Development of mathematical models for the prediction of mechanical properties of low carbon steel (LCS)
There has been constant development in the area of mechanical properties of low carbon steel but many of the approaches used to determine the properties have always been through experimentation processes. This work report the development of user friendly JavaScript program based on mathematical mode...
Gespeichert in:
| Veröffentlicht in: | Materials today : proceedings Jg. 38; S. 1133 - 1139 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
2021
|
| Schlagworte: | |
| ISSN: | 2214-7853, 2214-7853 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | There has been constant development in the area of mechanical properties of low carbon steel but many of the approaches used to determine the properties have always been through experimentation processes. This work report the development of user friendly JavaScript program based on mathematical models for prediction of mechanical properties such as tensile strength, hardness and impact of low carbon steel; to avoid time consumption, cost and wasted efforts committed to the mechanical testing in laboratory experiments. Experimental data obtained from the mechanical tests carried out on LC-steel samples at varying thicknesses (10 mm, 12 mm 16 mm diameters) were used to formulate the model equations. Polynomial regression analysis was used as the algorithm to express the model and JavaScript programming language was used to develop simulations. Data from the models which are the predicted values for the mechanical properties were validated using t-test paired with mean, correlation coefficient and standard error analyses. The results of the model data validation show a high correlation coefficient which is a perfect positive and strong t-value in the case of the t-test paired analysis. This proved the authenticity, workability and capability of the model. Performance of the model is evaluated by the mean error and coefficient of correlation (R). The R value and validation show excellent values showing that JavaScript is appropriate to predict the mechanical properties of low carbon steel. The presented method enables easy analyses and predicting the effects of alloying elements in LC steels (occurring under manufacturing conditions) based on only computer simulation, without necessarily carrying out additional and expensive experimental investigation. |
|---|---|
| AbstractList | There has been constant development in the area of mechanical properties of low carbon steel but many of the approaches used to determine the properties have always been through experimentation processes. This work report the development of user friendly JavaScript program based on mathematical models for prediction of mechanical properties such as tensile strength, hardness and impact of low carbon steel; to avoid time consumption, cost and wasted efforts committed to the mechanical testing in laboratory experiments. Experimental data obtained from the mechanical tests carried out on LC-steel samples at varying thicknesses (10 mm, 12 mm 16 mm diameters) were used to formulate the model equations. Polynomial regression analysis was used as the algorithm to express the model and JavaScript programming language was used to develop simulations. Data from the models which are the predicted values for the mechanical properties were validated using t-test paired with mean, correlation coefficient and standard error analyses. The results of the model data validation show a high correlation coefficient which is a perfect positive and strong t-value in the case of the t-test paired analysis. This proved the authenticity, workability and capability of the model. Performance of the model is evaluated by the mean error and coefficient of correlation (R). The R value and validation show excellent values showing that JavaScript is appropriate to predict the mechanical properties of low carbon steel. The presented method enables easy analyses and predicting the effects of alloying elements in LC steels (occurring under manufacturing conditions) based on only computer simulation, without necessarily carrying out additional and expensive experimental investigation. |
| Author | Adebayo, A.O. Oyetunji, A. Borisade, S.G. Ajibola, O.O. |
| Author_xml | – sequence: 1 givenname: S.G. surname: Borisade fullname: Borisade, S.G. email: sunday.borisade@fuoye.edu.ng.com organization: Department of Materials and Metallurgical Engineering, Federal University Oye-Ekiti, Nigeria – sequence: 2 givenname: O.O. orcidid: 0000-0003-0663-4314 surname: Ajibola fullname: Ajibola, O.O. organization: Department of Materials and Metallurgical Engineering, Federal University Oye-Ekiti, Nigeria – sequence: 3 givenname: A.O. surname: Adebayo fullname: Adebayo, A.O. organization: Department of Materials and Metallurgical Engineering, Federal University Oye-Ekiti, Nigeria – sequence: 4 givenname: A. surname: Oyetunji fullname: Oyetunji, A. organization: Department of Materials and Metallurgical Engineering, Federal University of Technology Akure, Ondo-State, Nigeria |
| BookMark | eNqFkD1PwzAURS0EEqX0F7B4hCHBX6nbgQGVT6kSAzBbjv2iukriyLaK-Pc4LQNigMW23rvnyjpn6Lj3PSB0QUlJCZ1fb8tOpyGUjDBSEllSLo7QhDEqCrmo-PGP9ymaxbglhNBqThZ0PkGbO9hB64cO-oR9g3PVBvLhjG5x5y20ETc-4DzFQwDrTHK-3yfBbHS_zw3BDxCSgzguWv-BjQ51jsUE0OLL9er16hydNLqNMPu-p-j94f5t9VSsXx6fV7frwnDCUyE5E4wu64YT4EZrLayplrSqK2oqwYSlkhIrayGENCCMpk1jBRAuGam0tXyKlodeE3yMARplXNLjp1PQrlWUqNGa2qq9NTVaU0SqbC2z_Bc7BNfp8PkPdXOgsivYOQgqGge9ybICmKSsd3_yX8LBiwg |
| CitedBy_id | crossref_primary_10_1002_htj_23369 crossref_primary_10_1007_s10973_022_11410_8 crossref_primary_10_3390_machines10090760 crossref_primary_10_1109_ACCESS_2022_3212053 |
| Cites_doi | 10.1214/10-STS330 10.1007/s00466-015-1240-4 10.1179/174328105X48151 10.1590/1980-5373-mr-2016-0183 10.1145/1809028.1806598 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.matpr.2020.07.134 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2214-7853 |
| EndPage | 1139 |
| ExternalDocumentID | 10_1016_j_matpr_2020_07_134 S2214785320352251 |
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADVLN AEBSH AEIPS AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV EBS EFJIC EJD FDB FIRID FYGXN GBLVA HZ~ KOM M41 O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSH SSM SSZ T5K ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG |
| ID | FETCH-LOGICAL-c303t-7324219bf30e3caaa4dc5915b51c5424d1710d7b4447ce4ca1ffd4e037205add3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621180500104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2214-7853 |
| IngestDate | Sat Nov 29 06:56:04 EST 2025 Tue Nov 18 20:53:53 EST 2025 Sun Apr 06 06:58:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Simulation Correlation Coefficient Polynomial Regression Model T-test paired Mechanical Properties JavaScript programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-7324219bf30e3caaa4dc5915b51c5424d1710d7b4447ce4ca1ffd4e037205add3 |
| ORCID | 0000-0003-0663-4314 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_matpr_2020_07_134 crossref_primary_10_1016_j_matpr_2020_07_134 elsevier_sciencedirect_doi_10_1016_j_matpr_2020_07_134 |
| PublicationCentury | 2000 |
| PublicationDate | 2021 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Materials today : proceedings |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | H.T. Angus, Cast Iron, Physical and Engineering Properties, Butterworths, British Cast Iron Research Association. (BCIRA), (2006) p. 128. Richards, Lebresne, Burg, Vitek (b0060) 2010; 45 Adrian, K. Kingsley-Hughes, Wiley Publishing, Inc. 10475 Crosspoint Boulevard, Indianapolis, (2005) Pp 4. Williams (b0005) 2010 Jones, Watton, Brown (b0090) 2005; 32 W. Soboyejo, Mechanical Properties of Engineered Materials, Marcel Dekker, Inc. ISBN: 0-8247-8900-8. (2003) p. 1. M.A. Sokolov, N.K. Randy, Effects of Radiation on Materials: Vol. 17, ASTM STP 1270 (1995), Pp 4. Antonio, Melchor, Andres, Ricardo (b0075) 2017; 20 Smith, Xiong, Yan (b0065) 2016; 57 Achebo (b0085) 2015; 3 J.C. Warner, H. Brandt, Metallurgical Fundamentals, Goodheart-Willcox Company Inc, ISBN 1-590703456 (2005), Pp 72. Dumortier, Lehert (b0025) 1999; 39 S. Maffeis, J.C. Mitchell, A. Taly, in: Ramalingam G. (Ed.) Programming Languages and Systems. APLAS, Lecture Notes in Computer Science, Springer; Berlin, Heidelberg, vol. 5356 (2008). Ajayi, Joseph, Oloruntoba, Joseph (b0095) 2013; 3 Oyetunji, Alaneme (b0040) 2005; 28 Shmueli (b0070) 2010; 25 Oyetunji (b0015) 2010; 6 J.S. Park, J.D. Varhoeven (2006). Metall. Mater. Trans. 2741-2753. Argon, Backer, McClintock (b0080) 1966 10.1016/j.matpr.2020.07.134_b0030 10.1016/j.matpr.2020.07.134_b0010 Shmueli (10.1016/j.matpr.2020.07.134_b0070) 2010; 25 10.1016/j.matpr.2020.07.134_b0020 10.1016/j.matpr.2020.07.134_b0045 10.1016/j.matpr.2020.07.134_b0055 10.1016/j.matpr.2020.07.134_b0035 Achebo (10.1016/j.matpr.2020.07.134_b0085) 2015; 3 Argon (10.1016/j.matpr.2020.07.134_b0080) 1966 Oyetunji (10.1016/j.matpr.2020.07.134_b0015) 2010; 6 Williams (10.1016/j.matpr.2020.07.134_b0005) 2010 Dumortier (10.1016/j.matpr.2020.07.134_b0025) 1999; 39 Oyetunji (10.1016/j.matpr.2020.07.134_b0040) 2005; 28 Jones (10.1016/j.matpr.2020.07.134_b0090) 2005; 32 Antonio (10.1016/j.matpr.2020.07.134_b0075) 2017; 20 Ajayi (10.1016/j.matpr.2020.07.134_b0095) 2013; 3 Richards (10.1016/j.matpr.2020.07.134_b0060) 2010; 45 10.1016/j.matpr.2020.07.134_b0050 Smith (10.1016/j.matpr.2020.07.134_b0065) 2016; 57 |
| References_xml | – volume: 45 start-page: 1 year: 2010 end-page: 12 ident: b0060 publication-title: ACM SIGPLAN Notices – reference: H.T. Angus, Cast Iron, Physical and Engineering Properties, Butterworths, British Cast Iron Research Association. (BCIRA), (2006) p. 128. – reference: S. Maffeis, J.C. Mitchell, A. Taly, in: Ramalingam G. (Ed.) Programming Languages and Systems. APLAS, Lecture Notes in Computer Science, Springer; Berlin, Heidelberg, vol. 5356 (2008). – volume: 25 start-page: 289 year: 2010 end-page: 310 ident: b0070 article-title: To explain or to predict? publication-title: Stat. Sci. – reference: J.S. Park, J.D. Varhoeven (2006). Metall. Mater. Trans. 2741-2753. – volume: 6 start-page: 393 year: 2010 end-page: 400 ident: b0015 publication-title: J. Appl. Sci. Res. ISINET Publ. Pak. – reference: Adrian, K. Kingsley-Hughes, Wiley Publishing, Inc. 10475 Crosspoint Boulevard, Indianapolis, (2005) Pp 4. – volume: 20 start-page: 1201 year: 2017 end-page: 1210 ident: b0075 publication-title: Mater. Res. – volume: 3 start-page: 169 year: 2015 end-page: 184 ident: b0085 publication-title: Prod. Manuf. Res. – volume: 57 start-page: 583 year: 2016 end-page: 610 ident: b0065 publication-title: Comput. Mech. – volume: 32 start-page: 435 year: 2005 end-page: 442 ident: b0090 publication-title: Ironmak Steelmak – volume: 39 start-page: 980 year: 1999 end-page: 985 ident: b0025 publication-title: ISLJ Int. – start-page: 113 year: 2010 end-page: 353 ident: b0005 article-title: Materials Science and Engineering – An Introduction – year: 1966 ident: b0080 article-title: Metallurgy and Materials – volume: 3 start-page: 85 year: 2013 ident: b0095 publication-title: Int. J. Metall. Mater. Eng. – reference: J.C. Warner, H. Brandt, Metallurgical Fundamentals, Goodheart-Willcox Company Inc, ISBN 1-590703456 (2005), Pp 72. – reference: M.A. Sokolov, N.K. Randy, Effects of Radiation on Materials: Vol. 17, ASTM STP 1270 (1995), Pp 4. – reference: W. Soboyejo, Mechanical Properties of Engineered Materials, Marcel Dekker, Inc. ISBN: 0-8247-8900-8. (2003) p. 1. – volume: 28 start-page: 36 year: 2005 end-page: 44 ident: b0040 publication-title: West Indian J. Eng. – ident: 10.1016/j.matpr.2020.07.134_b0035 – volume: 25 start-page: 289 issue: 3 year: 2010 ident: 10.1016/j.matpr.2020.07.134_b0070 article-title: To explain or to predict? publication-title: Stat. Sci. doi: 10.1214/10-STS330 – start-page: 113 year: 2010 ident: 10.1016/j.matpr.2020.07.134_b0005 – ident: 10.1016/j.matpr.2020.07.134_b0020 – ident: 10.1016/j.matpr.2020.07.134_b0045 – volume: 57 start-page: 583 year: 2016 ident: 10.1016/j.matpr.2020.07.134_b0065 publication-title: Comput. Mech. doi: 10.1007/s00466-015-1240-4 – volume: 3 start-page: 169 issue: 1 year: 2015 ident: 10.1016/j.matpr.2020.07.134_b0085 publication-title: Prod. Manuf. Res. – volume: 32 start-page: 435 issue: 5 year: 2005 ident: 10.1016/j.matpr.2020.07.134_b0090 publication-title: Ironmak Steelmak doi: 10.1179/174328105X48151 – volume: 6 start-page: 393 issue: 5 year: 2010 ident: 10.1016/j.matpr.2020.07.134_b0015 publication-title: J. Appl. Sci. Res. ISINET Publ. Pak. – year: 1966 ident: 10.1016/j.matpr.2020.07.134_b0080 – ident: 10.1016/j.matpr.2020.07.134_b0050 – volume: 3 start-page: 85 year: 2013 ident: 10.1016/j.matpr.2020.07.134_b0095 publication-title: Int. J. Metall. Mater. Eng. – volume: 20 start-page: 1201 issue: 5 year: 2017 ident: 10.1016/j.matpr.2020.07.134_b0075 publication-title: Mater. Res. doi: 10.1590/1980-5373-mr-2016-0183 – ident: 10.1016/j.matpr.2020.07.134_b0055 – volume: 39 start-page: 980 issue: 10 year: 1999 ident: 10.1016/j.matpr.2020.07.134_b0025 publication-title: ISLJ Int. – volume: 28 start-page: 36 issue: 1 year: 2005 ident: 10.1016/j.matpr.2020.07.134_b0040 publication-title: West Indian J. Eng. – volume: 45 start-page: 1 year: 2010 ident: 10.1016/j.matpr.2020.07.134_b0060 publication-title: ACM SIGPLAN Notices doi: 10.1145/1809028.1806598 – ident: 10.1016/j.matpr.2020.07.134_b0030 – ident: 10.1016/j.matpr.2020.07.134_b0010 |
| SSID | ssj0001560816 |
| Score | 2.1925647 |
| Snippet | There has been constant development in the area of mechanical properties of low carbon steel but many of the approaches used to determine the properties have... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1133 |
| SubjectTerms | Correlation Coefficient JavaScript programming Mechanical Properties Polynomial Regression Simulation T-test paired |
| Title | Development of mathematical models for the prediction of mechanical properties of low carbon steel (LCS) |
| URI | https://dx.doi.org/10.1016/j.matpr.2020.07.134 |
| Volume | 38 |
| WOSCitedRecordID | wos000621180500104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: AIEXJ dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMviAkQ40t-2ANIJKpje04ep2nAJrQibaC-RY7jiFYljbpsbH8T_yR3dr6AqmIPvETtxXEa36--88X3O0L24wzmfIBOYE0kA8EzFsSAo4DHIpaac6kdz_bXT-rsLJ7Nks-j0c82F-Z6qcoyvrlJqv-qapCBsjF19g7q7joFAXwGpcMR1A7Hf1L8YBuQe3ne8bJingjWvbnsthZWa3xN0_qM3y1mAbt2FYbo18i1iieWqx_IYJ1BM8CEXboyIEfnbRChrQela_944M5icgnGGnrz2EfjV0jr68l-z8MPYYe4xTyDZTaKp-G0F-c207c-F2cgnt7a-qpczL18GLrwmdB-bosiJgIVe57g0G6QNZOzp35pZlfGOB9YaviabLQCPiCxCGFwK-R8jSZI0MqaqOlvnNt_2MJuh2K7-W2Ruk5S7CSdqBQ6uUd2IgXrsDHZOTw5np32IT3wHmNXbLd7lJbnyu0o_OvnbPaFBv7NxSPysFmY0EMPqF0ysuVj8m0AJroq6BBM1IOJApgoSGkPJteyAxPtwYQnAEzUg4k6MNE3AKW3T8iX98cXRx-DpjZHYMDpqQOFjjhLsoJPLDdaa5EbmTCZSWakiETOwHXNVSaEUMYKo1lR5MJOsCiSBJvKn5JxuSrtM0J5xGWBVQ7kgYGGOpE8zyzn4InmJlF6j0TtKKWmIa7H-inLdIuS9si77qLK87Zsb37QDn_auJ7epUwBU9sufH63-7wgD_CP4GN4L8m4Xl_ZV-S-ua7nl-vXDaB-ARHQpC4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+mathematical+models+for+the+prediction+of+mechanical+properties+of+low+carbon+steel+%28LCS%29&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Borisade%2C+S.G.&rft.au=Ajibola%2C+O.O.&rft.au=Adebayo%2C+A.O.&rft.au=Oyetunji%2C+A.&rft.date=2021&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=38&rft.spage=1133&rft.epage=1139&rft_id=info:doi/10.1016%2Fj.matpr.2020.07.134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matpr_2020_07_134 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon |