Relational generalized iterated function systems

In this paper, we introduce a wider class of generalized iterated function systems, called relational generalized iterated function systems. More precisely, the classical contraction condition for functions defined on product spaces is weakened by means of an equivalence relation. In particular, if...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chaos, solitons and fractals Ročník 182; s. 114823
Hlavní autoři: Abraham, Izabella, Miculescu, Radu, Mihail, Alexandru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2024
Témata:
ISSN:0960-0779, 1873-2887
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we introduce a wider class of generalized iterated function systems, called relational generalized iterated function systems. More precisely, the classical contraction condition for functions defined on product spaces is weakened by means of an equivalence relation. In particular, if we consider the total equivalence relation, we recover the classical generalized iterated function systems. Our main result states that each compact subset of the underlying metric space generates, via a sequence of iterates, a fixed point of the associated fractal operator, called an attractor of the system. We also establish a structure result for the attractors and a theorem concerning the continuous dependence of the attractor on the associated compact set. Ultimately, we provide some examples which illustrate our main results. •We introduce the class of relational generalized iterated function systems.•We weaken the classical contraction condition using an equivalence relation.•We prove that each compact set generates an attractor of the system.•We establish a structure result for the attractors.•We prove a theorem concerning the continuous dependence of the attractors.
AbstractList In this paper, we introduce a wider class of generalized iterated function systems, called relational generalized iterated function systems. More precisely, the classical contraction condition for functions defined on product spaces is weakened by means of an equivalence relation. In particular, if we consider the total equivalence relation, we recover the classical generalized iterated function systems. Our main result states that each compact subset of the underlying metric space generates, via a sequence of iterates, a fixed point of the associated fractal operator, called an attractor of the system. We also establish a structure result for the attractors and a theorem concerning the continuous dependence of the attractor on the associated compact set. Ultimately, we provide some examples which illustrate our main results. •We introduce the class of relational generalized iterated function systems.•We weaken the classical contraction condition using an equivalence relation.•We prove that each compact set generates an attractor of the system.•We establish a structure result for the attractors.•We prove a theorem concerning the continuous dependence of the attractors.
ArticleNumber 114823
Author Miculescu, Radu
Abraham, Izabella
Mihail, Alexandru
Author_xml – sequence: 1
  givenname: Izabella
  surname: Abraham
  fullname: Abraham, Izabella
  email: izabella.abraham@student.unitbv.ro
  organization: Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu Street, nr. 50, 500091, Braşov, Romania
– sequence: 2
  givenname: Radu
  orcidid: 0000-0002-5516-6193
  surname: Miculescu
  fullname: Miculescu, Radu
  email: radu.miculescu@unitbv.ro
  organization: Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu Street, nr. 50, 500091, Braşov, Romania
– sequence: 3
  givenname: Alexandru
  surname: Mihail
  fullname: Mihail, Alexandru
  email: alex_m@fmi.unibuc.ro
  organization: Faculty of Mathematics and Computer Science, University of Bucharest, Academiei Street, nr. 14, 010014, Bucharest, Romania
BookMark eNqFz81KAzEQwPEgFWyrT-ClL7DrJNnNx8GDFLVCQZDeQ5Kd1ZTtriRRqE_vtvXkQU8zMPwHfjMy6YceCbmmUFKg4mZb-jc7pJIBq0pKK8X4GZlSJXnBlJITMgUtoAAp9QWZpbQFAAqCTQm8YGdzGHrbLV6xx2i78IXNIuRxzePSfvT-cF-kfcq4S5fkvLVdwqufOSebh_vNclWsnx-flnfrwnPguZC0aTTHGpxvqaMtB-0c5xVTTjQoHAhra2iBuUqDdEyh4B604rWvZEX5nPDTWx-HlCK25j2GnY17Q8EczGZrjmZzMJuTeaz0r8qHfOTlaEP3T3t7anFUfQaMJvmAvccmRPTZNEP4s_8GWDZ1WQ
CitedBy_id crossref_primary_10_1080_14689367_2025_2542774
crossref_primary_10_1002_mma_70055
crossref_primary_10_1016_j_chaos_2024_115466
crossref_primary_10_1080_02331934_2025_2463944
Cites_doi 10.3390/math11132826
10.1007/s12346-020-00420-2
10.1007/s00009-020-01585-5
10.1016/j.jmaa.2014.08.029
10.1007/s11784-015-0235-2
10.1016/j.fss.2017.05.003
10.1016/j.chaos.2014.12.005
10.1016/j.jmaa.2019.123740
10.1007/s11075-016-0104-0
10.1016/0022-247X(85)90225-2
10.24193/fpt-ro.2017.2.55
10.1007/s00009-013-0300-2
10.1016/j.cnsns.2020.105423
10.1016/j.chaos.2020.110404
10.1512/iumj.1981.30.30055
10.1017/S0004972712000500
10.1007/s11075-019-00730-w
10.1007/s10440-013-9841-4
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2024.114823
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2024_114823
S0960077924003758
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-71dd93e50bcf1b1f309bb33428b6de6b06aa50f02b4907b28e63c09835c47413
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001226060800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 03:19:19 EST 2025
Tue Nov 18 20:58:15 EST 2025
Sat Aug 10 15:32:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords 37C70
Relational generalized iterated function systems
Weakly Picard operators
37B10
Equivalence relations
28A80
Attractors
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-71dd93e50bcf1b1f309bb33428b6de6b06aa50f02b4907b28e63c09835c47413
ORCID 0000-0002-5516-6193
ParticipantIDs crossref_primary_10_1016_j_chaos_2024_114823
crossref_citationtrail_10_1016_j_chaos_2024_114823
elsevier_sciencedirect_doi_10_1016_j_chaos_2024_114823
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Oliveira, Strobin (b13) 2018; 331
Hiriart-Urruty (b25) 1985; 111
Mihail (b5) 2008; 53
R., Mihail (b3) 2008; 1
Strobin, Swaczyna (b7) 2016; 17
Miculescu, Mihail, Urziceanu (b15) 2020; 141
Jaros, Maślanka, Strobin (b20) 2016; 73
Strobin (b12) 2020; 19
Miculescu, Mihail (b23) 2017; 18
Şerban (b24) 2002; 3
Miculescu, Mihail, Urziceanu (b21) 2020; 83
Strobin, Swaczyna (b6) 2013; 87
Secelean (b10) 2014; 11
Maślanka (b9) 2020; 484
Miculescu (b11) 2014; 130
R., Mihail (b4) 2010; 1
Secelean (b22) 2002
Strobin (b8) 2015; 422
Leśniak (b26) 2003; 53
da Cunha, Oliveira, Strobin (b19) 2020; 91
Hutchinson (b1) 1981; 30
Secelean (b14) 2015; 17
Dumitru, Ioana, Sfetcu, Strobin (b16) 2015; 71
García (b18) 2020; 17
Barnsley (b2) 1993
Abraham, Miculescu (b17) 2023; 11
Jaros (10.1016/j.chaos.2024.114823_b20) 2016; 73
Maślanka (10.1016/j.chaos.2024.114823_b9) 2020; 484
Miculescu (10.1016/j.chaos.2024.114823_b21) 2020; 83
Hutchinson (10.1016/j.chaos.2024.114823_b1) 1981; 30
Mihail (10.1016/j.chaos.2024.114823_b5) 2008; 53
Miculescu (10.1016/j.chaos.2024.114823_b15) 2020; 141
Strobin (10.1016/j.chaos.2024.114823_b12) 2020; 19
Oliveira (10.1016/j.chaos.2024.114823_b13) 2018; 331
Secelean (10.1016/j.chaos.2024.114823_b14) 2015; 17
Strobin (10.1016/j.chaos.2024.114823_b8) 2015; 422
Secelean (10.1016/j.chaos.2024.114823_b22) 2002
Abraham (10.1016/j.chaos.2024.114823_b17) 2023; 11
Miculescu (10.1016/j.chaos.2024.114823_b23) 2017; 18
Barnsley (10.1016/j.chaos.2024.114823_b2) 1993
Miculescu (10.1016/j.chaos.2024.114823_b11) 2014; 130
García (10.1016/j.chaos.2024.114823_b18) 2020; 17
Dumitru (10.1016/j.chaos.2024.114823_b16) 2015; 71
Hiriart-Urruty (10.1016/j.chaos.2024.114823_b25) 1985; 111
R. (10.1016/j.chaos.2024.114823_b4) 2010; 1
da Cunha (10.1016/j.chaos.2024.114823_b19) 2020; 91
Strobin (10.1016/j.chaos.2024.114823_b6) 2013; 87
Strobin (10.1016/j.chaos.2024.114823_b7) 2016; 17
R. (10.1016/j.chaos.2024.114823_b3) 2008; 1
Leśniak (10.1016/j.chaos.2024.114823_b26) 2003; 53
Secelean (10.1016/j.chaos.2024.114823_b10) 2014; 11
Şerban (10.1016/j.chaos.2024.114823_b24) 2002; 3
References_xml – volume: 19
  start-page: 85
  year: 2020
  ident: b12
  article-title: On the existence of the Hutchinson measure for generalized iterated function systems
  publication-title: Qual Theory Dyn Syst
– volume: 73
  start-page: 477
  year: 2016
  end-page: 499
  ident: b20
  article-title: Algorithms generating images of attractors of generalized iterated function systems
  publication-title: Numer Algorithms
– volume: 87
  start-page: 37
  year: 2013
  end-page: 54
  ident: b6
  article-title: On a certain generalisation of the iterated function system
  publication-title: Bull Aust Math Soc
– volume: 422
  start-page: 99
  year: 2015
  end-page: 108
  ident: b8
  article-title: Attractors of generalized IFSs that are not attractors of IFSs
  publication-title: J Math Anal Appl
– volume: 331
  start-page: 131
  year: 2018
  end-page: 156
  ident: b13
  article-title: Fuzzy attractors appearing from GIFZS
  publication-title: Fuzzy Sets and Systems
– volume: 17
  start-page: 575
  year: 2015
  end-page: 595
  ident: b14
  article-title: Generalized F-iterated function systems on product of metric spaces
  publication-title: J Fixed Point Theory Appl
– volume: 17
  start-page: 147
  year: 2020
  ident: b18
  article-title: Approximating the attractor set of iterated function systems of order m by
  publication-title: Mediterr J Math
– volume: 83
  start-page: 1399
  year: 2020
  end-page: 1413
  ident: b21
  article-title: A new algorithm that generates the image of the attractor of a generalized iterated function system
  publication-title: Numer Algorithms
– volume: 91
  start-page: 10543
  year: 2020
  ident: b19
  article-title: A multiresolution algorithm to approximate the Hutchinson measure for IFS and GIFS
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 1
  year: 2008
  ident: b3
  article-title: Applications of fixed point theorems in the theory of generalized IFS
  publication-title: Fixed Point Theory Appl
– volume: 3
  start-page: 163
  year: 2002
  end-page: 172
  ident: b24
  article-title: Fixed point theorems for operators on cartesian product spaces and applications
  publication-title: Semin Fixed Point Theory Cluj-Napoca
– volume: 53
  start-page: 43
  year: 2008
  end-page: 53
  ident: b5
  article-title: Recurrent iterated function systems
  publication-title: Rev Roum Math Pures Appl
– year: 1993
  ident: b2
  article-title: Fractals everywhere
– volume: 130
  start-page: 135
  year: 2014
  end-page: 150
  ident: b11
  article-title: Generalized iterated function systems with place dependent probabilities
  publication-title: Acta Appl Math
– volume: 17
  start-page: 477
  year: 2016
  end-page: 494
  ident: b7
  article-title: A code space for a generalized IFS
  publication-title: Fixed Point Theory Appl
– volume: 11
  start-page: 2826
  year: 2023
  ident: b17
  article-title: Generalized iterated function systems on b-metric spaces
  publication-title: Mathematics
– volume: 71
  start-page: 78
  year: 2015
  end-page: 90
  ident: b16
  article-title: Topological version of generalized (infinite) iterated function systems
  publication-title: Chaos Solitons Fractals
– volume: 111
  start-page: 407
  year: 1985
  end-page: 422
  ident: b25
  article-title: Images of connected sets by semicontinuous multifunctions
  publication-title: J Math Anal Appl
– volume: 18
  start-page: 689
  year: 2017
  end-page: 702
  ident: b23
  article-title: A generalization of istrăţescu’s fixed point theorem for convex contractions
  publication-title: Fixed Point Theory Appl
– volume: 30
  start-page: 713
  year: 1981
  end-page: 747
  ident: b1
  article-title: Fractals and self similarity
  publication-title: Indiana Univ Math J
– volume: 1
  year: 2010
  ident: b4
  article-title: Generalized IFSs on noncompact spaces
  publication-title: Fixed Point Theory Appl
– volume: 141
  year: 2020
  ident: b15
  article-title: Contractive affine generalized iterated function systems which are topologically contracting
  publication-title: Chaos Solitons Fractals
– volume: 53
  start-page: 393
  year: 2003
  end-page: 405
  ident: b26
  article-title: Stability and invariance of multivalued iterated function systems
  publication-title: Math Slovaca
– year: 2002
  ident: b22
  article-title: Măsură şi fractali [measure and fractals]
– volume: 484
  year: 2020
  ident: b9
  article-title: On a typical compact set as the attractor of generalized iterated function systems of infinite order
  publication-title: J Math Anal Appl
– volume: 11
  start-page: 361
  year: 2014
  end-page: 372
  ident: b10
  article-title: Invariant measure associated with a generalized countable iterated function system
  publication-title: Mediterr J Math
– volume: 11
  start-page: 2826
  year: 2023
  ident: 10.1016/j.chaos.2024.114823_b17
  article-title: Generalized iterated function systems on b-metric spaces
  publication-title: Mathematics
  doi: 10.3390/math11132826
– volume: 19
  start-page: 85
  year: 2020
  ident: 10.1016/j.chaos.2024.114823_b12
  article-title: On the existence of the Hutchinson measure for generalized iterated function systems
  publication-title: Qual Theory Dyn Syst
  doi: 10.1007/s12346-020-00420-2
– volume: 17
  start-page: 147
  year: 2020
  ident: 10.1016/j.chaos.2024.114823_b18
  article-title: Approximating the attractor set of iterated function systems of order m by α-dense curves
  publication-title: Mediterr J Math
  doi: 10.1007/s00009-020-01585-5
– volume: 422
  start-page: 99
  year: 2015
  ident: 10.1016/j.chaos.2024.114823_b8
  article-title: Attractors of generalized IFSs that are not attractors of IFSs
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2014.08.029
– volume: 17
  start-page: 575
  year: 2015
  ident: 10.1016/j.chaos.2024.114823_b14
  article-title: Generalized F-iterated function systems on product of metric spaces
  publication-title: J Fixed Point Theory Appl
  doi: 10.1007/s11784-015-0235-2
– volume: 331
  start-page: 131
  year: 2018
  ident: 10.1016/j.chaos.2024.114823_b13
  article-title: Fuzzy attractors appearing from GIFZS
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2017.05.003
– volume: 17
  start-page: 477
  year: 2016
  ident: 10.1016/j.chaos.2024.114823_b7
  article-title: A code space for a generalized IFS
  publication-title: Fixed Point Theory Appl
– volume: 71
  start-page: 78
  year: 2015
  ident: 10.1016/j.chaos.2024.114823_b16
  article-title: Topological version of generalized (infinite) iterated function systems
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2014.12.005
– volume: 484
  year: 2020
  ident: 10.1016/j.chaos.2024.114823_b9
  article-title: On a typical compact set as the attractor of generalized iterated function systems of infinite order
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2019.123740
– volume: 73
  start-page: 477
  year: 2016
  ident: 10.1016/j.chaos.2024.114823_b20
  article-title: Algorithms generating images of attractors of generalized iterated function systems
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-016-0104-0
– volume: 111
  start-page: 407
  year: 1985
  ident: 10.1016/j.chaos.2024.114823_b25
  article-title: Images of connected sets by semicontinuous multifunctions
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(85)90225-2
– volume: 1
  year: 2008
  ident: 10.1016/j.chaos.2024.114823_b3
  article-title: Applications of fixed point theorems in the theory of generalized IFS
  publication-title: Fixed Point Theory Appl
– volume: 3
  start-page: 163
  year: 2002
  ident: 10.1016/j.chaos.2024.114823_b24
  article-title: Fixed point theorems for operators on cartesian product spaces and applications
  publication-title: Semin Fixed Point Theory Cluj-Napoca
– year: 1993
  ident: 10.1016/j.chaos.2024.114823_b2
– volume: 1
  year: 2010
  ident: 10.1016/j.chaos.2024.114823_b4
  article-title: Generalized IFSs on noncompact spaces
  publication-title: Fixed Point Theory Appl
– volume: 53
  start-page: 43
  year: 2008
  ident: 10.1016/j.chaos.2024.114823_b5
  article-title: Recurrent iterated function systems
  publication-title: Rev Roum Math Pures Appl
– volume: 18
  start-page: 689
  year: 2017
  ident: 10.1016/j.chaos.2024.114823_b23
  article-title: A generalization of istrăţescu’s fixed point theorem for convex contractions
  publication-title: Fixed Point Theory Appl
  doi: 10.24193/fpt-ro.2017.2.55
– volume: 53
  start-page: 393
  year: 2003
  ident: 10.1016/j.chaos.2024.114823_b26
  article-title: Stability and invariance of multivalued iterated function systems
  publication-title: Math Slovaca
– year: 2002
  ident: 10.1016/j.chaos.2024.114823_b22
– volume: 11
  start-page: 361
  year: 2014
  ident: 10.1016/j.chaos.2024.114823_b10
  article-title: Invariant measure associated with a generalized countable iterated function system
  publication-title: Mediterr J Math
  doi: 10.1007/s00009-013-0300-2
– volume: 91
  start-page: 10543
  year: 2020
  ident: 10.1016/j.chaos.2024.114823_b19
  article-title: A multiresolution algorithm to approximate the Hutchinson measure for IFS and GIFS
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2020.105423
– volume: 141
  year: 2020
  ident: 10.1016/j.chaos.2024.114823_b15
  article-title: Contractive affine generalized iterated function systems which are topologically contracting
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110404
– volume: 30
  start-page: 713
  issue: 5
  year: 1981
  ident: 10.1016/j.chaos.2024.114823_b1
  article-title: Fractals and self similarity
  publication-title: Indiana Univ Math J
  doi: 10.1512/iumj.1981.30.30055
– volume: 87
  start-page: 37
  year: 2013
  ident: 10.1016/j.chaos.2024.114823_b6
  article-title: On a certain generalisation of the iterated function system
  publication-title: Bull Aust Math Soc
  doi: 10.1017/S0004972712000500
– volume: 83
  start-page: 1399
  year: 2020
  ident: 10.1016/j.chaos.2024.114823_b21
  article-title: A new algorithm that generates the image of the attractor of a generalized iterated function system
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-019-00730-w
– volume: 130
  start-page: 135
  year: 2014
  ident: 10.1016/j.chaos.2024.114823_b11
  article-title: Generalized iterated function systems with place dependent probabilities
  publication-title: Acta Appl Math
  doi: 10.1007/s10440-013-9841-4
SSID ssj0001062
Score 2.4547677
Snippet In this paper, we introduce a wider class of generalized iterated function systems, called relational generalized iterated function systems. More precisely,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114823
SubjectTerms Attractors
Equivalence relations
Relational generalized iterated function systems
Weakly Picard operators
Title Relational generalized iterated function systems
URI https://dx.doi.org/10.1016/j.chaos.2024.114823
Volume 182
WOSCitedRecordID wos001226060800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOiA3QNn4oBw4gkcq1U_-4IFVoiCGYkKhQb5GdOGxTFaammab99bwX20kF0wRIXNIoreP2fe7z88v3PhPykjJnqNMqnVGr0qykLrVVRsEZwmgxmpe60-n-9kmenKjlUn8Zjd7GWpjLlaxrdXWlL_4r1HANwMbS2b-Au78pXIBzAB2OADsc_wj4SG8D23_3mtJn1w4fEKB8MpzgTNaB3myJlUetglPjaXcN0uKQRYN59Qorqcyqj77nti-vPkZOmN-3KJQWFi0qRLUddKZshzdOjU83h5KadbudcGDZQO_zWbBYCTPQjrp0oqAplX5jmInzzlRJnjIVJtTe27IbPbdPIpxPCvyhE-wXZYyVL0b-RRL7K_aGnSEBlsOK5w7ZYfBCx2Rnfny0_NjPxbDg7Z4jxW8Xdac6ht9vXd0cm2zFG4uH5EFYKCRzD_AuGbl6j9z_3KvsNntkNzjmJnkV1MNfPyJ0wD_Zwj-J-CcR_yTg_5gs3h8t3n1Iw7YYaQHxxiaV07LU3MGfq6imdlpxqq3lHNaRVpROWCqMmdGKMptpKi1TTvCCagi1iwziR_6EjOsftdsniWOicLyERbOV2UxSoypGpRZSGzFjOjsgLNojL4JkPO5cssojN_A874yYoxFzb8QD8qZvdOEVU27_uIiGzkPQ54O5HEbGbQ0P_7XhU3JvGNbPyHizbt1zcre43Jw16xdhBP0Ekbh6Jg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relational+generalized+iterated+function+systems&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Abraham%2C+Izabella&rft.au=Miculescu%2C+Radu&rft.au=Mihail%2C+Alexandru&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=182&rft_id=info:doi/10.1016%2Fj.chaos.2024.114823&rft.externalDocID=S0960077924003758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon