Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems

The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals Jg. 157; S. 111913
Hauptverfasser: Chaudhary, Naveed Ishtiaq, Raja, Muhammad Asif Zahoor, Khan, Zeshan Aslam, Mehmood, Ammara, Shah, Syed Muslim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2022
Schlagworte:
ISSN:0960-0779, 1873-2887
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradient descent (HGD) to fractional order for effectively solving nonlinear system identification problem. The FHGD is effectively to applied to estimate the parameters of nonlinear control autoregressive (NCAR) systems under different fractional order and noise conditions. The fractional order greater than 1 provides faster convergence speed, less than 1 gives better steady state performance and equal to 1 reduces the FHGD to HGD. The accurate estimation of NCAR system parameters representing electrically stimulated muscle model validates the efficacy and robustness of the proposed FHGD in comparison with the standard HGD.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2022.111913