Heat and mass transmission through the nanofluids flow subject to exponential heat source/sink and thermal convective condition across Riga plates

The analysis of the squeezing nanofluid flow across bounded domains received great attention from researchers and engineers due to its tremendous application in automobiles, energy exchangers, and aerodynamics. In the current analysis, we are using double Riga plates parallel to each other, in order...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering research & design Vol. 207; pp. 458 - 465
Main Authors: Ali, Bilal, Jubair, Sidra, Fouly, Ahmed
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2024
Subjects:
ISSN:0263-8762
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The analysis of the squeezing nanofluid flow across bounded domains received great attention from researchers and engineers due to its tremendous application in automobiles, energy exchangers, and aerodynamics. In the current analysis, we are using double Riga plates parallel to each other, in order to induce the squeezing nanofluids flow with the significances of chemical reaction, thermal radiation, and heat source/sink. The nanoliquid has been prepared by the dispersion of Copper (Cu) nanoparticles (NPs) in kerosene oil (C12H26C15H32) and water (H2O). The nanofluid flow has been modeled in form of nonlinear partial differential equations, which are further convert into the dimensionless form of ordinary differential equations. The obtained set of non-dimensional equations is numerically resolved by using the Matlab built-in package bvp4c. The results are compared to another numerical technique for accuracy purposes. The detailed results are presented in Figures. It has been detected that the energy field of nanofluid is enriched with the effect of heat source/sink component. Moreover, the velocity curve magnifies with the variation of the squeezing parameter of Riga plates, whereas declines with the accumulation of Cu-NPs in both types of base fluid (C12H26C15H32 and H2O). [Display omitted] •Numerical to analysis on squeezing nanoliquid flow across parallel Riga plates.•Squeezing nanofluids flow with energy and mass transference has been examined.•The nanoliquid has been prepared by the dispersion of Cu-NPs in C12H26C15H32 and H2O.•The nanoliquid flow model was 1st simplified to non-dimensional form and then numerically elucidated through the bvp4c package.•The results are compared to the ND-solve technique for accuracy purposes.
AbstractList The analysis of the squeezing nanofluid flow across bounded domains received great attention from researchers and engineers due to its tremendous application in automobiles, energy exchangers, and aerodynamics. In the current analysis, we are using double Riga plates parallel to each other, in order to induce the squeezing nanofluids flow with the significances of chemical reaction, thermal radiation, and heat source/sink. The nanoliquid has been prepared by the dispersion of Copper (Cu) nanoparticles (NPs) in kerosene oil (C12H26C15H32) and water (H2O). The nanofluid flow has been modeled in form of nonlinear partial differential equations, which are further convert into the dimensionless form of ordinary differential equations. The obtained set of non-dimensional equations is numerically resolved by using the Matlab built-in package bvp4c. The results are compared to another numerical technique for accuracy purposes. The detailed results are presented in Figures. It has been detected that the energy field of nanofluid is enriched with the effect of heat source/sink component. Moreover, the velocity curve magnifies with the variation of the squeezing parameter of Riga plates, whereas declines with the accumulation of Cu-NPs in both types of base fluid (C12H26C15H32 and H2O). [Display omitted] •Numerical to analysis on squeezing nanoliquid flow across parallel Riga plates.•Squeezing nanofluids flow with energy and mass transference has been examined.•The nanoliquid has been prepared by the dispersion of Cu-NPs in C12H26C15H32 and H2O.•The nanoliquid flow model was 1st simplified to non-dimensional form and then numerically elucidated through the bvp4c package.•The results are compared to the ND-solve technique for accuracy purposes.
Author Fouly, Ahmed
Ali, Bilal
Jubair, Sidra
Author_xml – sequence: 1
  givenname: Bilal
  surname: Ali
  fullname: Ali, Bilal
  email: bilal.official@csu.edu.cn
  organization: School of Mathematics and Statistics, Central South University Changsha, 410083, China
– sequence: 2
  givenname: Sidra
  surname: Jubair
  fullname: Jubair, Sidra
  organization: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Ahmed
  surname: Fouly
  fullname: Fouly, Ahmed
  organization: Department of Mechanical Engineering, College of Engineering, King Saud University, PO Box 800, Riyadh 11451, Saudi Arabia
BookMark eNqFkM1OAyEURlnUxLb6BG54gZnC0PlbuDCNWpMmJkbXhGEuLeMMNECrvoZPLFNdudDVJYHz3Y8zQxNjDSB0RUlKCS0WXSp34No0I9kyJUVKWDlBU5IVLKnKIjtHM-87Qggtl9UUfa5BBCxMiwfhPQ5OGD9o77U1OOycPWx3cQI2wljVH3TrsertG_aHpgMZcLAY3vexgQla9Hg3pnl7cBIWXpvXU3Lk3RAvpTXHyOgjjMdWh3GJkM7GxU96K_C-FwH8BTpTovdw-TPn6OXu9nm1TjaP9w-rm00iGWEhKesScpktVZORZdsQRZssq5iQtJaSNE2uSpk3UOWK5fEJFQVVBZN5RWtR1lXN5qj-zj01cKC41EGMpaIF3XNK-CiUd_wklI9COSl4FBpZ9ovdOz0I9_EPdf1NQfzWUYPjXmowElrtohjeWv0n_wUr15lk
CitedBy_id crossref_primary_10_1007_s10973_024_13711_6
crossref_primary_10_1007_s10973_025_14174_z
crossref_primary_10_1016_j_jrras_2025_101572
crossref_primary_10_1007_s10973_024_13875_1
crossref_primary_10_1007_s10973_025_14159_y
crossref_primary_10_1016_j_jrras_2025_101512
crossref_primary_10_1016_j_jrras_2024_101267
crossref_primary_10_1016_j_jrras_2025_101678
crossref_primary_10_1016_j_solmat_2025_113866
crossref_primary_10_1016_j_jrras_2024_101248
crossref_primary_10_1016_j_jrras_2025_101477
crossref_primary_10_1016_j_jrras_2025_101620
crossref_primary_10_1016_j_cherd_2025_07_012
crossref_primary_10_1007_s10973_024_13918_7
crossref_primary_10_1007_s10973_024_13919_6
crossref_primary_10_1007_s10973_025_14215_7
crossref_primary_10_1016_j_jrras_2025_101581
crossref_primary_10_1007_s10973_024_13787_0
crossref_primary_10_1080_10407782_2025_2541813
crossref_primary_10_1177_16878132241283290
crossref_primary_10_1007_s10973_024_13902_1
crossref_primary_10_1007_s10973_025_14567_0
crossref_primary_10_1007_s41939_025_00763_w
crossref_primary_10_1007_s10973_025_14172_1
Cites_doi 10.1016/j.jics.2023.100907
10.1080/01430750.2021.1995490
10.1016/j.icheatmasstransfer.2021.105761
10.1016/j.asej.2022.101887
10.1016/j.jmmm.2023.170949
10.1080/01430750.2022.2063387
10.3390/math10173157
10.1002/fld.5216
10.1177/00368504231176151
10.1007/s12043-020-02053-1
10.1007/s13369-021-05926-8
10.1002/qre.2864
10.1016/j.csite.2021.101229
10.1080/02286203.2022.2035948
10.1080/17455030.2022.2102271
10.1038/s41598-023-27562-y
10.3390/sym15010199
10.1063/5.0141532
10.1007/s13369-020-04979-5
10.1016/j.molliq.2016.11.089
10.1080/02286203.2022.2091973
10.1021/acsomega.2c03919
10.1016/j.heliyon.2023.e15916
10.1080/01932691.2021.1942035
10.1063/5.0154720
10.1142/S0217979224504241
10.1038/s41598-021-03062-9
10.3390/sym14112419
10.1007/s12043-023-02702-1
10.1063/1.4983014
10.3390/e22010018
10.1016/j.cjph.2022.04.004
10.1177/23977914231217470
10.1038/s41598-022-20583-z
10.1007/s10973-023-12723-y
10.1016/j.rineng.2023.101536
10.1088/1361-6528/ace912
10.1142/S0217979222502058
10.1007/s10973-023-12397-6
10.1016/j.ijheatmasstransfer.2016.01.059
10.1155/2022/1854381
10.1515/ntrev-2022-0533
10.1515/ntrev-2023-0194
10.3390/math11051266
10.3390/sym14071312
10.3390/sym15010166
10.3390/sym15030725
10.3390/math10091542
10.1080/01430750.2021.1873854
10.1016/j.aej.2022.11.016
ContentType Journal Article
Copyright 2024 Institution of Chemical Engineers
Copyright_xml – notice: 2024 Institution of Chemical Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.cherd.2024.06.037
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 465
ExternalDocumentID 10_1016_j_cherd_2024_06_037
S0263876224003678
GroupedDBID --K
--M
-QF
-~X
.~1
0R~
1B1
1~.
1~5
29B
3EH
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
ABDBF
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFO
ACIWK
ACRLP
ACRPL
ACUHS
ADBBV
ADEWK
ADEZE
ADMLS
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KOM
M41
ML-
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSH
SSR
SSZ
T5K
T9H
TUS
UNMZH
VH1
~02
~8M
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-797e5c24fb204db0f1b2283ac19cc0bb5f7c5be85f35b201a61f63c5819a79893
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001259551300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8762
IngestDate Sat Nov 29 08:08:20 EST 2025
Tue Nov 18 21:54:05 EST 2025
Sun Apr 06 06:53:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Energy utilization
Thermal radiation
Heat source/sink
Numerical method and algorithms
Riga plates
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-797e5c24fb204db0f1b2283ac19cc0bb5f7c5be85f35b201a61f63c5819a79893
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_cherd_2024_06_037
crossref_primary_10_1016_j_cherd_2024_06_037
elsevier_sciencedirect_doi_10_1016_j_cherd_2024_06_037
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Chemical engineering research & design
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yu, Wang (bib58) 2022
Sindhu, Atangana (bib50) 2021
Nadeem, Ishtiaq, Almutairi, Ghazwani (bib36) 2022
Raizah, Alrabaiah, Bilal, Junsawang, Galal (bib39) 2022
Alrabaiah, Bilal, Khan, Muhammad, Legas (bib17) 2021
Bhatti, Al-Khaled, Khan, Chammam, Awais (bib22) 2023
Shafiq, Mebarek-Oudina, Sindhu, Rasool (bib46) 2022
Adnan, Abbas, Said, Mishra, Mahmood, Bilal (bib4) 2024
AlBaidani, Mishra, Ahmad, Eldin, Haq (bib7) 2023
Adnan (bib3) 2022
Sheikholeslami, Hayat, Alsaedi (bib47) 2016
Waqas, Almutiri, Yagoob, Ahmad, Bilal (bib57) 2024
Shoaib, Naz, Nisar, Raja, Aslam, Ahmad (bib48) 2023
Swain, Mishra (bib54) 2022
Rooman, ur Rehman, Shah, Alshehri, Alshehri (bib42) 2023
Shafiq, Çolak, Sindhu (bib44) 2023
Bani-Fwaz, Adnan, Mahmood, Bilal, EI-Zahhar, Khan, Niazai (bib21) 2024
Adnan, Ashraf, Alghtani, Khan, Andualem (bib5) 2022
Ali, Jubair, Aluraikan, Abd El-Rahman, Eldin, Khalifa (bib12) 2023
Bilal, Ullah, Alam, Weera, Galal (bib23) 2022
Asogwa, Alsulami, Prasannakumara, Muhammad (bib18) 2022
B. Johnson, B. I (bib20) 2023
Shafiq, Çolak, Sindhu (bib43) 2023
Ali, B., Jubair, S., & Siddiqui, M.I.H. Numerical Simulation of 3D Darcy-Forchheimer hybrid nanofluid flow with heat source/sink and partial slip effect across a spinning disc. J. Porous Media.
Sun, Animasaun, Swain, Shah, Wakif, Olanrewaju (bib51) 2022
ZeinEldin, Ullah, Khalifa, Ayaz (bib59) 2023
Rana, Mahanthesh, Nisar, Swain, Devi (bib40) 2021
Ali, Gul, Khan, Bilal, Usman, Shuaib, Gul (bib9) 2023
Assiri, Aziz Elsebaee, Alqahtani, Bilal, Ali, Eldin (bib19) 2023
Krishna, Ahammad, Chamkha (bib33) 2021
Hayat, Khan, Imtiaz, Alsaedi (bib31) 2017
Ahmad, Alnahdi, Bilal, Daher Albalwi, Faqihi (bib6) 2024
Naseem, Shafiq, Zhao, Naseem (bib37) 2017
Rasool, Zhang, Chamkha, Shafiq, Tlili, Shahzadi (bib41) 2019
Swain, Mahanthesh (bib53) 2021
Allehiany, Bilal, Alfwzan, Ali, Eldin (bib16) 2023
Ali, Shafiq, Alanazi, Hendi, Hussein, Shah (bib15) 2023
Ali, Jubair, Fathima, Akhter, Rafique, Mahmood (bib13) 2023
Swain, K., & Nisar, K.S. (2024). Time-dependent stagnation point flow of nano Casson fluid with Joule heating over an elongated surface subjected to viscous heating and exponential space-based heat source/sink: Boungiorno model. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 23977914231217470.
Ali, Jubair, Mahmood, Koka, Gani (bib14) 2024
Dharmaiah, Mebarek-Oudina, Kumar, Kala (bib26) 2023
Hayat, Khan, Imtiaz, Alsaedi (bib30) 2016
Shafiq, Mebarek-Oudina, Sindhu, Abidi (bib45) 2021
Çolak, Shafiq, Sindhu (bib24) 2022
Sindhu, Alessa, Eswaramoorthi, Loganathan (bib49) 2023
Dawar, Islam, Shah (bib25) 2022
Abdelsalam, Alsharif, Abd Elmaboud, Abdellateef (bib2) 2023
Khan, Zaib, Ishak, Waini, Madhukesh, Raizah, Galal (bib32) 2022
Ali, Jubair (bib11) 2023
Nayak, Mishra (bib38) 2021
Thumma, Ahammad, Swain, Animasauan, Mishra (bib56) 2022
Algehyne, Saeed, Arif, Bilal, Kumam, Galal (bib8) 2023
Faizan, Ali, Loganathan, Zaib, Reddy, Abdelsalam (bib28) 2022
Loganathan, Eswaramoorthi, Chinnasamy, Jain, Sivasakthivel, Ali, Devi (bib34) 2023
Haq, Bilal, Ahammad, Ghoneim, Ali, Weera (bib29) 2022
Abd-Alla, Abo-Dahab, Thabet, Bayones, Abdelhafez (bib1) 2023
Murtaza, Kumam, Bilal, Sutthibutpong, Rujisamphan, Ahmad (bib35) 2023
Swain, Animasaun, Ibrahim (bib52) 2022
Eswaramoorthi, Loganathan, Faisal, Botmart, Shah (bib27) 2023
Loganathan (10.1016/j.cherd.2024.06.037_bib34) 2023; 15
Allehiany (10.1016/j.cherd.2024.06.037_bib16) 2023; 13
Abd-Alla (10.1016/j.cherd.2024.06.037_bib1) 2023; 66
Abdelsalam (10.1016/j.cherd.2024.06.037_bib2) 2023; 9
Swain (10.1016/j.cherd.2024.06.037_bib52) 2022; 43
Shoaib (10.1016/j.cherd.2024.06.037_bib48) 2023; 43
Swain (10.1016/j.cherd.2024.06.037_bib53) 2021; 46
Shafiq (10.1016/j.cherd.2024.06.037_bib43) 2023; 95
Ali (10.1016/j.cherd.2024.06.037_bib12) 2023; 20
Nadeem (10.1016/j.cherd.2024.06.037_bib36) 2022; 36
Algehyne (10.1016/j.cherd.2024.06.037_bib8) 2023; 13
Asogwa (10.1016/j.cherd.2024.06.037_bib18) 2022; 131
Krishna (10.1016/j.cherd.2024.06.037_bib33) 2021; 27
Sheikholeslami (10.1016/j.cherd.2024.06.037_bib47) 2016; 96
Thumma (10.1016/j.cherd.2024.06.037_bib56) 2022
Haq (10.1016/j.cherd.2024.06.037_bib29) 2022; 7
Nayak (10.1016/j.cherd.2024.06.037_bib38) 2021; 95
Dawar (10.1016/j.cherd.2024.06.037_bib25) 2022; 43
Shafiq (10.1016/j.cherd.2024.06.037_bib45) 2021; 136
Yu (10.1016/j.cherd.2024.06.037_bib58) 2022; 10
Faizan (10.1016/j.cherd.2024.06.037_bib28) 2022; 10
10.1016/j.cherd.2024.06.037_bib10
Rooman (10.1016/j.cherd.2024.06.037_bib42) 2023
10.1016/j.cherd.2024.06.037_bib55
Bhatti (10.1016/j.cherd.2024.06.037_bib22) 2023; 44
Shafiq (10.1016/j.cherd.2024.06.037_bib44) 2023; 54
Ali (10.1016/j.cherd.2024.06.037_bib11) 2023; 148
Waqas (10.1016/j.cherd.2024.06.037_bib57) 2024; 98
Rana (10.1016/j.cherd.2024.06.037_bib40) 2021; 46
Shafiq (10.1016/j.cherd.2024.06.037_bib46) 2022; 29
Swain (10.1016/j.cherd.2024.06.037_bib54) 2022; 43
Çolak (10.1016/j.cherd.2024.06.037_bib24) 2022; 77
Rasool (10.1016/j.cherd.2024.06.037_bib41) 2019; 22
AlBaidani (10.1016/j.cherd.2024.06.037_bib7) 2023; 45
Naseem (10.1016/j.cherd.2024.06.037_bib37) 2017; 7
Assiri (10.1016/j.cherd.2024.06.037_bib19) 2023; 13
Ahmad (10.1016/j.cherd.2024.06.037_bib6) 2024; 13
Sun (10.1016/j.cherd.2024.06.037_bib51) 2022; 102
Sindhu (10.1016/j.cherd.2024.06.037_bib49) 2023; 15
B. Johnson (10.1016/j.cherd.2024.06.037_bib20) 2023; 43
Eswaramoorthi (10.1016/j.cherd.2024.06.037_bib27) 2023; 14
Ali (10.1016/j.cherd.2024.06.037_bib13) 2023; 106
Ali (10.1016/j.cherd.2024.06.037_bib9) 2023
ZeinEldin (10.1016/j.cherd.2024.06.037_bib59) 2023; 15
Khan (10.1016/j.cherd.2024.06.037_bib32) 2022; 14
Adnan (10.1016/j.cherd.2024.06.037_bib5) 2022; 2022
Ali (10.1016/j.cherd.2024.06.037_bib15) 2023; 11
Raizah (10.1016/j.cherd.2024.06.037_bib39) 2022; 12
Ali (10.1016/j.cherd.2024.06.037_bib14) 2024
Adnan (10.1016/j.cherd.2024.06.037_bib3) 2022
Alrabaiah (10.1016/j.cherd.2024.06.037_bib17) 2021; 11
Bani-Fwaz (10.1016/j.cherd.2024.06.037_bib21) 2024
Bilal (10.1016/j.cherd.2024.06.037_bib23) 2022; 14
Adnan (10.1016/j.cherd.2024.06.037_bib4) 2024; 149
Murtaza (10.1016/j.cherd.2024.06.037_bib35) 2023; 12
Sindhu (10.1016/j.cherd.2024.06.037_bib50) 2021; 37
Dharmaiah (10.1016/j.cherd.2024.06.037_bib26) 2023; 100
Hayat (10.1016/j.cherd.2024.06.037_bib31) 2017; 225
Hayat (10.1016/j.cherd.2024.06.037_bib30) 2016
References_xml – start-page: 725
  year: 2023
  ident: bib34
  article-title: Heat and mass transport in casson nanofluid flow over a 3-D riga plate with cattaneo-christov double flux: a computational modeling through analytical method
  publication-title: Symmetry
– start-page: 513
  year: 2016
  end-page: 524
  ident: bib47
  article-title: MHD free convection of Al2O3–water nanofluid considering thermal radiation
  publication-title: Int. J. Heat. Mass Transf.
– year: 2017
  ident: bib37
  article-title: MHD biconvective flow of Powell Eyring nanofluid over stretched surface
  publication-title: Aip Adv.
– start-page: 199
  year: 2023
  ident: bib49
  article-title: Comparative analysis of darcy–forchheimer radiative flow of a water-based Al2O3-Ag/TiO2 hybrid nanofluid over a riga plate with heat sink/source
  publication-title: Symmetry
– start-page: 27
  year: 2024
  ident: bib57
  article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink
  publication-title: Pramana
– start-page: 1542
  year: 2022
  ident: bib58
  article-title: An optimal investigation of convective fluid flow suspended by carbon nanotubes and thermal radiation impact
  publication-title: Mathematics
– year: 2022
  ident: bib18
  article-title: Double diffusive convection and cross diffusion effects on Casson fluid over a Lorentz force driven Riga plate in a porous medium with heat sink: An analytical approach
  publication-title: Int. Commun. Heat. Mass Transf.
– start-page: 18
  year: 2019
  ident: bib41
  article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface
  publication-title: Entropy
– start-page: 5810
  year: 2022
  end-page: 5824
  ident: bib54
  article-title: Flow and heat transfer analysis of water-based copper nanofluid over a nonlinearly stretching sheet: a numerical approach
  publication-title: Int. J. Ambient Energy
– start-page: 1
  year: 2022
  end-page: 11
  ident: bib5
  article-title: Thermal transport in radiative nanofluids by considering the influence of convective heat condition
  publication-title: J. Nanomater.
– year: 2023
  ident: bib12
  article-title: Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface
  publication-title: Results Eng.
– start-page: 16280
  year: 2022
  ident: bib39
  article-title: Numerical study of non-Darcy hybrid nanofluid flow with the effect of heat source and hall current over a slender extending sheet
  publication-title: Sci. Rep.
– start-page: 4045
  year: 2022
  end-page: 4057
  ident: bib52
  article-title: Influence of exponential space-based heat source and Joule heating on nanofluid flow over an elongating/shrinking sheet with an inclined magnetic field
  publication-title: Int. J. Ambient Energy
– start-page: 11203
  year: 2023
  end-page: 11213
  ident: bib11
  article-title: Motile microorganism-based ternary nanofluid flow with the significance of slip condition and magnetic effect over a Riga plate
  publication-title: J. Therm. Anal. Calorim.
– start-page: 1
  year: 2022
  end-page: 15
  ident: bib3
  article-title: Heat transfer inspection in [(ZnO-MWCNTs)/water-EG (50: 50)] hnf with thermal radiation ray and convective condition over a Riga surface
  publication-title: Waves Random Complex Media
– year: 2023
  ident: bib26
  article-title: Nuclear reactor application on Jeffrey fluid flow with Falkner-skan factor, Brownian and thermophoresis, non linear thermal radiation impacts past a wedge
  publication-title: J. Indian Chem. Soc.
– start-page: 13675
  year: 2023
  ident: bib8
  article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach
  publication-title: Sci. Rep.
– reference: Ali, B., Jubair, S., & Siddiqui, M.I.H. Numerical Simulation of 3D Darcy-Forchheimer hybrid nanofluid flow with heat source/sink and partial slip effect across a spinning disc. J. Porous Media.
– start-page: 12405
  year: 2021
  end-page: 12415
  ident: bib40
  article-title: Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study
  publication-title: Arab. J. Sci. Eng.
– start-page: 2435
  year: 2022
  end-page: 2453
  ident: bib24
  article-title: Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network
  publication-title: Chin. J. Phys.
– start-page: 30477
  year: 2022
  end-page: 30485
  ident: bib29
  article-title: Mixed convection nanofluid flow with heat source and chemical reaction over an inclined irregular surface
  publication-title: ACS Omega
– start-page: 1
  year: 2021
  end-page: 8
  ident: bib38
  article-title: Squeezing flow analysis of CuO–water and CuO–kerosene-based nanofluids: a comparative study
  publication-title: Pramana
– start-page: 1266
  year: 2023
  ident: bib15
  article-title: Significance of nanoparticle radius and gravity modulation on dynamics of nanofluid over stretched surface via finite element simulation: the case of water-based copper nanoparticles
  publication-title: Mathematics
– start-page: 569
  year: 2017
  end-page: 576
  ident: bib31
  article-title: Squeezing flow past a Riga plate with chemical reaction and convective conditions
  publication-title: J. Mol. Liq.
– start-page: 20220533
  year: 2023
  ident: bib35
  article-title: Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface
  publication-title: Nanotechnol. Rev.
– start-page: 1502
  year: 2023
  end-page: 1520
  ident: bib43
  article-title: Modeling of Darcy-Forchheimer magnetohydrodynamic Williamson nanofluid flow towards nonlinear radiative stretching surface using artificial neural network
  publication-title: Int. J. Numer. Methods Fluids
– year: 2023
  ident: bib19
  article-title: Numerical simulation of energy transfer in radiative hybrid nanofluids flow influenced by second-order chemical reaction and magnetic field
  publication-title: AIP Adv.
– start-page: 1312
  year: 2022
  ident: bib32
  article-title: Impact of buoyancy and stagnation-point flow of water conveying Ag-MgO Hybrid nanoparticles in a vertical contracting/expanding Riga wedge
  publication-title: Symmetry
– start-page: 879
  year: 2024
  end-page: 892
  ident: bib4
  article-title: Significance of coupled effects of resistive heating and perpendicular magnetic field on heat transfer process of mixed convective flow of ternary nanofluid
  publication-title: J. Therm. Anal. Calorim.
– start-page: 2399
  year: 2021
  end-page: 2422
  ident: bib50
  article-title: Reliability analysis incorporating exponentiated inverse Weibull distribution and inverse power law
  publication-title: Qual. Reliab. Eng. Int.
– reference: Swain, K., & Nisar, K.S. (2024). Time-dependent stagnation point flow of nano Casson fluid with Joule heating over an elongated surface subjected to viscous heating and exponential space-based heat source/sink: Boungiorno model. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 23977914231217470.
– start-page: 166
  year: 2023
  ident: bib59
  article-title: Analytical study of the energy loss reduction during three-dimensional engine oil-based hybrid nanofluid flow by using Cattaneo–Christov model
  publication-title: Symmetry
– year: 2016
  ident: bib30
  article-title: Squeezing flow past a Riga plate with chemical reaction and convective conditions
  publication-title: J. Mol. Liq.
– start-page: 7330
  year: 2022
  end-page: 7348
  ident: bib25
  article-title: A comparative analysis of the performance of magnetised copper–copper oxide/water and copper–copper oxide/kerosene oil hybrid nanofluids flowing through an extending surface with velocity slips and thermal convective conditions
  publication-title: Int. J. Ambient Energy
– start-page: 1
  year: 2021
  end-page: 19
  ident: bib17
  article-title: Time fractional model of electro-osmotic Brinkman-type nanofluid with heat generation and chemical reaction effects: application in cleansing of contaminated water
  publication-title: Sci. Rep.
– year: 2023
  ident: bib7
  article-title: Numerical study of thermal enhancement in ZnO-SAE50 nanolubricant over a spherical magnetized surface influenced by Newtonian heating and thermal radiation
  publication-title: Case Stud. Therm. Eng.
– year: 2023
  ident: bib13
  article-title: MHD flow of nanofluid over moving slender needle with nanoparticles aggregation and viscous dissipation effects
  publication-title: Sci. Prog.
– start-page: 5865
  year: 2021
  end-page: 5873
  ident: bib53
  article-title: Thermal enhancement of radiating magneto-nanoliquid with nanoparticles aggregation and joule heating: a three-dimensional flow
  publication-title: Arab. J. Sci. Eng.
– start-page: 2450424
  year: 2024
  ident: bib14
  article-title: Analysis of unsteady MHD fluid flow across two parallel discs with uniform fluctuation subject to modified Hall and activation energy
  publication-title: Int. J. Mod. Phys. B
– start-page: 438
  year: 2023
  end-page: 461
  ident: bib48
  article-title: MHD casson nanofluid in darcy-forchheimer porous medium in the presence of heat source and arrhenious activation energy: applications of neural networks
  publication-title: Int. J. Model. Simul.
– start-page: 87
  year: 2023
  end-page: 100
  ident: bib20
  article-title: Impact of radiation and heat generation/absorption in a Walters’ B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction
  publication-title: Int. J. Model. Simul.
– year: 2023
  ident: bib9
  article-title: Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc
  publication-title: Nanotechnology
– start-page: 2419
  year: 2022
  ident: bib23
  article-title: Numerical simulations through PCM for the dynamics of thermal enhancement in ternary MHD hybrid nanofluid flow over plane sheet, cone, and wedge
  publication-title: Symmetry
– year: 2022
  ident: bib51
  article-title: Significance of nanoparticle radius, inter-particle spacing, inclined magnetic field, and space-dependent internal heating: the case of chemically reactive water conveying copper nanoparticles
  publication-title: ZAMM-J. Appl. Math. Mech. /Z. F. üR. Angew. Math. und Mech.
– start-page: 2250205
  year: 2022
  ident: bib36
  article-title: Impact of Cattaneo–Christov double diffusion on 3d stagnation point axisymmetric flow of second-grade nanofluid towards a riga plate
  publication-title: Int. J. Mod. Phys. B
– year: 2023
  ident: bib42
  article-title: Entropy generation analysis of magnetized radiative Ellis (Cu-TiO2/Engine Oil) nanofluid flow using Cattaneo-Christov heat flux model with viscous dissipation and Joule heating effects
  publication-title: J. Magn. Magn. Mater.
– start-page: 20230194
  year: 2024
  ident: bib6
  article-title: Energy and mass transmission through hybrid nanofluid flow passing over a spinning sphere with magnetic effect and heat source/sink
  publication-title: Nanotechnol. Rev.
– year: 2024
  ident: bib21
  article-title: Computational investigation of thermal process in radiated nanofluid modulation influenced by nanoparticles (Al2O3) and molecular (H2O) diameters
  publication-title: J. Comput. Des. Eng.
– year: 2023
  ident: bib27
  article-title: Analytical and numerical investigation of Darcy-Forchheimer flow of a nonlinear-radiative non-Newtonian fluid over a Riga plate with entropy optimization
  publication-title: Ain Shams Eng. J.
– year: 2023
  ident: bib16
  article-title: Numerical solution for the electrically conducting hybrid nanofluid flow between two parallel rotating surfaces subject to thermal radiation
  publication-title: AIP Adv.
– year: 2023
  ident: bib2
  article-title: Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
  publication-title: Heliyon
– start-page: 1
  year: 2021
  end-page: 24
  ident: bib45
  article-title: A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach
  publication-title: Eur. Phys. J.
– start-page: 405
  year: 2023
  end-page: 420
  ident: bib1
  article-title: Heat and mass transfer in a peristaltic rotating frame Jeffrey fluid via porous medium with chemical reaction and wall properties
  publication-title: Alex. Eng. J.
– year: 2023
  ident: bib44
  article-title: Analyzing activation energy and binary chemical reaction effects with artificial intelligence approach in axisymmetric flow of third grade nanofluid subject to Soret and Dufour effects
  publication-title: Heat. Transf. Res.
– start-page: 225
  year: 2023
  end-page: 235
  ident: bib22
  article-title: Darcy–Forchheimer higher-order slip flow of Eyring–Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon.
  publication-title: J. Dispers. Sci. Technol.
– start-page: 3157
  year: 2022
  ident: bib28
  article-title: Entropy analysis of sutterby nanofluid flow over a riga sheet with gyrotactic microorganisms and cattaneo–christov double diffusion.
  publication-title: Mathematics
– year: 2021
  ident: bib33
  article-title: Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface
  publication-title: Case Stud. Therm. Eng.
– start-page: 1236
  year: 2022
  end-page: 1249
  ident: bib46
  article-title: Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM
  publication-title: Sci. Iran.
– start-page: 1
  year: 2022
  end-page: 18
  ident: bib56
  article-title: Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant
  publication-title: Waves Random Complex Media
– volume: 100
  issue: 2
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib26
  article-title: Nuclear reactor application on Jeffrey fluid flow with Falkner-skan factor, Brownian and thermophoresis, non linear thermal radiation impacts past a wedge
  publication-title: J. Indian Chem. Soc.
  doi: 10.1016/j.jics.2023.100907
– volume: 43
  start-page: 5810
  issue: 1
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib54
  article-title: Flow and heat transfer analysis of water-based copper nanofluid over a nonlinearly stretching sheet: a numerical approach
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2021.1995490
– volume: 131
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib18
  article-title: Double diffusive convection and cross diffusion effects on Casson fluid over a Lorentz force driven Riga plate in a porous medium with heat sink: An analytical approach
  publication-title: Int. Commun. Heat. Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105761
– volume: 45
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib7
  article-title: Numerical study of thermal enhancement in ZnO-SAE50 nanolubricant over a spherical magnetized surface influenced by Newtonian heating and thermal radiation
  publication-title: Case Stud. Therm. Eng.
– volume: 14
  issue: 3
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib27
  article-title: Analytical and numerical investigation of Darcy-Forchheimer flow of a nonlinear-radiative non-Newtonian fluid over a Riga plate with entropy optimization
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2022.101887
– year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib42
  article-title: Entropy generation analysis of magnetized radiative Ellis (Cu-TiO2/Engine Oil) nanofluid flow using Cattaneo-Christov heat flux model with viscous dissipation and Joule heating effects
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2023.170949
– volume: 43
  start-page: 7330
  issue: 1
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib25
  article-title: A comparative analysis of the performance of magnetised copper–copper oxide/water and copper–copper oxide/kerosene oil hybrid nanofluids flowing through an extending surface with velocity slips and thermal convective conditions
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2022.2063387
– volume: 10
  start-page: 3157
  issue: 17
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib28
  article-title: Entropy analysis of sutterby nanofluid flow over a riga sheet with gyrotactic microorganisms and cattaneo–christov double diffusion.
  publication-title: Mathematics
  doi: 10.3390/math10173157
– volume: 95
  start-page: 1502
  issue: 9
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib43
  article-title: Modeling of Darcy-Forchheimer magnetohydrodynamic Williamson nanofluid flow towards nonlinear radiative stretching surface using artificial neural network
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.5216
– volume: 106
  issue: 2
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib13
  article-title: MHD flow of nanofluid over moving slender needle with nanoparticles aggregation and viscous dissipation effects
  publication-title: Sci. Prog.
  doi: 10.1177/00368504231176151
– volume: 95
  start-page: 1
  year: 2021
  ident: 10.1016/j.cherd.2024.06.037_bib38
  article-title: Squeezing flow analysis of CuO–water and CuO–kerosene-based nanofluids: a comparative study
  publication-title: Pramana
  doi: 10.1007/s12043-020-02053-1
– volume: 46
  start-page: 12405
  issue: 12
  year: 2021
  ident: 10.1016/j.cherd.2024.06.037_bib40
  article-title: Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05926-8
– year: 2016
  ident: 10.1016/j.cherd.2024.06.037_bib30
  article-title: Squeezing flow past a Riga plate with chemical reaction and convective conditions
  publication-title: J. Mol. Liq.
– volume: 37
  start-page: 2399
  issue: 6
  year: 2021
  ident: 10.1016/j.cherd.2024.06.037_bib50
  article-title: Reliability analysis incorporating exponentiated inverse Weibull distribution and inverse power law
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.2864
– volume: 27
  year: 2021
  ident: 10.1016/j.cherd.2024.06.037_bib33
  article-title: Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101229
– volume: 43
  start-page: 87
  issue: 2
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib20
  article-title: Impact of radiation and heat generation/absorption in a Walters’ B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction
  publication-title: Int. J. Model. Simul.
  doi: 10.1080/02286203.2022.2035948
– start-page: 1
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib56
  article-title: Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2022.2102271
– volume: 13
  start-page: 13675
  issue: 1
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib8
  article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-27562-y
– volume: 15
  start-page: 199
  issue: 1
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib49
  article-title: Comparative analysis of darcy–forchheimer radiative flow of a water-based Al2O3-Ag/TiO2 hybrid nanofluid over a riga plate with heat sink/source
  publication-title: Symmetry
  doi: 10.3390/sym15010199
– volume: 13
  issue: 3
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib19
  article-title: Numerical simulation of energy transfer in radiative hybrid nanofluids flow influenced by second-order chemical reaction and magnetic field
  publication-title: AIP Adv.
  doi: 10.1063/5.0141532
– volume: 46
  start-page: 5865
  year: 2021
  ident: 10.1016/j.cherd.2024.06.037_bib53
  article-title: Thermal enhancement of radiating magneto-nanoliquid with nanoparticles aggregation and joule heating: a three-dimensional flow
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04979-5
– volume: 225
  start-page: 569
  year: 2017
  ident: 10.1016/j.cherd.2024.06.037_bib31
  article-title: Squeezing flow past a Riga plate with chemical reaction and convective conditions
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.11.089
– volume: 136
  start-page: 1
  year: 2021
  ident: 10.1016/j.cherd.2024.06.037_bib45
  article-title: A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach
  publication-title: Eur. Phys. J.
– volume: 43
  start-page: 438
  issue: 4
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib48
  article-title: MHD casson nanofluid in darcy-forchheimer porous medium in the presence of heat source and arrhenious activation energy: applications of neural networks
  publication-title: Int. J. Model. Simul.
  doi: 10.1080/02286203.2022.2091973
– volume: 7
  start-page: 30477
  issue: 34
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib29
  article-title: Mixed convection nanofluid flow with heat source and chemical reaction over an inclined irregular surface
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c03919
– volume: 9
  issue: 5
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib2
  article-title: Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15916
– volume: 44
  start-page: 225
  issue: 2
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib22
  article-title: Darcy–Forchheimer higher-order slip flow of Eyring–Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon.
  publication-title: J. Dispers. Sci. Technol.
  doi: 10.1080/01932691.2021.1942035
– volume: 13
  issue: 7
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib16
  article-title: Numerical solution for the electrically conducting hybrid nanofluid flow between two parallel rotating surfaces subject to thermal radiation
  publication-title: AIP Adv.
  doi: 10.1063/5.0154720
– start-page: 2450424
  year: 2024
  ident: 10.1016/j.cherd.2024.06.037_bib14
  article-title: Analysis of unsteady MHD fluid flow across two parallel discs with uniform fluctuation subject to modified Hall and activation energy
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979224504241
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.cherd.2024.06.037_bib17
  article-title: Time fractional model of electro-osmotic Brinkman-type nanofluid with heat generation and chemical reaction effects: application in cleansing of contaminated water
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03062-9
– volume: 14
  start-page: 2419
  issue: 11
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib23
  article-title: Numerical simulations through PCM for the dynamics of thermal enhancement in ternary MHD hybrid nanofluid flow over plane sheet, cone, and wedge
  publication-title: Symmetry
  doi: 10.3390/sym14112419
– volume: 54
  issue: 3
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib44
  article-title: Analyzing activation energy and binary chemical reaction effects with artificial intelligence approach in axisymmetric flow of third grade nanofluid subject to Soret and Dufour effects
  publication-title: Heat. Transf. Res.
– volume: 98
  start-page: 27
  issue: 1
  year: 2024
  ident: 10.1016/j.cherd.2024.06.037_bib57
  article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink
  publication-title: Pramana
  doi: 10.1007/s12043-023-02702-1
– volume: 7
  issue: 6
  year: 2017
  ident: 10.1016/j.cherd.2024.06.037_bib37
  article-title: MHD biconvective flow of Powell Eyring nanofluid over stretched surface
  publication-title: Aip Adv.
  doi: 10.1063/1.4983014
– volume: 22
  start-page: 18
  issue: 1
  year: 2019
  ident: 10.1016/j.cherd.2024.06.037_bib41
  article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface
  publication-title: Entropy
  doi: 10.3390/e22010018
– volume: 77
  start-page: 2435
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib24
  article-title: Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.04.004
– year: 2024
  ident: 10.1016/j.cherd.2024.06.037_bib21
  article-title: Computational investigation of thermal process in radiated nanofluid modulation influenced by nanoparticles (Al2O3) and molecular (H2O) diameters
  publication-title: J. Comput. Des. Eng.
– ident: 10.1016/j.cherd.2024.06.037_bib55
  doi: 10.1177/23977914231217470
– volume: 12
  start-page: 16280
  issue: 1
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib39
  article-title: Numerical study of non-Darcy hybrid nanofluid flow with the effect of heat source and hall current over a slender extending sheet
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-20583-z
– volume: 149
  start-page: 879
  issue: 2
  year: 2024
  ident: 10.1016/j.cherd.2024.06.037_bib4
  article-title: Significance of coupled effects of resistive heating and perpendicular magnetic field on heat transfer process of mixed convective flow of ternary nanofluid
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12723-y
– volume: 20
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib12
  article-title: Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101536
– year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib9
  article-title: Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ace912
– volume: 36
  start-page: 2250205
  issue: 29
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib36
  article-title: Impact of Cattaneo–Christov double diffusion on 3d stagnation point axisymmetric flow of second-grade nanofluid towards a riga plate
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979222502058
– ident: 10.1016/j.cherd.2024.06.037_bib10
– volume: 148
  start-page: 11203
  issue: 20
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib11
  article-title: Motile microorganism-based ternary nanofluid flow with the significance of slip condition and magnetic effect over a Riga plate
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12397-6
– volume: 96
  start-page: 513
  year: 2016
  ident: 10.1016/j.cherd.2024.06.037_bib47
  article-title: MHD free convection of Al2O3–water nanofluid considering thermal radiation
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.01.059
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib5
  article-title: Thermal transport in radiative nanofluids by considering the influence of convective heat condition
  publication-title: J. Nanomater.
  doi: 10.1155/2022/1854381
– volume: 12
  start-page: 20220533
  issue: 1
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib35
  article-title: Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2022-0533
– volume: 13
  start-page: 20230194
  issue: 1
  year: 2024
  ident: 10.1016/j.cherd.2024.06.037_bib6
  article-title: Energy and mass transmission through hybrid nanofluid flow passing over a spinning sphere with magnetic effect and heat source/sink
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2023-0194
– volume: 11
  start-page: 1266
  issue: 5
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib15
  article-title: Significance of nanoparticle radius and gravity modulation on dynamics of nanofluid over stretched surface via finite element simulation: the case of water-based copper nanoparticles
  publication-title: Mathematics
  doi: 10.3390/math11051266
– volume: 14
  start-page: 1312
  issue: 7
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib32
  article-title: Impact of buoyancy and stagnation-point flow of water conveying Ag-MgO Hybrid nanoparticles in a vertical contracting/expanding Riga wedge
  publication-title: Symmetry
  doi: 10.3390/sym14071312
– volume: 15
  start-page: 166
  issue: 1
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib59
  article-title: Analytical study of the energy loss reduction during three-dimensional engine oil-based hybrid nanofluid flow by using Cattaneo–Christov model
  publication-title: Symmetry
  doi: 10.3390/sym15010166
– start-page: 1
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib3
  article-title: Heat transfer inspection in [(ZnO-MWCNTs)/water-EG (50: 50)] hnf with thermal radiation ray and convective condition over a Riga surface
  publication-title: Waves Random Complex Media
– volume: 15
  start-page: 725
  issue: 3
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib34
  article-title: Heat and mass transport in casson nanofluid flow over a 3-D riga plate with cattaneo-christov double flux: a computational modeling through analytical method
  publication-title: Symmetry
  doi: 10.3390/sym15030725
– volume: 102
  issue: 4
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib51
  article-title: Significance of nanoparticle radius, inter-particle spacing, inclined magnetic field, and space-dependent internal heating: the case of chemically reactive water conveying copper nanoparticles
  publication-title: ZAMM-J. Appl. Math. Mech. /Z. F. üR. Angew. Math. und Mech.
– volume: 10
  start-page: 1542
  issue: 9
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib58
  article-title: An optimal investigation of convective fluid flow suspended by carbon nanotubes and thermal radiation impact
  publication-title: Mathematics
  doi: 10.3390/math10091542
– volume: 43
  start-page: 4045
  issue: 1
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib52
  article-title: Influence of exponential space-based heat source and Joule heating on nanofluid flow over an elongating/shrinking sheet with an inclined magnetic field
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2021.1873854
– volume: 66
  start-page: 405
  year: 2023
  ident: 10.1016/j.cherd.2024.06.037_bib1
  article-title: Heat and mass transfer in a peristaltic rotating frame Jeffrey fluid via porous medium with chemical reaction and wall properties
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.11.016
– volume: 29
  start-page: 1236
  issue: 3
  year: 2022
  ident: 10.1016/j.cherd.2024.06.037_bib46
  article-title: Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM
  publication-title: Sci. Iran.
SSID ssj0001748
Score 2.5076485
Snippet The analysis of the squeezing nanofluid flow across bounded domains received great attention from researchers and engineers due to its tremendous application...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 458
SubjectTerms Energy utilization
Heat source/sink
Numerical method and algorithms
Riga plates
Thermal radiation
Title Heat and mass transmission through the nanofluids flow subject to exponential heat source/sink and thermal convective condition across Riga plates
URI https://dx.doi.org/10.1016/j.cherd.2024.06.037
Volume 207
WOSCitedRecordID wos001259551300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0263-8762
  databaseCode: AIEXJ
  dateStart: 19961101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001748
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjpswFLXSTBftoupTnb7kRXeUNoCNYZlWM5rOYlRVUyk7ZBvcYcSQKIFpvqOf0i_svdiQTFNFnUU3BCEwkHvwfej6HELexoBcLrX2uY47CTMBnxSTPvhaERU5C0xoOrEJcXaWzGbpl9HoV78W5roSdZ2s1-niv5oajoGxcensLcw9DAoHYB-MDlswO2z_yfAnmPNjOfwK4mKUgKhXYEssig2iPBhs1rKem6ot85VnqvkPb9UqLMlgLFqsF_Mau4jsOsnGsxV-fA_IXPueS5jRK9u03k2ZuJuXVne8c73e1_K7RJXqxrUp9nwIPUVBsaFC9Bzn0EWHxPxGV8nULuD-WFZy6AY5bZUsrWJYmS8Hz3I8b61w9vTiyi3acgWNkA3Nr_28F8bRziQdWm1cN80yS_fuPDazahM7zsDWJS7fI_qRFDZkHVWrJZm5Sb39h0scGhX7HrjLrBskw0Ey7ASMxB1yEAqeJmNyMP18NDsd_D_keImt7NnX6Lmuuq7CnWf5ezy0FeOcPyQPXHJCpxZUj8ioqB-T-1uUlU_IT4QXBQhQhBfdhhd18ILfgm7gRRFe1MGLNnO6BS-K8KIWXh8QXN3IDlx0Ay46gItacFEEF7Xgekq-HR-dfzrxna6HryFganyRioLrkBkVTliuJiZQSMIkdZBqPVGKG6G5KhJuIg6nBDIOTBxpDsGrFCkE2M_IuIYHfU4o4yaXCmJgBWFqoEQiDSbVSWxYWqhIHJKw_3cz7UjvUXulyvZY9pC8Gy5aWM6X_afHvdkyF7bacDQDIO678MXt7vOS3Nt8Lq_IuFm2xWtyV1835Wr5xqHwNwZ8wTQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+and+mass+transmission+through+the+nanofluids+flow+subject+to+exponential+heat+source%2Fsink+and+thermal+convective+condition+across+Riga+plates&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Ali%2C+Bilal&rft.au=Jubair%2C+Sidra&rft.au=Fouly%2C+Ahmed&rft.date=2024-07-01&rft.issn=0263-8762&rft.volume=207&rft.spage=458&rft.epage=465&rft_id=info:doi/10.1016%2Fj.cherd.2024.06.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cherd_2024_06_037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon