Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems
The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradi...
Uloženo v:
| Vydáno v: | Chaos, solitons and fractals Ročník 157; s. 111913 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2022
|
| Témata: | |
| ISSN: | 0960-0779, 1873-2887 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradient descent (HGD) to fractional order for effectively solving nonlinear system identification problem. The FHGD is effectively to applied to estimate the parameters of nonlinear control autoregressive (NCAR) systems under different fractional order and noise conditions. The fractional order greater than 1 provides faster convergence speed, less than 1 gives better steady state performance and equal to 1 reduces the FHGD to HGD. The accurate estimation of NCAR system parameters representing electrically stimulated muscle model validates the efficacy and robustness of the proposed FHGD in comparison with the standard HGD. |
|---|---|
| ISSN: | 0960-0779 1873-2887 |
| DOI: | 10.1016/j.chaos.2022.111913 |