completion time subject to makespan publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-4836-x – year: 1998 ident: 10.1016/j.swevo.2024.101617_bib0052 |
| SSID | ssj0000602559 |
| Score | 2.3951411 |
| Snippet | Combining Deep Reinforcement Learning and meta-heuristic techniques represents a new research direction for enhancing the search capabilities of meta-heuristic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101617 |
| SubjectTerms | Bi-criteria heuristic optimization Bi-criteria scheduling problems Makespan Mixed-integer linear programming No-wait flowshop scheduling problem Total flow time |
| Title | Q-learning guided algorithms for bi-criteria minimization of total flow time and makespan in no-wait permutation flowshops |
| URI | https://dx.doi.org/10.1016/j.swevo.2024.101617 |
| Volume | 89 |
| WOSCitedRecordID | wos001255634500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMXyirKpjnQU5jI9sTbsQ2NWEoFokjhZI3H48atlyhrxd_hj_LGM-M4FEX0wMWyLHti-335_M2btyD0xqKpxROLEcaoSwbAf4SJgBKLOVJPUODl2tKn_tlZMB6HXzqdXyYXZpX7ZRlcX4fT_2pqOAbGlqmztzB3MygcgH0wOmzB7LD9J8N_Jblxd1wsswQEJcsvqlm2mKjaC704I0AVskYz68nKIoVOxazDBSqZHJnmstFcVqilhYJdCeCdOiSyrMiaZXW142JpAhXh7Pmkms7bQvfbms1U9w2x0o8r4_N43URia_X_h1yrPx5ezVW8wDtW5M2n4pNMujHJiqd1samNq-Fw6B6GI5kmN1Pc-VlMCrHojWD4Sdub4QyaWDpNeg5MQQmoxi2GVk2GNMVKd4NK97zB_soRcdmfr-HR-nL4_ubs7Vrbf3wDm8hEE_R2GdWDRHKQSA1yB-05vhsGXbR39OFk_LFx5VlePTGTbQzN3Zv6VnUk4Y3b-bsGauma8wfovp6Q4CMFpIeoI8pHaN80-8Ca-x-jnxtcYYUrvMEVBlzhFq5wG1e4SnGNKyyRgiWuMNgVG1zhrMQaV7iFK9zg6gn6Pjo5H74nunEH4aCIFsRPOchQLuCtuIms7sO9WNKAnaSh8FKHcsemcWDFXkxdEOSWx33uMpsJ6rmcO_Qp6pZVKZ4hnMRUtkf3KTDeIKRhIBfKqc1CkN12Yg8OkGNeZcR1VXvZXCWPdljyAL1tLpqqoi67T_eMjSKtS5XejAB4uy58frvfeYHubf4SL1F3MVuKV-guXy2y-ey1Rt1vmhyz-w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Q-learning+guided+algorithms+for+bi-criteria+minimization+of+total+flow+time+and+makespan+in+no-wait+permutation+flowshops&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Y%C3%BCksel%2C+Damla&rft.au=Kandiller%2C+Levent&rft.au=Ta%C5%9Fgetiren%2C+Mehmet+Fatih&rft.date=2024-08-01&rft.issn=2210-6502&rft.volume=89&rft.spage=101617&rft_id=info:doi/10.1016%2Fj.swevo.2024.101617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2024_101617 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |