Heat and mass transmission through the nanofluids flow subject to exponential heat source/sink and thermal convective condition across Riga plates
The analysis of the squeezing nanofluid flow across bounded domains received great attention from researchers and engineers due to its tremendous application in automobiles, energy exchangers, and aerodynamics. In the current analysis, we are using double Riga plates parallel to each other, in order...
Saved in:
| Published in: | Chemical engineering research & design Vol. 207; pp. 458 - 465 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2024
|
| Subjects: | |
| ISSN: | 0263-8762 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The analysis of the squeezing nanofluid flow across bounded domains received great attention from researchers and engineers due to its tremendous application in automobiles, energy exchangers, and aerodynamics. In the current analysis, we are using double Riga plates parallel to each other, in order to induce the squeezing nanofluids flow with the significances of chemical reaction, thermal radiation, and heat source/sink. The nanoliquid has been prepared by the dispersion of Copper (Cu) nanoparticles (NPs) in kerosene oil (C12H26C15H32) and water (H2O). The nanofluid flow has been modeled in form of nonlinear partial differential equations, which are further convert into the dimensionless form of ordinary differential equations. The obtained set of non-dimensional equations is numerically resolved by using the Matlab built-in package bvp4c. The results are compared to another numerical technique for accuracy purposes. The detailed results are presented in Figures. It has been detected that the energy field of nanofluid is enriched with the effect of heat source/sink component. Moreover, the velocity curve magnifies with the variation of the squeezing parameter of Riga plates, whereas declines with the accumulation of Cu-NPs in both types of base fluid (C12H26C15H32 and H2O).
[Display omitted]
•Numerical to analysis on squeezing nanoliquid flow across parallel Riga plates.•Squeezing nanofluids flow with energy and mass transference has been examined.•The nanoliquid has been prepared by the dispersion of Cu-NPs in C12H26C15H32 and H2O.•The nanoliquid flow model was 1st simplified to non-dimensional form and then numerically elucidated through the bvp4c package.•The results are compared to the ND-solve technique for accuracy purposes. |
|---|---|
| AbstractList | The analysis of the squeezing nanofluid flow across bounded domains received great attention from researchers and engineers due to its tremendous application in automobiles, energy exchangers, and aerodynamics. In the current analysis, we are using double Riga plates parallel to each other, in order to induce the squeezing nanofluids flow with the significances of chemical reaction, thermal radiation, and heat source/sink. The nanoliquid has been prepared by the dispersion of Copper (Cu) nanoparticles (NPs) in kerosene oil (C12H26C15H32) and water (H2O). The nanofluid flow has been modeled in form of nonlinear partial differential equations, which are further convert into the dimensionless form of ordinary differential equations. The obtained set of non-dimensional equations is numerically resolved by using the Matlab built-in package bvp4c. The results are compared to another numerical technique for accuracy purposes. The detailed results are presented in Figures. It has been detected that the energy field of nanofluid is enriched with the effect of heat source/sink component. Moreover, the velocity curve magnifies with the variation of the squeezing parameter of Riga plates, whereas declines with the accumulation of Cu-NPs in both types of base fluid (C12H26C15H32 and H2O).
[Display omitted]
•Numerical to analysis on squeezing nanoliquid flow across parallel Riga plates.•Squeezing nanofluids flow with energy and mass transference has been examined.•The nanoliquid has been prepared by the dispersion of Cu-NPs in C12H26C15H32 and H2O.•The nanoliquid flow model was 1st simplified to non-dimensional form and then numerically elucidated through the bvp4c package.•The results are compared to the ND-solve technique for accuracy purposes. |
| Author | Fouly, Ahmed Ali, Bilal Jubair, Sidra |
| Author_xml | – sequence: 1 givenname: Bilal surname: Ali fullname: Ali, Bilal email: bilal.official@csu.edu.cn organization: School of Mathematics and Statistics, Central South University Changsha, 410083, China – sequence: 2 givenname: Sidra surname: Jubair fullname: Jubair, Sidra organization: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Ahmed surname: Fouly fullname: Fouly, Ahmed organization: Department of Mechanical Engineering, College of Engineering, King Saud University, PO Box 800, Riyadh 11451, Saudi Arabia |
| BookMark | eNqFkM1OAyEURlnUxLb6BG54gZnC0PlbuDCNWpMmJkbXhGEuLeMMNECrvoZPLFNdudDVJYHz3Y8zQxNjDSB0RUlKCS0WXSp34No0I9kyJUVKWDlBU5IVLKnKIjtHM-87Qggtl9UUfa5BBCxMiwfhPQ5OGD9o77U1OOycPWx3cQI2wljVH3TrsertG_aHpgMZcLAY3vexgQla9Hg3pnl7cBIWXpvXU3Lk3RAvpTXHyOgjjMdWh3GJkM7GxU96K_C-FwH8BTpTovdw-TPn6OXu9nm1TjaP9w-rm00iGWEhKesScpktVZORZdsQRZssq5iQtJaSNE2uSpk3UOWK5fEJFQVVBZN5RWtR1lXN5qj-zj01cKC41EGMpaIF3XNK-CiUd_wklI9COSl4FBpZ9ovdOz0I9_EPdf1NQfzWUYPjXmowElrtohjeWv0n_wUr15lk |
| CitedBy_id | crossref_primary_10_1007_s10973_024_13711_6 crossref_primary_10_1007_s10973_025_14174_z crossref_primary_10_1016_j_jrras_2025_101572 crossref_primary_10_1007_s10973_024_13875_1 crossref_primary_10_1007_s10973_025_14159_y crossref_primary_10_1016_j_jrras_2025_101512 crossref_primary_10_1016_j_jrras_2024_101267 crossref_primary_10_1016_j_jrras_2025_101678 crossref_primary_10_1016_j_solmat_2025_113866 crossref_primary_10_1016_j_jrras_2024_101248 crossref_primary_10_1016_j_jrras_2025_101477 crossref_primary_10_1016_j_jrras_2025_101620 crossref_primary_10_1016_j_cherd_2025_07_012 crossref_primary_10_1007_s10973_024_13918_7 crossref_primary_10_1007_s10973_024_13919_6 crossref_primary_10_1007_s10973_025_14215_7 crossref_primary_10_1016_j_jrras_2025_101581 crossref_primary_10_1007_s10973_024_13787_0 crossref_primary_10_1080_10407782_2025_2541813 crossref_primary_10_1177_16878132241283290 crossref_primary_10_1007_s10973_024_13902_1 crossref_primary_10_1007_s10973_025_14567_0 crossref_primary_10_1007_s41939_025_00763_w crossref_primary_10_1007_s10973_025_14172_1 |
| Cites_doi | 10.1016/j.jics.2023.100907 10.1080/01430750.2021.1995490 10.1016/j.icheatmasstransfer.2021.105761 10.1016/j.asej.2022.101887 10.1016/j.jmmm.2023.170949 10.1080/01430750.2022.2063387 10.3390/math10173157 10.1002/fld.5216 10.1177/00368504231176151 10.1007/s12043-020-02053-1 10.1007/s13369-021-05926-8 10.1002/qre.2864 10.1016/j.csite.2021.101229 10.1080/02286203.2022.2035948 10.1080/17455030.2022.2102271 10.1038/s41598-023-27562-y 10.3390/sym15010199 10.1063/5.0141532 10.1007/s13369-020-04979-5 10.1016/j.molliq.2016.11.089 10.1080/02286203.2022.2091973 10.1021/acsomega.2c03919 10.1016/j.heliyon.2023.e15916 10.1080/01932691.2021.1942035 10.1063/5.0154720 10.1142/S0217979224504241 10.1038/s41598-021-03062-9 10.3390/sym14112419 10.1007/s12043-023-02702-1 10.1063/1.4983014 10.3390/e22010018 10.1016/j.cjph.2022.04.004 10.1177/23977914231217470 10.1038/s41598-022-20583-z 10.1007/s10973-023-12723-y 10.1016/j.rineng.2023.101536 10.1088/1361-6528/ace912 10.1142/S0217979222502058 10.1007/s10973-023-12397-6 10.1016/j.ijheatmasstransfer.2016.01.059 10.1155/2022/1854381 10.1515/ntrev-2022-0533 10.1515/ntrev-2023-0194 10.3390/math11051266 10.3390/sym14071312 10.3390/sym15010166 10.3390/sym15030725 10.3390/math10091542 10.1080/01430750.2021.1873854 10.1016/j.aej.2022.11.016 |
| ContentType | Journal Article |
| Copyright | 2024 Institution of Chemical Engineers |
| Copyright_xml | – notice: 2024 Institution of Chemical Engineers |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cherd.2024.06.037 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 465 |
| ExternalDocumentID | 10_1016_j_cherd_2024_06_037 S0263876224003678 |
| GroupedDBID | --K --M -QF -~X .~1 0R~ 1B1 1~. 1~5 29B 3EH 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO ABDBF ABFNM ABFRF ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFO ACIWK ACRLP ACRPL ACUHS ADBBV ADEWK ADEZE ADMLS ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHIDL AHPOS AI. AIAGR AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC BNPGV CAG COF CS3 DU5 EBS EFJIC EJD ENUVR EO9 EP2 EP3 ESX FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KOM M41 ML- MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSH SSR SSZ T5K T9H TUS UNMZH VH1 ~02 ~8M ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c303t-797e5c24fb204db0f1b2283ac19cc0bb5f7c5be85f35b201a61f63c5819a79893 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001259551300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8762 |
| IngestDate | Sat Nov 29 08:08:20 EST 2025 Tue Nov 18 21:54:05 EST 2025 Sun Apr 06 06:53:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy utilization Thermal radiation Heat source/sink Numerical method and algorithms Riga plates |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-797e5c24fb204db0f1b2283ac19cc0bb5f7c5be85f35b201a61f63c5819a79893 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cherd_2024_06_037 crossref_primary_10_1016_j_cherd_2024_06_037 elsevier_sciencedirect_doi_10_1016_j_cherd_2024_06_037 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering research & design |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yu, Wang (bib58) 2022 Sindhu, Atangana (bib50) 2021 Nadeem, Ishtiaq, Almutairi, Ghazwani (bib36) 2022 Raizah, Alrabaiah, Bilal, Junsawang, Galal (bib39) 2022 Alrabaiah, Bilal, Khan, Muhammad, Legas (bib17) 2021 Bhatti, Al-Khaled, Khan, Chammam, Awais (bib22) 2023 Shafiq, Mebarek-Oudina, Sindhu, Rasool (bib46) 2022 Adnan, Abbas, Said, Mishra, Mahmood, Bilal (bib4) 2024 AlBaidani, Mishra, Ahmad, Eldin, Haq (bib7) 2023 Adnan (bib3) 2022 Sheikholeslami, Hayat, Alsaedi (bib47) 2016 Waqas, Almutiri, Yagoob, Ahmad, Bilal (bib57) 2024 Shoaib, Naz, Nisar, Raja, Aslam, Ahmad (bib48) 2023 Swain, Mishra (bib54) 2022 Rooman, ur Rehman, Shah, Alshehri, Alshehri (bib42) 2023 Shafiq, Çolak, Sindhu (bib44) 2023 Bani-Fwaz, Adnan, Mahmood, Bilal, EI-Zahhar, Khan, Niazai (bib21) 2024 Adnan, Ashraf, Alghtani, Khan, Andualem (bib5) 2022 Ali, Jubair, Aluraikan, Abd El-Rahman, Eldin, Khalifa (bib12) 2023 Bilal, Ullah, Alam, Weera, Galal (bib23) 2022 Asogwa, Alsulami, Prasannakumara, Muhammad (bib18) 2022 B. Johnson, B. I (bib20) 2023 Shafiq, Çolak, Sindhu (bib43) 2023 Ali, B., Jubair, S., & Siddiqui, M.I.H. Numerical Simulation of 3D Darcy-Forchheimer hybrid nanofluid flow with heat source/sink and partial slip effect across a spinning disc. J. Porous Media. Sun, Animasaun, Swain, Shah, Wakif, Olanrewaju (bib51) 2022 ZeinEldin, Ullah, Khalifa, Ayaz (bib59) 2023 Rana, Mahanthesh, Nisar, Swain, Devi (bib40) 2021 Ali, Gul, Khan, Bilal, Usman, Shuaib, Gul (bib9) 2023 Assiri, Aziz Elsebaee, Alqahtani, Bilal, Ali, Eldin (bib19) 2023 Krishna, Ahammad, Chamkha (bib33) 2021 Hayat, Khan, Imtiaz, Alsaedi (bib31) 2017 Ahmad, Alnahdi, Bilal, Daher Albalwi, Faqihi (bib6) 2024 Naseem, Shafiq, Zhao, Naseem (bib37) 2017 Rasool, Zhang, Chamkha, Shafiq, Tlili, Shahzadi (bib41) 2019 Swain, Mahanthesh (bib53) 2021 Allehiany, Bilal, Alfwzan, Ali, Eldin (bib16) 2023 Ali, Shafiq, Alanazi, Hendi, Hussein, Shah (bib15) 2023 Ali, Jubair, Fathima, Akhter, Rafique, Mahmood (bib13) 2023 Swain, K., & Nisar, K.S. (2024). Time-dependent stagnation point flow of nano Casson fluid with Joule heating over an elongated surface subjected to viscous heating and exponential space-based heat source/sink: Boungiorno model. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 23977914231217470. Ali, Jubair, Mahmood, Koka, Gani (bib14) 2024 Dharmaiah, Mebarek-Oudina, Kumar, Kala (bib26) 2023 Hayat, Khan, Imtiaz, Alsaedi (bib30) 2016 Shafiq, Mebarek-Oudina, Sindhu, Abidi (bib45) 2021 Çolak, Shafiq, Sindhu (bib24) 2022 Sindhu, Alessa, Eswaramoorthi, Loganathan (bib49) 2023 Dawar, Islam, Shah (bib25) 2022 Abdelsalam, Alsharif, Abd Elmaboud, Abdellateef (bib2) 2023 Khan, Zaib, Ishak, Waini, Madhukesh, Raizah, Galal (bib32) 2022 Ali, Jubair (bib11) 2023 Nayak, Mishra (bib38) 2021 Thumma, Ahammad, Swain, Animasauan, Mishra (bib56) 2022 Algehyne, Saeed, Arif, Bilal, Kumam, Galal (bib8) 2023 Faizan, Ali, Loganathan, Zaib, Reddy, Abdelsalam (bib28) 2022 Loganathan, Eswaramoorthi, Chinnasamy, Jain, Sivasakthivel, Ali, Devi (bib34) 2023 Haq, Bilal, Ahammad, Ghoneim, Ali, Weera (bib29) 2022 Abd-Alla, Abo-Dahab, Thabet, Bayones, Abdelhafez (bib1) 2023 Murtaza, Kumam, Bilal, Sutthibutpong, Rujisamphan, Ahmad (bib35) 2023 Swain, Animasaun, Ibrahim (bib52) 2022 Eswaramoorthi, Loganathan, Faisal, Botmart, Shah (bib27) 2023 Loganathan (10.1016/j.cherd.2024.06.037_bib34) 2023; 15 Allehiany (10.1016/j.cherd.2024.06.037_bib16) 2023; 13 Abd-Alla (10.1016/j.cherd.2024.06.037_bib1) 2023; 66 Abdelsalam (10.1016/j.cherd.2024.06.037_bib2) 2023; 9 Swain (10.1016/j.cherd.2024.06.037_bib52) 2022; 43 Shoaib (10.1016/j.cherd.2024.06.037_bib48) 2023; 43 Swain (10.1016/j.cherd.2024.06.037_bib53) 2021; 46 Shafiq (10.1016/j.cherd.2024.06.037_bib43) 2023; 95 Ali (10.1016/j.cherd.2024.06.037_bib12) 2023; 20 Nadeem (10.1016/j.cherd.2024.06.037_bib36) 2022; 36 Algehyne (10.1016/j.cherd.2024.06.037_bib8) 2023; 13 Asogwa (10.1016/j.cherd.2024.06.037_bib18) 2022; 131 Krishna (10.1016/j.cherd.2024.06.037_bib33) 2021; 27 Sheikholeslami (10.1016/j.cherd.2024.06.037_bib47) 2016; 96 Thumma (10.1016/j.cherd.2024.06.037_bib56) 2022 Haq (10.1016/j.cherd.2024.06.037_bib29) 2022; 7 Nayak (10.1016/j.cherd.2024.06.037_bib38) 2021; 95 Dawar (10.1016/j.cherd.2024.06.037_bib25) 2022; 43 Shafiq (10.1016/j.cherd.2024.06.037_bib45) 2021; 136 Yu (10.1016/j.cherd.2024.06.037_bib58) 2022; 10 Faizan (10.1016/j.cherd.2024.06.037_bib28) 2022; 10 10.1016/j.cherd.2024.06.037_bib10 Rooman (10.1016/j.cherd.2024.06.037_bib42) 2023 10.1016/j.cherd.2024.06.037_bib55 Bhatti (10.1016/j.cherd.2024.06.037_bib22) 2023; 44 Shafiq (10.1016/j.cherd.2024.06.037_bib44) 2023; 54 Ali (10.1016/j.cherd.2024.06.037_bib11) 2023; 148 Waqas (10.1016/j.cherd.2024.06.037_bib57) 2024; 98 Rana (10.1016/j.cherd.2024.06.037_bib40) 2021; 46 Shafiq (10.1016/j.cherd.2024.06.037_bib46) 2022; 29 Swain (10.1016/j.cherd.2024.06.037_bib54) 2022; 43 Çolak (10.1016/j.cherd.2024.06.037_bib24) 2022; 77 Rasool (10.1016/j.cherd.2024.06.037_bib41) 2019; 22 AlBaidani (10.1016/j.cherd.2024.06.037_bib7) 2023; 45 Naseem (10.1016/j.cherd.2024.06.037_bib37) 2017; 7 Assiri (10.1016/j.cherd.2024.06.037_bib19) 2023; 13 Ahmad (10.1016/j.cherd.2024.06.037_bib6) 2024; 13 Sun (10.1016/j.cherd.2024.06.037_bib51) 2022; 102 Sindhu (10.1016/j.cherd.2024.06.037_bib49) 2023; 15 B. Johnson (10.1016/j.cherd.2024.06.037_bib20) 2023; 43 Eswaramoorthi (10.1016/j.cherd.2024.06.037_bib27) 2023; 14 Ali (10.1016/j.cherd.2024.06.037_bib13) 2023; 106 Ali (10.1016/j.cherd.2024.06.037_bib9) 2023 ZeinEldin (10.1016/j.cherd.2024.06.037_bib59) 2023; 15 Khan (10.1016/j.cherd.2024.06.037_bib32) 2022; 14 Adnan (10.1016/j.cherd.2024.06.037_bib5) 2022; 2022 Ali (10.1016/j.cherd.2024.06.037_bib15) 2023; 11 Raizah (10.1016/j.cherd.2024.06.037_bib39) 2022; 12 Ali (10.1016/j.cherd.2024.06.037_bib14) 2024 Adnan (10.1016/j.cherd.2024.06.037_bib3) 2022 Alrabaiah (10.1016/j.cherd.2024.06.037_bib17) 2021; 11 Bani-Fwaz (10.1016/j.cherd.2024.06.037_bib21) 2024 Bilal (10.1016/j.cherd.2024.06.037_bib23) 2022; 14 Adnan (10.1016/j.cherd.2024.06.037_bib4) 2024; 149 Murtaza (10.1016/j.cherd.2024.06.037_bib35) 2023; 12 Sindhu (10.1016/j.cherd.2024.06.037_bib50) 2021; 37 Dharmaiah (10.1016/j.cherd.2024.06.037_bib26) 2023; 100 Hayat (10.1016/j.cherd.2024.06.037_bib31) 2017; 225 Hayat (10.1016/j.cherd.2024.06.037_bib30) 2016 |
| References_xml | – start-page: 725 year: 2023 ident: bib34 article-title: Heat and mass transport in casson nanofluid flow over a 3-D riga plate with cattaneo-christov double flux: a computational modeling through analytical method publication-title: Symmetry – start-page: 513 year: 2016 end-page: 524 ident: bib47 article-title: MHD free convection of Al2O3–water nanofluid considering thermal radiation publication-title: Int. J. Heat. Mass Transf. – year: 2017 ident: bib37 article-title: MHD biconvective flow of Powell Eyring nanofluid over stretched surface publication-title: Aip Adv. – start-page: 199 year: 2023 ident: bib49 article-title: Comparative analysis of darcy–forchheimer radiative flow of a water-based Al2O3-Ag/TiO2 hybrid nanofluid over a riga plate with heat sink/source publication-title: Symmetry – start-page: 27 year: 2024 ident: bib57 article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink publication-title: Pramana – start-page: 1542 year: 2022 ident: bib58 article-title: An optimal investigation of convective fluid flow suspended by carbon nanotubes and thermal radiation impact publication-title: Mathematics – year: 2022 ident: bib18 article-title: Double diffusive convection and cross diffusion effects on Casson fluid over a Lorentz force driven Riga plate in a porous medium with heat sink: An analytical approach publication-title: Int. Commun. Heat. Mass Transf. – start-page: 18 year: 2019 ident: bib41 article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface publication-title: Entropy – start-page: 5810 year: 2022 end-page: 5824 ident: bib54 article-title: Flow and heat transfer analysis of water-based copper nanofluid over a nonlinearly stretching sheet: a numerical approach publication-title: Int. J. Ambient Energy – start-page: 1 year: 2022 end-page: 11 ident: bib5 article-title: Thermal transport in radiative nanofluids by considering the influence of convective heat condition publication-title: J. Nanomater. – year: 2023 ident: bib12 article-title: Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface publication-title: Results Eng. – start-page: 16280 year: 2022 ident: bib39 article-title: Numerical study of non-Darcy hybrid nanofluid flow with the effect of heat source and hall current over a slender extending sheet publication-title: Sci. Rep. – start-page: 4045 year: 2022 end-page: 4057 ident: bib52 article-title: Influence of exponential space-based heat source and Joule heating on nanofluid flow over an elongating/shrinking sheet with an inclined magnetic field publication-title: Int. J. Ambient Energy – start-page: 11203 year: 2023 end-page: 11213 ident: bib11 article-title: Motile microorganism-based ternary nanofluid flow with the significance of slip condition and magnetic effect over a Riga plate publication-title: J. Therm. Anal. Calorim. – start-page: 1 year: 2022 end-page: 15 ident: bib3 article-title: Heat transfer inspection in [(ZnO-MWCNTs)/water-EG (50: 50)] hnf with thermal radiation ray and convective condition over a Riga surface publication-title: Waves Random Complex Media – year: 2023 ident: bib26 article-title: Nuclear reactor application on Jeffrey fluid flow with Falkner-skan factor, Brownian and thermophoresis, non linear thermal radiation impacts past a wedge publication-title: J. Indian Chem. Soc. – start-page: 13675 year: 2023 ident: bib8 article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach publication-title: Sci. Rep. – reference: Ali, B., Jubair, S., & Siddiqui, M.I.H. Numerical Simulation of 3D Darcy-Forchheimer hybrid nanofluid flow with heat source/sink and partial slip effect across a spinning disc. J. Porous Media. – start-page: 12405 year: 2021 end-page: 12415 ident: bib40 article-title: Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study publication-title: Arab. J. Sci. Eng. – start-page: 2435 year: 2022 end-page: 2453 ident: bib24 article-title: Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network publication-title: Chin. J. Phys. – start-page: 30477 year: 2022 end-page: 30485 ident: bib29 article-title: Mixed convection nanofluid flow with heat source and chemical reaction over an inclined irregular surface publication-title: ACS Omega – start-page: 1 year: 2021 end-page: 8 ident: bib38 article-title: Squeezing flow analysis of CuO–water and CuO–kerosene-based nanofluids: a comparative study publication-title: Pramana – start-page: 1266 year: 2023 ident: bib15 article-title: Significance of nanoparticle radius and gravity modulation on dynamics of nanofluid over stretched surface via finite element simulation: the case of water-based copper nanoparticles publication-title: Mathematics – start-page: 569 year: 2017 end-page: 576 ident: bib31 article-title: Squeezing flow past a Riga plate with chemical reaction and convective conditions publication-title: J. Mol. Liq. – start-page: 20220533 year: 2023 ident: bib35 article-title: Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface publication-title: Nanotechnol. Rev. – start-page: 1502 year: 2023 end-page: 1520 ident: bib43 article-title: Modeling of Darcy-Forchheimer magnetohydrodynamic Williamson nanofluid flow towards nonlinear radiative stretching surface using artificial neural network publication-title: Int. J. Numer. Methods Fluids – year: 2023 ident: bib19 article-title: Numerical simulation of energy transfer in radiative hybrid nanofluids flow influenced by second-order chemical reaction and magnetic field publication-title: AIP Adv. – start-page: 1312 year: 2022 ident: bib32 article-title: Impact of buoyancy and stagnation-point flow of water conveying Ag-MgO Hybrid nanoparticles in a vertical contracting/expanding Riga wedge publication-title: Symmetry – start-page: 879 year: 2024 end-page: 892 ident: bib4 article-title: Significance of coupled effects of resistive heating and perpendicular magnetic field on heat transfer process of mixed convective flow of ternary nanofluid publication-title: J. Therm. Anal. Calorim. – start-page: 2399 year: 2021 end-page: 2422 ident: bib50 article-title: Reliability analysis incorporating exponentiated inverse Weibull distribution and inverse power law publication-title: Qual. Reliab. Eng. Int. – reference: Swain, K., & Nisar, K.S. (2024). Time-dependent stagnation point flow of nano Casson fluid with Joule heating over an elongated surface subjected to viscous heating and exponential space-based heat source/sink: Boungiorno model. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 23977914231217470. – start-page: 166 year: 2023 ident: bib59 article-title: Analytical study of the energy loss reduction during three-dimensional engine oil-based hybrid nanofluid flow by using Cattaneo–Christov model publication-title: Symmetry – year: 2016 ident: bib30 article-title: Squeezing flow past a Riga plate with chemical reaction and convective conditions publication-title: J. Mol. Liq. – start-page: 7330 year: 2022 end-page: 7348 ident: bib25 article-title: A comparative analysis of the performance of magnetised copper–copper oxide/water and copper–copper oxide/kerosene oil hybrid nanofluids flowing through an extending surface with velocity slips and thermal convective conditions publication-title: Int. J. Ambient Energy – start-page: 1 year: 2021 end-page: 19 ident: bib17 article-title: Time fractional model of electro-osmotic Brinkman-type nanofluid with heat generation and chemical reaction effects: application in cleansing of contaminated water publication-title: Sci. Rep. – year: 2023 ident: bib7 article-title: Numerical study of thermal enhancement in ZnO-SAE50 nanolubricant over a spherical magnetized surface influenced by Newtonian heating and thermal radiation publication-title: Case Stud. Therm. Eng. – year: 2023 ident: bib13 article-title: MHD flow of nanofluid over moving slender needle with nanoparticles aggregation and viscous dissipation effects publication-title: Sci. Prog. – start-page: 5865 year: 2021 end-page: 5873 ident: bib53 article-title: Thermal enhancement of radiating magneto-nanoliquid with nanoparticles aggregation and joule heating: a three-dimensional flow publication-title: Arab. J. Sci. Eng. – start-page: 2450424 year: 2024 ident: bib14 article-title: Analysis of unsteady MHD fluid flow across two parallel discs with uniform fluctuation subject to modified Hall and activation energy publication-title: Int. J. Mod. Phys. B – start-page: 438 year: 2023 end-page: 461 ident: bib48 article-title: MHD casson nanofluid in darcy-forchheimer porous medium in the presence of heat source and arrhenious activation energy: applications of neural networks publication-title: Int. J. Model. Simul. – start-page: 87 year: 2023 end-page: 100 ident: bib20 article-title: Impact of radiation and heat generation/absorption in a Walters’ B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction publication-title: Int. J. Model. Simul. – year: 2023 ident: bib9 article-title: Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc publication-title: Nanotechnology – start-page: 2419 year: 2022 ident: bib23 article-title: Numerical simulations through PCM for the dynamics of thermal enhancement in ternary MHD hybrid nanofluid flow over plane sheet, cone, and wedge publication-title: Symmetry – year: 2022 ident: bib51 article-title: Significance of nanoparticle radius, inter-particle spacing, inclined magnetic field, and space-dependent internal heating: the case of chemically reactive water conveying copper nanoparticles publication-title: ZAMM-J. Appl. Math. Mech. /Z. F. üR. Angew. Math. und Mech. – start-page: 2250205 year: 2022 ident: bib36 article-title: Impact of Cattaneo–Christov double diffusion on 3d stagnation point axisymmetric flow of second-grade nanofluid towards a riga plate publication-title: Int. J. Mod. Phys. B – year: 2023 ident: bib42 article-title: Entropy generation analysis of magnetized radiative Ellis (Cu-TiO2/Engine Oil) nanofluid flow using Cattaneo-Christov heat flux model with viscous dissipation and Joule heating effects publication-title: J. Magn. Magn. Mater. – start-page: 20230194 year: 2024 ident: bib6 article-title: Energy and mass transmission through hybrid nanofluid flow passing over a spinning sphere with magnetic effect and heat source/sink publication-title: Nanotechnol. Rev. – year: 2024 ident: bib21 article-title: Computational investigation of thermal process in radiated nanofluid modulation influenced by nanoparticles (Al2O3) and molecular (H2O) diameters publication-title: J. Comput. Des. Eng. – year: 2023 ident: bib27 article-title: Analytical and numerical investigation of Darcy-Forchheimer flow of a nonlinear-radiative non-Newtonian fluid over a Riga plate with entropy optimization publication-title: Ain Shams Eng. J. – year: 2023 ident: bib16 article-title: Numerical solution for the electrically conducting hybrid nanofluid flow between two parallel rotating surfaces subject to thermal radiation publication-title: AIP Adv. – year: 2023 ident: bib2 article-title: Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis publication-title: Heliyon – start-page: 1 year: 2021 end-page: 24 ident: bib45 article-title: A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach publication-title: Eur. Phys. J. – start-page: 405 year: 2023 end-page: 420 ident: bib1 article-title: Heat and mass transfer in a peristaltic rotating frame Jeffrey fluid via porous medium with chemical reaction and wall properties publication-title: Alex. Eng. J. – year: 2023 ident: bib44 article-title: Analyzing activation energy and binary chemical reaction effects with artificial intelligence approach in axisymmetric flow of third grade nanofluid subject to Soret and Dufour effects publication-title: Heat. Transf. Res. – start-page: 225 year: 2023 end-page: 235 ident: bib22 article-title: Darcy–Forchheimer higher-order slip flow of Eyring–Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon. publication-title: J. Dispers. Sci. Technol. – start-page: 3157 year: 2022 ident: bib28 article-title: Entropy analysis of sutterby nanofluid flow over a riga sheet with gyrotactic microorganisms and cattaneo–christov double diffusion. publication-title: Mathematics – year: 2021 ident: bib33 article-title: Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface publication-title: Case Stud. Therm. Eng. – start-page: 1236 year: 2022 end-page: 1249 ident: bib46 article-title: Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM publication-title: Sci. Iran. – start-page: 1 year: 2022 end-page: 18 ident: bib56 article-title: Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant publication-title: Waves Random Complex Media – volume: 100 issue: 2 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib26 article-title: Nuclear reactor application on Jeffrey fluid flow with Falkner-skan factor, Brownian and thermophoresis, non linear thermal radiation impacts past a wedge publication-title: J. Indian Chem. Soc. doi: 10.1016/j.jics.2023.100907 – volume: 43 start-page: 5810 issue: 1 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib54 article-title: Flow and heat transfer analysis of water-based copper nanofluid over a nonlinearly stretching sheet: a numerical approach publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2021.1995490 – volume: 131 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib18 article-title: Double diffusive convection and cross diffusion effects on Casson fluid over a Lorentz force driven Riga plate in a porous medium with heat sink: An analytical approach publication-title: Int. Commun. Heat. Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105761 – volume: 45 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib7 article-title: Numerical study of thermal enhancement in ZnO-SAE50 nanolubricant over a spherical magnetized surface influenced by Newtonian heating and thermal radiation publication-title: Case Stud. Therm. Eng. – volume: 14 issue: 3 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib27 article-title: Analytical and numerical investigation of Darcy-Forchheimer flow of a nonlinear-radiative non-Newtonian fluid over a Riga plate with entropy optimization publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2022.101887 – year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib42 article-title: Entropy generation analysis of magnetized radiative Ellis (Cu-TiO2/Engine Oil) nanofluid flow using Cattaneo-Christov heat flux model with viscous dissipation and Joule heating effects publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2023.170949 – volume: 43 start-page: 7330 issue: 1 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib25 article-title: A comparative analysis of the performance of magnetised copper–copper oxide/water and copper–copper oxide/kerosene oil hybrid nanofluids flowing through an extending surface with velocity slips and thermal convective conditions publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2022.2063387 – volume: 10 start-page: 3157 issue: 17 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib28 article-title: Entropy analysis of sutterby nanofluid flow over a riga sheet with gyrotactic microorganisms and cattaneo–christov double diffusion. publication-title: Mathematics doi: 10.3390/math10173157 – volume: 95 start-page: 1502 issue: 9 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib43 article-title: Modeling of Darcy-Forchheimer magnetohydrodynamic Williamson nanofluid flow towards nonlinear radiative stretching surface using artificial neural network publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.5216 – volume: 106 issue: 2 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib13 article-title: MHD flow of nanofluid over moving slender needle with nanoparticles aggregation and viscous dissipation effects publication-title: Sci. Prog. doi: 10.1177/00368504231176151 – volume: 95 start-page: 1 year: 2021 ident: 10.1016/j.cherd.2024.06.037_bib38 article-title: Squeezing flow analysis of CuO–water and CuO–kerosene-based nanofluids: a comparative study publication-title: Pramana doi: 10.1007/s12043-020-02053-1 – volume: 46 start-page: 12405 issue: 12 year: 2021 ident: 10.1016/j.cherd.2024.06.037_bib40 article-title: Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05926-8 – year: 2016 ident: 10.1016/j.cherd.2024.06.037_bib30 article-title: Squeezing flow past a Riga plate with chemical reaction and convective conditions publication-title: J. Mol. Liq. – volume: 37 start-page: 2399 issue: 6 year: 2021 ident: 10.1016/j.cherd.2024.06.037_bib50 article-title: Reliability analysis incorporating exponentiated inverse Weibull distribution and inverse power law publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.2864 – volume: 27 year: 2021 ident: 10.1016/j.cherd.2024.06.037_bib33 article-title: Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101229 – volume: 43 start-page: 87 issue: 2 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib20 article-title: Impact of radiation and heat generation/absorption in a Walters’ B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction publication-title: Int. J. Model. Simul. doi: 10.1080/02286203.2022.2035948 – start-page: 1 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib56 article-title: Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant publication-title: Waves Random Complex Media doi: 10.1080/17455030.2022.2102271 – volume: 13 start-page: 13675 issue: 1 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib8 article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach publication-title: Sci. Rep. doi: 10.1038/s41598-023-27562-y – volume: 15 start-page: 199 issue: 1 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib49 article-title: Comparative analysis of darcy–forchheimer radiative flow of a water-based Al2O3-Ag/TiO2 hybrid nanofluid over a riga plate with heat sink/source publication-title: Symmetry doi: 10.3390/sym15010199 – volume: 13 issue: 3 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib19 article-title: Numerical simulation of energy transfer in radiative hybrid nanofluids flow influenced by second-order chemical reaction and magnetic field publication-title: AIP Adv. doi: 10.1063/5.0141532 – volume: 46 start-page: 5865 year: 2021 ident: 10.1016/j.cherd.2024.06.037_bib53 article-title: Thermal enhancement of radiating magneto-nanoliquid with nanoparticles aggregation and joule heating: a three-dimensional flow publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04979-5 – volume: 225 start-page: 569 year: 2017 ident: 10.1016/j.cherd.2024.06.037_bib31 article-title: Squeezing flow past a Riga plate with chemical reaction and convective conditions publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.11.089 – volume: 136 start-page: 1 year: 2021 ident: 10.1016/j.cherd.2024.06.037_bib45 article-title: A study of dual stratification on stagnation point Walters' B nanofluid flow via radiative Riga plate: a statistical approach publication-title: Eur. Phys. J. – volume: 43 start-page: 438 issue: 4 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib48 article-title: MHD casson nanofluid in darcy-forchheimer porous medium in the presence of heat source and arrhenious activation energy: applications of neural networks publication-title: Int. J. Model. Simul. doi: 10.1080/02286203.2022.2091973 – volume: 7 start-page: 30477 issue: 34 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib29 article-title: Mixed convection nanofluid flow with heat source and chemical reaction over an inclined irregular surface publication-title: ACS Omega doi: 10.1021/acsomega.2c03919 – volume: 9 issue: 5 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib2 article-title: Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15916 – volume: 44 start-page: 225 issue: 2 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib22 article-title: Darcy–Forchheimer higher-order slip flow of Eyring–Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon. publication-title: J. Dispers. Sci. Technol. doi: 10.1080/01932691.2021.1942035 – volume: 13 issue: 7 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib16 article-title: Numerical solution for the electrically conducting hybrid nanofluid flow between two parallel rotating surfaces subject to thermal radiation publication-title: AIP Adv. doi: 10.1063/5.0154720 – start-page: 2450424 year: 2024 ident: 10.1016/j.cherd.2024.06.037_bib14 article-title: Analysis of unsteady MHD fluid flow across two parallel discs with uniform fluctuation subject to modified Hall and activation energy publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979224504241 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cherd.2024.06.037_bib17 article-title: Time fractional model of electro-osmotic Brinkman-type nanofluid with heat generation and chemical reaction effects: application in cleansing of contaminated water publication-title: Sci. Rep. doi: 10.1038/s41598-021-03062-9 – volume: 14 start-page: 2419 issue: 11 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib23 article-title: Numerical simulations through PCM for the dynamics of thermal enhancement in ternary MHD hybrid nanofluid flow over plane sheet, cone, and wedge publication-title: Symmetry doi: 10.3390/sym14112419 – volume: 54 issue: 3 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib44 article-title: Analyzing activation energy and binary chemical reaction effects with artificial intelligence approach in axisymmetric flow of third grade nanofluid subject to Soret and Dufour effects publication-title: Heat. Transf. Res. – volume: 98 start-page: 27 issue: 1 year: 2024 ident: 10.1016/j.cherd.2024.06.037_bib57 article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink publication-title: Pramana doi: 10.1007/s12043-023-02702-1 – volume: 7 issue: 6 year: 2017 ident: 10.1016/j.cherd.2024.06.037_bib37 article-title: MHD biconvective flow of Powell Eyring nanofluid over stretched surface publication-title: Aip Adv. doi: 10.1063/1.4983014 – volume: 22 start-page: 18 issue: 1 year: 2019 ident: 10.1016/j.cherd.2024.06.037_bib41 article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface publication-title: Entropy doi: 10.3390/e22010018 – volume: 77 start-page: 2435 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib24 article-title: Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2022.04.004 – year: 2024 ident: 10.1016/j.cherd.2024.06.037_bib21 article-title: Computational investigation of thermal process in radiated nanofluid modulation influenced by nanoparticles (Al2O3) and molecular (H2O) diameters publication-title: J. Comput. Des. Eng. – ident: 10.1016/j.cherd.2024.06.037_bib55 doi: 10.1177/23977914231217470 – volume: 12 start-page: 16280 issue: 1 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib39 article-title: Numerical study of non-Darcy hybrid nanofluid flow with the effect of heat source and hall current over a slender extending sheet publication-title: Sci. Rep. doi: 10.1038/s41598-022-20583-z – volume: 149 start-page: 879 issue: 2 year: 2024 ident: 10.1016/j.cherd.2024.06.037_bib4 article-title: Significance of coupled effects of resistive heating and perpendicular magnetic field on heat transfer process of mixed convective flow of ternary nanofluid publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12723-y – volume: 20 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib12 article-title: Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101536 – year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib9 article-title: Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc publication-title: Nanotechnology doi: 10.1088/1361-6528/ace912 – volume: 36 start-page: 2250205 issue: 29 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib36 article-title: Impact of Cattaneo–Christov double diffusion on 3d stagnation point axisymmetric flow of second-grade nanofluid towards a riga plate publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979222502058 – ident: 10.1016/j.cherd.2024.06.037_bib10 – volume: 148 start-page: 11203 issue: 20 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib11 article-title: Motile microorganism-based ternary nanofluid flow with the significance of slip condition and magnetic effect over a Riga plate publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12397-6 – volume: 96 start-page: 513 year: 2016 ident: 10.1016/j.cherd.2024.06.037_bib47 article-title: MHD free convection of Al2O3–water nanofluid considering thermal radiation publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.01.059 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib5 article-title: Thermal transport in radiative nanofluids by considering the influence of convective heat condition publication-title: J. Nanomater. doi: 10.1155/2022/1854381 – volume: 12 start-page: 20220533 issue: 1 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib35 article-title: Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2022-0533 – volume: 13 start-page: 20230194 issue: 1 year: 2024 ident: 10.1016/j.cherd.2024.06.037_bib6 article-title: Energy and mass transmission through hybrid nanofluid flow passing over a spinning sphere with magnetic effect and heat source/sink publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2023-0194 – volume: 11 start-page: 1266 issue: 5 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib15 article-title: Significance of nanoparticle radius and gravity modulation on dynamics of nanofluid over stretched surface via finite element simulation: the case of water-based copper nanoparticles publication-title: Mathematics doi: 10.3390/math11051266 – volume: 14 start-page: 1312 issue: 7 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib32 article-title: Impact of buoyancy and stagnation-point flow of water conveying Ag-MgO Hybrid nanoparticles in a vertical contracting/expanding Riga wedge publication-title: Symmetry doi: 10.3390/sym14071312 – volume: 15 start-page: 166 issue: 1 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib59 article-title: Analytical study of the energy loss reduction during three-dimensional engine oil-based hybrid nanofluid flow by using Cattaneo–Christov model publication-title: Symmetry doi: 10.3390/sym15010166 – start-page: 1 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib3 article-title: Heat transfer inspection in [(ZnO-MWCNTs)/water-EG (50: 50)] hnf with thermal radiation ray and convective condition over a Riga surface publication-title: Waves Random Complex Media – volume: 15 start-page: 725 issue: 3 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib34 article-title: Heat and mass transport in casson nanofluid flow over a 3-D riga plate with cattaneo-christov double flux: a computational modeling through analytical method publication-title: Symmetry doi: 10.3390/sym15030725 – volume: 102 issue: 4 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib51 article-title: Significance of nanoparticle radius, inter-particle spacing, inclined magnetic field, and space-dependent internal heating: the case of chemically reactive water conveying copper nanoparticles publication-title: ZAMM-J. Appl. Math. Mech. /Z. F. üR. Angew. Math. und Mech. – volume: 10 start-page: 1542 issue: 9 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib58 article-title: An optimal investigation of convective fluid flow suspended by carbon nanotubes and thermal radiation impact publication-title: Mathematics doi: 10.3390/math10091542 – volume: 43 start-page: 4045 issue: 1 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib52 article-title: Influence of exponential space-based heat source and Joule heating on nanofluid flow over an elongating/shrinking sheet with an inclined magnetic field publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2021.1873854 – volume: 66 start-page: 405 year: 2023 ident: 10.1016/j.cherd.2024.06.037_bib1 article-title: Heat and mass transfer in a peristaltic rotating frame Jeffrey fluid via porous medium with chemical reaction and wall properties publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.11.016 – volume: 29 start-page: 1236 issue: 3 year: 2022 ident: 10.1016/j.cherd.2024.06.037_bib46 article-title: Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM publication-title: Sci. Iran. |
| SSID | ssj0001748 |
| Score | 2.5076485 |
| Snippet | The analysis of the squeezing nanofluid flow across bounded domains received great attention from researchers and engineers due to its tremendous application... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 458 |
| SubjectTerms | Energy utilization Heat source/sink Numerical method and algorithms Riga plates Thermal radiation |
| Title | Heat and mass transmission through the nanofluids flow subject to exponential heat source/sink and thermal convective condition across Riga plates |
| URI | https://dx.doi.org/10.1016/j.cherd.2024.06.037 |
| Volume | 207 |
| WOSCitedRecordID | wos001259551300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0263-8762 databaseCode: AIEXJ dateStart: 19961101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001748 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjpswFLXSTBftoupTnb7kRXeUNoCNYZlWM5rOYlRVUyk7ZBvcYcSQKIFpvqOf0i_svdiQTFNFnUU3BCEwkHvwfej6HELexoBcLrX2uY47CTMBnxSTPvhaERU5C0xoOrEJcXaWzGbpl9HoV78W5roSdZ2s1-niv5oajoGxcensLcw9DAoHYB-MDlswO2z_yfAnmPNjOfwK4mKUgKhXYEssig2iPBhs1rKem6ot85VnqvkPb9UqLMlgLFqsF_Mau4jsOsnGsxV-fA_IXPueS5jRK9u03k2ZuJuXVne8c73e1_K7RJXqxrUp9nwIPUVBsaFC9Bzn0EWHxPxGV8nULuD-WFZy6AY5bZUsrWJYmS8Hz3I8b61w9vTiyi3acgWNkA3Nr_28F8bRziQdWm1cN80yS_fuPDazahM7zsDWJS7fI_qRFDZkHVWrJZm5Sb39h0scGhX7HrjLrBskw0Ey7ASMxB1yEAqeJmNyMP18NDsd_D_keImt7NnX6Lmuuq7CnWf5ezy0FeOcPyQPXHJCpxZUj8ioqB-T-1uUlU_IT4QXBQhQhBfdhhd18ILfgm7gRRFe1MGLNnO6BS-K8KIWXh8QXN3IDlx0Ay46gItacFEEF7Xgekq-HR-dfzrxna6HryFganyRioLrkBkVTliuJiZQSMIkdZBqPVGKG6G5KhJuIg6nBDIOTBxpDsGrFCkE2M_IuIYHfU4o4yaXCmJgBWFqoEQiDSbVSWxYWqhIHJKw_3cz7UjvUXulyvZY9pC8Gy5aWM6X_afHvdkyF7bacDQDIO678MXt7vOS3Nt8Lq_IuFm2xWtyV1835Wr5xqHwNwZ8wTQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+and+mass+transmission+through+the+nanofluids+flow+subject+to+exponential+heat+source%2Fsink+and+thermal+convective+condition+across+Riga+plates&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Ali%2C+Bilal&rft.au=Jubair%2C+Sidra&rft.au=Fouly%2C+Ahmed&rft.date=2024-07-01&rft.issn=0263-8762&rft.volume=207&rft.spage=458&rft.epage=465&rft_id=info:doi/10.1016%2Fj.cherd.2024.06.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cherd_2024_06_037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon |