Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems

The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradi...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals Vol. 157; p. 111913
Main Authors: Chaudhary, Naveed Ishtiaq, Raja, Muhammad Asif Zahoor, Khan, Zeshan Aslam, Mehmood, Ammara, Shah, Syed Muslim
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2022
Subjects:
ISSN:0960-0779, 1873-2887
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradient descent (HGD) to fractional order for effectively solving nonlinear system identification problem. The FHGD is effectively to applied to estimate the parameters of nonlinear control autoregressive (NCAR) systems under different fractional order and noise conditions. The fractional order greater than 1 provides faster convergence speed, less than 1 gives better steady state performance and equal to 1 reduces the FHGD to HGD. The accurate estimation of NCAR system parameters representing electrically stimulated muscle model validates the efficacy and robustness of the proposed FHGD in comparison with the standard HGD.
AbstractList The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradient descent (HGD) to fractional order for effectively solving nonlinear system identification problem. The FHGD is effectively to applied to estimate the parameters of nonlinear control autoregressive (NCAR) systems under different fractional order and noise conditions. The fractional order greater than 1 provides faster convergence speed, less than 1 gives better steady state performance and equal to 1 reduces the FHGD to HGD. The accurate estimation of NCAR system parameters representing electrically stimulated muscle model validates the efficacy and robustness of the proposed FHGD in comparison with the standard HGD.
ArticleNumber 111913
Author Khan, Zeshan Aslam
Shah, Syed Muslim
Mehmood, Ammara
Chaudhary, Naveed Ishtiaq
Raja, Muhammad Asif Zahoor
Author_xml – sequence: 1
  givenname: Naveed Ishtiaq
  surname: Chaudhary
  fullname: Chaudhary, Naveed Ishtiaq
  organization: Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
– sequence: 2
  givenname: Muhammad Asif Zahoor
  orcidid: 0000-0001-9953-822X
  surname: Raja
  fullname: Raja, Muhammad Asif Zahoor
  email: rajamaz@yuntech.edu.tw
  organization: Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
– sequence: 3
  givenname: Zeshan Aslam
  surname: Khan
  fullname: Khan, Zeshan Aslam
  email: zeeshan.aslam@iiu.edu.pk
  organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan
– sequence: 4
  givenname: Ammara
  surname: Mehmood
  fullname: Mehmood, Ammara
  email: ammara.mehmood@adelaide.edu.au
  organization: School of Electrical and Electronic Engineering, The University of Adelaide, Australia
– sequence: 5
  givenname: Syed Muslim
  surname: Shah
  fullname: Shah, Syed Muslim
  email: s.m.shah@ieee.org
  organization: Department of Electrical Engineering, Capital University of Science and Technology, Islamabad, Pakistan
BookMark eNqFkLFuGzEMhoXABWKneYIseoFzKSm5Ow0dijRNAwTI4l2QeZQt43wKKDVAxr55dHanDu1EEOT3g_xWYjGliYS4UbBWoNovhzXufcprDVqvlVJWmQuxVH1nGt333UIswbbQQNfZS7HK-QAAClq9FL-_U467SaYgA3ssMU1-lPtI7Bn3EWuzYz9EmoocKONc_bhLHMv-KENi-erZH6kQS8olHv0cMcfVE8c4kWeJaSqcRul_lcS0Y8o5vpHM77nQMX8Wn4IfM13_qVdi8-Nhc_-zeX55fLr_9tygAVOath9wMHe3ekvd1hhNEIxpFZHeIiBqDR4sgQ1DCNZYix67utjbwWzrwFwJe45FTjkzBYexnI4t7OPoFLhZpTu4k0o3q3RnlZU1f7GvXD_l9_9QX88U1a_eqlGXsXpEGiITFjek-E_-AyBtlZI
CitedBy_id crossref_primary_10_3390_math11214480
crossref_primary_10_1007_s12652_023_04707_5
crossref_primary_10_3390_math10101749
crossref_primary_10_1016_j_chaos_2023_114028
crossref_primary_10_1002_rnc_6942
crossref_primary_10_1007_s11581_023_05332_0
crossref_primary_10_1016_j_measurement_2022_111951
crossref_primary_10_1002_acs_4013
crossref_primary_10_1371_journal_pone_0321175
crossref_primary_10_1007_s10586_025_05508_5
crossref_primary_10_1109_ACCESS_2024_3445378
crossref_primary_10_1016_j_cnsns_2025_109349
crossref_primary_10_1140_epjp_s13360_023_04626_6
crossref_primary_10_1016_j_jfranklin_2022_08_045
crossref_primary_10_3390_biomimetics8020141
crossref_primary_10_1016_j_sysconle_2024_105762
crossref_primary_10_1007_s00521_024_09736_5
crossref_primary_10_1002_rnc_7323
crossref_primary_10_1080_10255842_2023_2227751
crossref_primary_10_1016_j_heliyon_2024_e34326
crossref_primary_10_1109_ACCESS_2022_3228788
crossref_primary_10_1080_17455030_2023_2226249
crossref_primary_10_1002_acs_3699
crossref_primary_10_1063_5_0186441
crossref_primary_10_12677_aam_2024_137304
crossref_primary_10_32604_cmc_2023_039826
crossref_primary_10_1016_j_apm_2022_09_001
crossref_primary_10_3390_math10091570
crossref_primary_10_1002_acs_3894
crossref_primary_10_1016_j_sigpro_2024_109587
crossref_primary_10_1016_j_ymssp_2025_112516
crossref_primary_10_1016_j_engappai_2024_108188
crossref_primary_10_1016_j_chaos_2024_115620
crossref_primary_10_1007_s40819_024_01682_z
crossref_primary_10_1016_j_jechem_2025_09_005
crossref_primary_10_1088_1402_4896_ad56d5
crossref_primary_10_32604_cmc_2022_028921
crossref_primary_10_1016_j_chaos_2024_115947
crossref_primary_10_3390_fractalfract8080451
crossref_primary_10_1063_5_0085737
crossref_primary_10_1002_acs_3669
crossref_primary_10_1002_rnc_70123
crossref_primary_10_1371_journal_pone_0304018
crossref_primary_10_3390_math10224217
crossref_primary_10_3390_app122211769
crossref_primary_10_3390_math11051273
crossref_primary_10_3390_math11112512
crossref_primary_10_1016_j_jprocont_2023_02_005
crossref_primary_10_3390_fractalfract7110789
crossref_primary_10_1080_17455030_2022_2155327
crossref_primary_10_1016_j_chaos_2024_115181
crossref_primary_10_1109_ACCESS_2023_3344208
crossref_primary_10_1002_asjc_3119
crossref_primary_10_1016_j_chaos_2024_114723
crossref_primary_10_1002_rnc_7662
crossref_primary_10_1016_j_chaos_2022_112611
crossref_primary_10_1016_j_amc_2024_129102
crossref_primary_10_1109_JSEN_2023_3281615
crossref_primary_10_1155_2023_7527478
crossref_primary_10_1016_j_engappai_2025_110739
crossref_primary_10_1080_17455030_2023_2198025
crossref_primary_10_1002_acs_4000
crossref_primary_10_1016_j_asoc_2024_112310
crossref_primary_10_1002_rnc_6917
crossref_primary_10_1038_s41598_024_70269_x
crossref_primary_10_1007_s13042_024_02402_1
crossref_primary_10_1038_s41598_024_83654_3
crossref_primary_10_1016_j_measurement_2025_117256
crossref_primary_10_1016_j_chaos_2024_114557
crossref_primary_10_1016_j_psep_2025_106819
Cites_doi 10.1007/978-1-84996-513-2
10.1016/j.dsp.2015.07.002
10.1155/2014/401696
10.3390/math9172160
10.1016/j.chaos.2020.109860
10.1016/j.isatra.2017.03.011
10.1007/s12525-018-0297-2
10.1016/j.jfranklin.2021.04.006
10.12785/amis/080617
10.1002/rnc.5266
10.1016/j.chaos.2019.06.014
10.1109/ACCESS.2020.3002714
10.1016/j.chaos.2019.08.009
10.1016/j.apm.2018.09.028
10.1155/2012/205391
10.1155/2014/849395
10.1016/j.apm.2017.11.023
10.1142/S0218348X20400071
10.1016/j.physa.2019.123516
10.1088/1674-1056/23/5/050503
10.1007/s00521-019-04328-0
10.1007/s00521-019-04133-9
10.1016/j.ins.2014.03.128
10.1155/2013/467276
10.1016/j.chaos.2020.109812
10.1016/j.cnsns.2010.05.027
10.1016/j.jfranklin.2019.12.007
10.1140/epjp/i2019-12785-8
10.1016/j.jfranklin.2020.01.008
10.1016/j.chaos.2020.110638
10.1140/epjp/i2019-12654-6
10.1007/s11071-015-2279-7
10.1142/S0218348X20400101
10.1109/MCS.2019.2938121
10.1016/j.cnsns.2018.04.019
10.1016/j.chaos.2020.109705
10.1007/s11071-014-1748-8
10.1007/s11071-016-3058-9
10.1016/j.chaos.2019.109493
10.1016/j.sigpro.2017.08.009
10.1016/j.apm.2020.12.035
10.1016/j.asoc.2019.105705
10.1007/s00521-019-04562-6
10.3390/fractalfract5040211
10.1016/j.conengprac.2011.08.001
10.1016/j.jfranklin.2018.01.052
10.1016/j.sigpro.2016.11.026
10.1007/s00521-017-2845-7
10.1016/j.apm.2020.03.014
10.1109/LSP.2015.2394301
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2022.111913
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2022_111913
S0960077922001230
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-68dcd3542be7b332e0f3361ee2bc0cc220a09e09fdff9399cac77b389d3b09e3
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784297500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 07:09:51 EST 2025
Tue Nov 18 21:09:03 EST 2025
Fri Feb 23 02:40:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear systems
Hammerstein structure
Fractional calculus
Hierarchical identification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-68dcd3542be7b332e0f3361ee2bc0cc220a09e09fdff9399cac77b389d3b09e3
ORCID 0000-0001-9953-822X
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2022_111913
crossref_primary_10_1016_j_chaos_2022_111913
elsevier_sciencedirect_doi_10_1016_j_chaos_2022_111913
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Abo-Hammour, Abu Arqub, Alsmadi, Momani (bib0035) 2014; 8
(Vol. 1, pp. 0278-0046). London: springer.
Ding, Ma, Pan, Yang (bib0051) 2021; 358
Fernandez, Özarslan, Baleanu (bib0061) 2019; 354
Dumitru, Kai, Enrico (bib0003) 2012; 3
Sun, Zhang, Baleanu, Chen, Chen (bib0005) 2018; 64
Abu Arqub, Abo-Hammour, Momani, Shawagfeh (bib0037) 2012; 2012
Todorčević (bib0031) 2019
Cheng, Wei, Chen, Li, Wang (bib0028) 2017; 133
Qureshi, Atangana (bib0063) 2020; 136
Le, Markovsky, Freeman, Rogers (bib0053) 2012; 20
Shoaib, Qureshi (bib0012) 2014; 23
Atangana, Shafiq (bib0056) 2019; 127
Zahoor, Qureshi (bib0011) 2009; 35
Chaudhary, Raja, Khan (bib0008) 2015; 82
Wei, Kang, Yin, Wang (bib0029) 2020; 357
Momani, Abu Arqub, Maayah (bib0038) 2020; 28
Atangana, Aguilar, Kolade, Hristov (bib0062) 2020; 132
Baleanu, Jajarmi, Mohammadi, Rezapour (bib0060) 2020; 134
Sabatier, Agrawal, Machado (bib0001) 2007; 4
Chaudhary, Ahmed, Khan, Zubair, Raja, Dedovic (bib0016) 2018; 55
Khan (bib0020) 2020; 32
Chaudhary, Zubair, Aslam, Raja, Machado (bib0026) 2019; 134
Ding, Liu, Hayat (bib0050) 2020; 357
Chaudhary, Raja (bib0014) 2015; 79
Mehmood (bib0042) 2020
Mao, Ding (bib0046) 2015; 46
Atangana, Araz (bib0064) 2021; 145
Masood, Raja, Chaudhary, Cheema, Milyani (bib0006) 2021; 9
Abo-Hammour, Abu Arqub, Momani, Shawagfeh (bib0036) 2014; 2014
Heydari, Atangana (bib0058) 2019; 128
Aslam (bib0024) 2017; 87
Momani, Maayah, Abu Arqub (bib0039) 2020; 28
Billings (bib0044) 2013
Xu, Ding, Yang (bib0047) 2021; 31
Mehmood (bib0055) 2020
Chaudhary, Raja, He, Khan, Machado (bib0023) 2021; 93
Khan (bib0019) 2019; 29
Ghanbari, Atangana (bib0057) 2020; 542
Chaudhary, Zubair, Raja (bib0021) 2017; 68
Khan (bib0015) 2021
Mehmood (bib0041) 2020; 32
Mehmood (bib0054) 2019; 84
Ray, Atangana, Noutchie, Kurulay, Bildik, Kilicman (bib0004) 2014; 2014
Tan, He, Tian (bib0007) 2015; 22
Chaudhary, Zubair, Raja, Dedovic (bib0022) 2019; 66
Abu Arqub, Abo-Hammour (bib0034) 2014; 279
Guran, Mitrović, Reddy, Belhenniche, Radenović (bib0033) 2021; 5
Debnath, Konwar, Radenovic (bib0032) 2021
Chaudhary, Aslam, Baleanu, Raja (bib0027) 2020; 32
Giri, F., & Bai, E. W. (editors). (2010).
Schoukens, Ljung (bib0045) 2019; 39
Chaudhary, Latif, Raja, Machado (bib0017) 2020; 83
Abu Arqub, Rashaideh (bib0040) 2018; 30
Atangana (bib0059) 2020; 136
Raja, Akhtar, Chaudhary, Zhiyu, Khan, Rehman, Zaman (bib0018) 2019; 134
Ding, Chen, Xu, Dai, Li, Hayat (bib0049) 2018; 355
Machado, Kiryakova, Mainardi (bib0002) 2011; 16
Zubair (bib0025) 2018; 142
Le (bib0052) 2011
Chen, Xiao, Ding (bib0048) 2014; 247
Muhammad, Khan, Raja, Ullah, Chaudhary, He (bib0010) 2020; 8
Kouhkani, Koppelaar, Taghipour Birgani, Argyros, Radenović (bib0030) 2022; 8
Chen, Gao, Wei, Wang (bib0009) 2017; 314
Chaudhary, Raja, Khan, Aslam (bib0013) 2013; 2013
Momani (10.1016/j.chaos.2022.111913_bib0039) 2020; 28
Chaudhary (10.1016/j.chaos.2022.111913_bib0016) 2018; 55
Sabatier (10.1016/j.chaos.2022.111913_bib0001) 2007; 4
Ray (10.1016/j.chaos.2022.111913_bib0004) 2014; 2014
Chaudhary (10.1016/j.chaos.2022.111913_bib0017) 2020; 83
Guran (10.1016/j.chaos.2022.111913_bib0033) 2021; 5
10.1016/j.chaos.2022.111913_bib0043
Sun (10.1016/j.chaos.2022.111913_bib0005) 2018; 64
Chaudhary (10.1016/j.chaos.2022.111913_bib0021) 2017; 68
Chen (10.1016/j.chaos.2022.111913_bib0048) 2014; 247
Chaudhary (10.1016/j.chaos.2022.111913_bib0008) 2015; 82
Todorčević (10.1016/j.chaos.2022.111913_bib0031) 2019
Dumitru (10.1016/j.chaos.2022.111913_bib0003) 2012; 3
Ghanbari (10.1016/j.chaos.2022.111913_bib0057) 2020; 542
Cheng (10.1016/j.chaos.2022.111913_bib0028) 2017; 133
Chaudhary (10.1016/j.chaos.2022.111913_bib0023) 2021; 93
Mehmood (10.1016/j.chaos.2022.111913_bib0054) 2019; 84
Abu Arqub (10.1016/j.chaos.2022.111913_bib0034) 2014; 279
Zahoor (10.1016/j.chaos.2022.111913_bib0011) 2009; 35
Zubair (10.1016/j.chaos.2022.111913_bib0025) 2018; 142
Abo-Hammour (10.1016/j.chaos.2022.111913_bib0035) 2014; 8
Schoukens (10.1016/j.chaos.2022.111913_bib0045) 2019; 39
Fernandez (10.1016/j.chaos.2022.111913_bib0061) 2019; 354
Tan (10.1016/j.chaos.2022.111913_bib0007) 2015; 22
Kouhkani (10.1016/j.chaos.2022.111913_bib0030) 2022; 8
Mao (10.1016/j.chaos.2022.111913_bib0046) 2015; 46
Atangana (10.1016/j.chaos.2022.111913_bib0059) 2020; 136
Machado (10.1016/j.chaos.2022.111913_bib0002) 2011; 16
Atangana (10.1016/j.chaos.2022.111913_bib0056) 2019; 127
Khan (10.1016/j.chaos.2022.111913_bib0015) 2021
Aslam (10.1016/j.chaos.2022.111913_bib0024) 2017; 87
Abo-Hammour (10.1016/j.chaos.2022.111913_bib0036) 2014; 2014
Ding (10.1016/j.chaos.2022.111913_bib0049) 2018; 355
Raja (10.1016/j.chaos.2022.111913_bib0018) 2019; 134
Ding (10.1016/j.chaos.2022.111913_bib0051) 2021; 358
Masood (10.1016/j.chaos.2022.111913_bib0006) 2021; 9
Khan (10.1016/j.chaos.2022.111913_bib0019) 2019; 29
Chen (10.1016/j.chaos.2022.111913_bib0009) 2017; 314
Atangana (10.1016/j.chaos.2022.111913_bib0062) 2020; 132
Ding (10.1016/j.chaos.2022.111913_bib0050) 2020; 357
Abu Arqub (10.1016/j.chaos.2022.111913_bib0040) 2018; 30
Chaudhary (10.1016/j.chaos.2022.111913_bib0022) 2019; 66
Mehmood (10.1016/j.chaos.2022.111913_bib0055) 2020
Atangana (10.1016/j.chaos.2022.111913_bib0064) 2021; 145
Heydari (10.1016/j.chaos.2022.111913_bib0058) 2019; 128
Le (10.1016/j.chaos.2022.111913_bib0052) 2011
Wei (10.1016/j.chaos.2022.111913_bib0029) 2020; 357
Chaudhary (10.1016/j.chaos.2022.111913_bib0027) 2020; 32
Xu (10.1016/j.chaos.2022.111913_bib0047) 2021; 31
Qureshi (10.1016/j.chaos.2022.111913_bib0063) 2020; 136
Le (10.1016/j.chaos.2022.111913_bib0053) 2012; 20
Mehmood (10.1016/j.chaos.2022.111913_bib0042) 2020
Baleanu (10.1016/j.chaos.2022.111913_bib0060) 2020; 134
Khan (10.1016/j.chaos.2022.111913_bib0020) 2020; 32
Muhammad (10.1016/j.chaos.2022.111913_bib0010) 2020; 8
Chaudhary (10.1016/j.chaos.2022.111913_bib0026) 2019; 134
Debnath (10.1016/j.chaos.2022.111913_bib0032) 2021
Chaudhary (10.1016/j.chaos.2022.111913_bib0013) 2013; 2013
Abu Arqub (10.1016/j.chaos.2022.111913_bib0037) 2012; 2012
Mehmood (10.1016/j.chaos.2022.111913_bib0041) 2020; 32
Billings (10.1016/j.chaos.2022.111913_bib0044) 2013
Momani (10.1016/j.chaos.2022.111913_bib0038) 2020; 28
Shoaib (10.1016/j.chaos.2022.111913_bib0012) 2014; 23
Chaudhary (10.1016/j.chaos.2022.111913_bib0014) 2015; 79
References_xml – volume: 3
  year: 2012
  ident: bib0003
  publication-title: Fractional calculus: models and numerical methods
– volume: 55
  start-page: 698
  year: 2018
  end-page: 715
  ident: bib0016
  article-title: Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems
  publication-title: Appl Math Model
– volume: 354
  start-page: 248
  year: 2019
  end-page: 265
  ident: bib0061
  article-title: On fractional calculus with general analytic kernels
  publication-title: Appl Math Comput
– start-page: 1
  year: 2020
  end-page: 18
  ident: bib0042
  article-title: Design of backtracking search heuristics for parameter estimation of power signals
  publication-title: Neural Comput Appl
– volume: 30
  start-page: 2595
  year: 2018
  end-page: 2606
  ident: bib0040
  article-title: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs
  publication-title: Neural Comput Appl
– volume: 28
  start-page: 2040010
  year: 2020
  end-page: 2041261
  ident: bib0039
  article-title: The reproducing kernel algorithm for numerical solution of Van der Pol damping model in view of the Atangana-Baleanu fractional approach
  publication-title: Fractals
– volume: 357
  start-page: 2514
  year: 2020
  end-page: 2532
  ident: bib0029
  article-title: Generalization of the gradient method with fractional order gradient direction
  publication-title: J Franklin Inst
– volume: 32
  start-page: 8381
  year: 2020
  end-page: 8399
  ident: bib0027
  article-title: Design of sign fractional optimization paradigms for parameter estimation of nonlinear Hammerstein systems
  publication-title: Neural Comput Appl
– volume: 127
  start-page: 226
  year: 2019
  end-page: 243
  ident: bib0056
  article-title: Differential and integral operators with constant fractional order and variable fractional dimension
  publication-title: Chaos, Solitons Fractals
– volume: 279
  start-page: 396
  year: 2014
  end-page: 415
  ident: bib0034
  article-title: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm
  publication-title: Inf Sci (Ny)
– volume: 8
  start-page: 1
  year: 2022
  end-page: 8
  ident: bib0030
  article-title: A convergence criterion of Newton's method based on the Heisenberg uncertainty principle
  publication-title: Int J Appl Computat Math
– volume: 142
  start-page: 441
  year: 2018
  end-page: 449
  ident: bib0025
  article-title: Momentum fractional LMS for power signal parameter estimation
  publication-title: Sig Process
– volume: 134
  start-page: 275
  year: 2019
  ident: bib0018
  article-title: A new computing paradigm for the optimization of parameters in adaptive beamforming using fractional processing
  publication-title: Eur Phys J Plus
– volume: 542
  year: 2020
  ident: bib0057
  article-title: A new application of fractional Atangana–Baleanu derivatives: designing ABC-fractional masks in image processing
  publication-title: Physica A
– volume: 35
  start-page: 14
  year: 2009
  end-page: 21
  ident: bib0011
  article-title: A modified least mean square algorithm using fractional derivative and its application to system identification
  publication-title: Eur J Sci Res
– volume: 357
  start-page: 2958
  year: 2020
  end-page: 2977
  ident: bib0050
  article-title: Hierarchical least squares identification for feedback nonlinear equation-error systems
  publication-title: J Franklin Inst
– year: 2013
  ident: bib0044
  article-title: Nonlinear system identification: Narmax methods in the time, frequency, and spatio-temporal domains
– volume: 82
  start-page: 1811
  year: 2015
  end-page: 1830
  ident: bib0008
  article-title: Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems
  publication-title: Nonlinear Dyn
– volume: 46
  start-page: 215
  year: 2015
  end-page: 225
  ident: bib0046
  article-title: A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems
  publication-title: Digit Signal Process
– volume: 32
  start-page: 6253
  year: 2020
  end-page: 6282
  ident: bib0041
  article-title: Novel computing paradigms for parameter estimation in power signal models
  publication-title: Neural Comput Appl
– volume: 83
  start-page: 703
  year: 2020
  end-page: 718
  ident: bib0017
  article-title: An innovative fractional order LMS algorithm for power signal parameter estimation
  publication-title: Appl Math Model
– volume: 32
  start-page: 10245
  year: 2020
  end-page: 10262
  ident: bib0020
  article-title: Design of normalized fractional SGD computing paradigm for recommender systems
  publication-title: Neural Comput Appl
– year: 2019
  ident: bib0031
  article-title: Harmonic quasiconformal mappings and hyperbolic type metrics
– year: 2021
  ident: bib0032
  article-title: Metric fixed point theory: applications in science, engineering and behavioural sciences
– volume: 68
  start-page: 189
  year: 2017
  end-page: 202
  ident: bib0021
  article-title: A new computing approach for power signal modeling using fractional adaptive algorithms
  publication-title: ISA Trans
– volume: 39
  start-page: 28
  year: 2019
  end-page: 99
  ident: bib0045
  article-title: Nonlinear system identification: a user-oriented road map
  publication-title: IEEE Control Syst Mag
– volume: 2012
  year: 2012
  ident: bib0037
  article-title: Solving singular two-point boundary value problems using continuous genetic algorithm
  publication-title: Abstract Appl Anal
– volume: 247
  start-page: 1202
  year: 2014
  end-page: 1210
  ident: bib0048
  article-title: Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle
  publication-title: Appl Math Comput
– volume: 66
  start-page: 457
  year: 2019
  end-page: 471
  ident: bib0022
  article-title: Normalized fractional adaptive methods for nonlinear control autoregressive systems
  publication-title: Appl Math Model
– volume: 9
  start-page: 2160
  year: 2021
  ident: bib0006
  article-title: Fractional dynamics of stuxnet virus propagation in industrial control systems
  publication-title: Mathematics
– volume: 23
  year: 2014
  ident: bib0012
  article-title: Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction
  publication-title: Chin Phys B
– volume: 358
  start-page: 5113
  year: 2021
  end-page: 5135
  ident: bib0051
  article-title: Hierarchical gradient-and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation
  publication-title: J Franklin Inst
– volume: 132
  year: 2020
  ident: bib0062
  article-title: Fractional differential and integral operators with non-singular and non-local kernel with application to nonlinear dynamical systems
  publication-title: Chaos Solitons Fractals
– volume: 128
  start-page: 339
  year: 2019
  end-page: 348
  ident: bib0058
  article-title: A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative
  publication-title: Chaos, Solitons Fractals
– volume: 79
  start-page: 1385
  year: 2015
  end-page: 1397
  ident: bib0014
  article-title: Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms
  publication-title: Nonlinear Dyn
– volume: 8
  start-page: 2809
  year: 2014
  end-page: 2821
  ident: bib0035
  article-title: An optimization algorithm for solving systems of singular boundary value problems
  publication-title: Appl Math Inf Sci
– volume: 8
  start-page: 111401
  year: 2020
  end-page: 111419
  ident: bib0010
  article-title: Design of fractional swarm intelligent computing with entropy evolution for optimal power flow problems
  publication-title: IEEE Access
– volume: 4
  year: 2007
  ident: bib0001
  publication-title: Advances in fractional calculus
– start-page: 1
  year: 2020
  end-page: 29
  ident: bib0055
  article-title: Design of meta-heuristic computing paradigms for Hammerstein identification systems in electrically stimulated muscle models
  publication-title: Neural Comput Appl
– year: 2011
  ident: bib0052
  article-title: Identification of electrically stimulated muscle after stroke
– volume: 314
  start-page: 310
  year: 2017
  end-page: 321
  ident: bib0009
  article-title: Study on fractional order gradient methods
  publication-title: Appl Math Comput
– volume: 134
  start-page: 407
  year: 2019
  ident: bib0026
  article-title: Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model
  publication-title: Eur Phys J Plus
– volume: 136
  year: 2020
  ident: bib0063
  article-title: Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data
  publication-title: Chaos, Solitons Fractals
– volume: 64
  start-page: 213
  year: 2018
  end-page: 231
  ident: bib0005
  article-title: A new collection of real world applications of fractional calculus in science and engineering
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 20
  start-page: 386
  year: 2012
  end-page: 396
  ident: bib0053
  article-title: Recursive identification of Hammerstein systems with application to electrically stimulated muscle
  publication-title: Control Eng Pract
– volume: 145
  year: 2021
  ident: bib0064
  article-title: New concept in calculus: piecewise differential and integral operators
  publication-title: Chaos, Solitons Fractals
– volume: 93
  start-page: 412
  year: 2021
  end-page: 425
  ident: bib0023
  article-title: Design of multi innovation fractional LMS algorithm for parameter estimation of input nonlinear control autoregressive systems
  publication-title: Appl Math Model
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib0015
  article-title: Fractional LMS and NLMS algorithms for line echo cancellation
  publication-title: Arab J Sci Eng
– volume: 29
  start-page: 275
  year: 2019
  end-page: 285
  ident: bib0019
  article-title: Fractional stochastic gradient descent for recommender systems
  publication-title: Electron Mark
– volume: 5
  start-page: 211
  year: 2021
  ident: bib0033
  article-title: Applications of a fixed point result for solving nonlinear fractional and integral differential equations
  publication-title: Fractal Fract
– volume: 31
  start-page: 148
  year: 2021
  end-page: 165
  ident: bib0047
  article-title: Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems
  publication-title: Int J Robust Nonlinear Control
– volume: 355
  start-page: 3737
  year: 2018
  end-page: 3752
  ident: bib0049
  article-title: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation
  publication-title: J Franklin Inst
– volume: 28
  start-page: 2040007
  year: 2020
  end-page: 2041261
  ident: bib0038
  article-title: Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienard's equation
  publication-title: Fractals
– reference: Giri, F., & Bai, E. W. (editors). (2010).
– volume: 16
  start-page: 1140
  year: 2011
  end-page: 1153
  ident: bib0002
  article-title: Recent history of fractional calculus
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 134
  year: 2020
  ident: bib0060
  article-title: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative
  publication-title: Chaos, Solitons Fractals
– volume: 133
  start-page: 260
  year: 2017
  end-page: 269
  ident: bib0028
  article-title: An innovative fractional order LMS based on variable initial value and gradient order
  publication-title: Signal Process
– reference: (Vol. 1, pp. 0278-0046). London: springer.
– volume: 2013
  year: 2013
  ident: bib0013
  article-title: Identification of input nonlinear control autoregressive systems using fractional signal processing approach
  publication-title: Sci World J
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib0036
  article-title: Optimization solution of Troesch's and Bratu's problems of ordinary type using novel continuous genetic algorithm
  publication-title: Discrete Dyn Nat Soc
– volume: 87
  start-page: 519
  year: 2017
  end-page: 533
  ident: bib0024
  article-title: A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems
  publication-title: Nonlinear Dyn
– volume: 22
  start-page: 1244
  year: 2015
  end-page: 1248
  ident: bib0007
  article-title: A novel generalization of modified LMS algorithm to fractional order
  publication-title: IEEE Signal Process Lett
– volume: 136
  year: 2020
  ident: bib0059
  article-title: Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?
  publication-title: Chaos, Solitons Fractals
– volume: 2014
  year: 2014
  ident: bib0004
  article-title: Fractional calculus and its applications in applied mathematics and other sciences
  publication-title: Math Probl Eng
– volume: 84
  year: 2019
  ident: bib0054
  article-title: Backtracking search heuristics for identification of electrical muscle stimulation models using Hammerstein structure
  publication-title: Appl Soft Comput
– ident: 10.1016/j.chaos.2022.111913_bib0043
  doi: 10.1007/978-1-84996-513-2
– volume: 46
  start-page: 215
  year: 2015
  ident: 10.1016/j.chaos.2022.111913_bib0046
  article-title: A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2015.07.002
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.chaos.2022.111913_bib0036
  article-title: Optimization solution of Troesch's and Bratu's problems of ordinary type using novel continuous genetic algorithm
  publication-title: Discrete Dyn Nat Soc
  doi: 10.1155/2014/401696
– start-page: 1
  year: 2021
  ident: 10.1016/j.chaos.2022.111913_bib0015
  article-title: Fractional LMS and NLMS algorithms for line echo cancellation
  publication-title: Arab J Sci Eng
– volume: 9
  start-page: 2160
  issue: 17
  year: 2021
  ident: 10.1016/j.chaos.2022.111913_bib0006
  article-title: Fractional dynamics of stuxnet virus propagation in industrial control systems
  publication-title: Mathematics
  doi: 10.3390/math9172160
– volume: 136
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0059
  article-title: Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.109860
– volume: 68
  start-page: 189
  year: 2017
  ident: 10.1016/j.chaos.2022.111913_bib0021
  article-title: A new computing approach for power signal modeling using fractional adaptive algorithms
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.03.011
– volume: 29
  start-page: 275
  issue: 2
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0019
  article-title: Fractional stochastic gradient descent for recommender systems
  publication-title: Electron Mark
  doi: 10.1007/s12525-018-0297-2
– volume: 358
  start-page: 5113
  issue: 9
  year: 2021
  ident: 10.1016/j.chaos.2022.111913_bib0051
  article-title: Hierarchical gradient-and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2021.04.006
– volume: 8
  start-page: 2809
  year: 2014
  ident: 10.1016/j.chaos.2022.111913_bib0035
  article-title: An optimization algorithm for solving systems of singular boundary value problems
  publication-title: Appl Math Inf Sci
  doi: 10.12785/amis/080617
– start-page: 1
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0042
  article-title: Design of backtracking search heuristics for parameter estimation of power signals
  publication-title: Neural Comput Appl
– year: 2011
  ident: 10.1016/j.chaos.2022.111913_bib0052
– volume: 31
  start-page: 148
  issue: 1
  year: 2021
  ident: 10.1016/j.chaos.2022.111913_bib0047
  article-title: Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.5266
– volume: 127
  start-page: 226
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0056
  article-title: Differential and integral operators with constant fractional order and variable fractional dimension
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2019.06.014
– volume: 8
  start-page: 111401
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0010
  article-title: Design of fractional swarm intelligent computing with entropy evolution for optimal power flow problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002714
– volume: 128
  start-page: 339
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0058
  article-title: A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2019.08.009
– volume: 66
  start-page: 457
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0022
  article-title: Normalized fractional adaptive methods for nonlinear control autoregressive systems
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2018.09.028
– volume: 2012
  year: 2012
  ident: 10.1016/j.chaos.2022.111913_bib0037
  article-title: Solving singular two-point boundary value problems using continuous genetic algorithm
  publication-title: Abstract Appl Anal
  doi: 10.1155/2012/205391
– volume: 2014
  year: 2014
  ident: 10.1016/j.chaos.2022.111913_bib0004
  article-title: Fractional calculus and its applications in applied mathematics and other sciences
  publication-title: Math Probl Eng
  doi: 10.1155/2014/849395
– volume: 55
  start-page: 698
  year: 2018
  ident: 10.1016/j.chaos.2022.111913_bib0016
  article-title: Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.11.023
– volume: 28
  start-page: 2040007
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0038
  article-title: Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienard's equation
  publication-title: Fractals
  doi: 10.1142/S0218348X20400071
– year: 2013
  ident: 10.1016/j.chaos.2022.111913_bib0044
– volume: 542
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0057
  article-title: A new application of fractional Atangana–Baleanu derivatives: designing ABC-fractional masks in image processing
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123516
– volume: 23
  issue: 5
  year: 2014
  ident: 10.1016/j.chaos.2022.111913_bib0012
  article-title: Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/23/5/050503
– volume: 32
  start-page: 8381
  issue: 12
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0027
  article-title: Design of sign fractional optimization paradigms for parameter estimation of nonlinear Hammerstein systems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04328-0
– volume: 32
  start-page: 6253
  issue: 10
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0041
  article-title: Novel computing paradigms for parameter estimation in power signal models
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04133-9
– volume: 35
  start-page: 14
  issue: 1
  year: 2009
  ident: 10.1016/j.chaos.2022.111913_bib0011
  article-title: A modified least mean square algorithm using fractional derivative and its application to system identification
  publication-title: Eur J Sci Res
– volume: 279
  start-page: 396
  year: 2014
  ident: 10.1016/j.chaos.2022.111913_bib0034
  article-title: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2014.03.128
– volume: 2013
  year: 2013
  ident: 10.1016/j.chaos.2022.111913_bib0013
  article-title: Identification of input nonlinear control autoregressive systems using fractional signal processing approach
  publication-title: Sci World J
  doi: 10.1155/2013/467276
– volume: 136
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0063
  article-title: Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.109812
– year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0031
– volume: 16
  start-page: 1140
  issue: 3
  year: 2011
  ident: 10.1016/j.chaos.2022.111913_bib0002
  article-title: Recent history of fractional calculus
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2010.05.027
– volume: 357
  start-page: 2958
  issue: 5
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0050
  article-title: Hierarchical least squares identification for feedback nonlinear equation-error systems
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2019.12.007
– volume: 134
  start-page: 407
  issue: 8
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0026
  article-title: Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2019-12785-8
– volume: 357
  start-page: 2514
  issue: 4
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0029
  article-title: Generalization of the gradient method with fractional order gradient direction
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2020.01.008
– volume: 145
  year: 2021
  ident: 10.1016/j.chaos.2022.111913_bib0064
  article-title: New concept in calculus: piecewise differential and integral operators
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.110638
– volume: 134
  start-page: 275
  issue: 6
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0018
  article-title: A new computing paradigm for the optimization of parameters in adaptive beamforming using fractional processing
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2019-12654-6
– volume: 82
  start-page: 1811
  issue: 4
  year: 2015
  ident: 10.1016/j.chaos.2022.111913_bib0008
  article-title: Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2279-7
– volume: 28
  start-page: 2040010
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0039
  article-title: The reproducing kernel algorithm for numerical solution of Van der Pol damping model in view of the Atangana-Baleanu fractional approach
  publication-title: Fractals
  doi: 10.1142/S0218348X20400101
– volume: 39
  start-page: 28
  issue: 6
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0045
  article-title: Nonlinear system identification: a user-oriented road map
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2019.2938121
– volume: 247
  start-page: 1202
  year: 2014
  ident: 10.1016/j.chaos.2022.111913_bib0048
  article-title: Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle
  publication-title: Appl Math Comput
– volume: 64
  start-page: 213
  year: 2018
  ident: 10.1016/j.chaos.2022.111913_bib0005
  article-title: A new collection of real world applications of fractional calculus in science and engineering
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2018.04.019
– volume: 134
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0060
  article-title: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.109705
– volume: 79
  start-page: 1385
  issue: 2
  year: 2015
  ident: 10.1016/j.chaos.2022.111913_bib0014
  article-title: Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1748-8
– start-page: 1
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0055
  article-title: Design of meta-heuristic computing paradigms for Hammerstein identification systems in electrically stimulated muscle models
  publication-title: Neural Comput Appl
– volume: 87
  start-page: 519
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2022.111913_bib0024
  article-title: A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-016-3058-9
– volume: 132
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0062
  article-title: Fractional differential and integral operators with non-singular and non-local kernel with application to nonlinear dynamical systems
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109493
– volume: 142
  start-page: 441
  year: 2018
  ident: 10.1016/j.chaos.2022.111913_bib0025
  article-title: Momentum fractional LMS for power signal parameter estimation
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2017.08.009
– volume: 314
  start-page: 310
  year: 2017
  ident: 10.1016/j.chaos.2022.111913_bib0009
  article-title: Study on fractional order gradient methods
  publication-title: Appl Math Comput
– volume: 93
  start-page: 412
  year: 2021
  ident: 10.1016/j.chaos.2022.111913_bib0023
  article-title: Design of multi innovation fractional LMS algorithm for parameter estimation of input nonlinear control autoregressive systems
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.12.035
– volume: 84
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0054
  article-title: Backtracking search heuristics for identification of electrical muscle stimulation models using Hammerstein structure
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105705
– year: 2021
  ident: 10.1016/j.chaos.2022.111913_bib0032
– volume: 354
  start-page: 248
  year: 2019
  ident: 10.1016/j.chaos.2022.111913_bib0061
  article-title: On fractional calculus with general analytic kernels
  publication-title: Appl Math Comput
– volume: 8
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.chaos.2022.111913_bib0030
  article-title: A convergence criterion of Newton's method based on the Heisenberg uncertainty principle
  publication-title: Int J Appl Computat Math
– volume: 3
  year: 2012
  ident: 10.1016/j.chaos.2022.111913_bib0003
– volume: 4
  year: 2007
  ident: 10.1016/j.chaos.2022.111913_bib0001
– volume: 32
  start-page: 10245
  issue: 14
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0020
  article-title: Design of normalized fractional SGD computing paradigm for recommender systems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04562-6
– volume: 5
  start-page: 211
  issue: 4
  year: 2021
  ident: 10.1016/j.chaos.2022.111913_bib0033
  article-title: Applications of a fixed point result for solving nonlinear fractional and integral differential equations
  publication-title: Fractal Fract
  doi: 10.3390/fractalfract5040211
– volume: 20
  start-page: 386
  issue: 4
  year: 2012
  ident: 10.1016/j.chaos.2022.111913_bib0053
  article-title: Recursive identification of Hammerstein systems with application to electrically stimulated muscle
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2011.08.001
– volume: 355
  start-page: 3737
  issue: 8
  year: 2018
  ident: 10.1016/j.chaos.2022.111913_bib0049
  article-title: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2018.01.052
– volume: 133
  start-page: 260
  year: 2017
  ident: 10.1016/j.chaos.2022.111913_bib0028
  article-title: An innovative fractional order LMS based on variable initial value and gradient order
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.11.026
– volume: 30
  start-page: 2595
  year: 2018
  ident: 10.1016/j.chaos.2022.111913_bib0040
  article-title: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2845-7
– volume: 83
  start-page: 703
  year: 2020
  ident: 10.1016/j.chaos.2022.111913_bib0017
  article-title: An innovative fractional order LMS algorithm for power signal parameter estimation
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.03.014
– volume: 22
  start-page: 1244
  issue: 9
  year: 2015
  ident: 10.1016/j.chaos.2022.111913_bib0007
  article-title: A novel generalization of modified LMS algorithm to fractional order
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2015.2394301
SSID ssj0001062
Score 2.5877807
Snippet The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111913
SubjectTerms Fractional calculus
Hammerstein structure
Hierarchical identification
Nonlinear systems
Title Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems
URI https://dx.doi.org/10.1016/j.chaos.2022.111913
Volume 157
WOSCitedRecordID wos000784297500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZKxwEOiA0Q40s-cACFVPlok_hYwRADbeLQQ7VL5Dj20ippR5JWu_Lj-F-8_ojTwVSxA6oUVanzxs37xH5tP-9jhN5SOua-n01cRjLhjtmEuISwzA3DwCMJTaKcCLXZRHx-nszn5Ptg8KvLhdmW8WqVXF-Tq__qajgHzpaps3dwtzUKJ-A7OB2O4HY4_pPjPylOhgwCRa2zFmS640ImGqt9T0rnslY8r9bJtZaTQ8vLdb1oi0qRDqUaeCVZMo5U4KhsTLnSqhq0tvx2KgUQuBqxSwJSs6N-3okfFFTz-BrJs5O0HDlRrypGSxvOQ6lNXtDatPdb6FGd06aAxudHvw61VGHu2aagVUVzwNVCOBe0WK8tvfhboWdzL-Qy1gpKlLSygOJFZdhFU5muR3enO2Ck3LNkzLxl5LlerHegsU24Frk2jbAvRevCW_sHPVWxHDH570fS_qgvfVON-49e0nIXO1rcMlVGUmkk1UbuoYMgnpBkiA6mpyfzrzYkgHG3Ws7q6t7JXymi4V91uT1E2gl7Zo_RIzNewVONs0M04Ksj9PDMiv02R-jQ9A8NfmdEzN8_QT81DPFa4B6GeBeGuIMhNjDEFoYYYIgtDHEPQ2nOwhAbGOKbMMQGhk_R7PPJ7OMX12z34TKIo1o3SnKWh5NxkPE4g7aCeyIMI5_zIGMeY0HgUY9wj4hcCAJxNaMshoIJycMMfgifoSHUgD9HOPLyAD6EMRGNBYmoyGImiOA5jCcmPj1GQfeAU2ak8OWOLGW6x7nH6IO96EorwewvHnWeS00wq4PUFLC478IXd7vPS_Sgf01eoWFbb_hrdJ9t20VTvzFA_A1FncsO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+fractional+hierarchical+gradient+descent+algorithm+for+parameter+estimation+of+nonlinear+control+autoregressive+systems&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Chaudhary%2C+Naveed+Ishtiaq&rft.au=Raja%2C+Muhammad+Asif+Zahoor&rft.au=Khan%2C+Zeshan+Aslam&rft.au=Mehmood%2C+Ammara&rft.date=2022-04-01&rft.issn=0960-0779&rft.volume=157&rft.spage=111913&rft_id=info:doi/10.1016%2Fj.chaos.2022.111913&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2022_111913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon