Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems

The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chaos, solitons and fractals Ročník 157; s. 111913
Hlavní autori: Chaudhary, Naveed Ishtiaq, Raja, Muhammad Asif Zahoor, Khan, Zeshan Aslam, Mehmood, Ammara, Shah, Syed Muslim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2022
Predmet:
ISSN:0960-0779, 1873-2887
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The trend of developing fractional gradient based iterative adaptive strategies is evolved in the recent years through effectively exploring the fractional and fractal dynamics. In this study, fractional hierarchical gradient descent (FHGD) is proposed by generalizing the standard hierarchical gradient descent (HGD) to fractional order for effectively solving nonlinear system identification problem. The FHGD is effectively to applied to estimate the parameters of nonlinear control autoregressive (NCAR) systems under different fractional order and noise conditions. The fractional order greater than 1 provides faster convergence speed, less than 1 gives better steady state performance and equal to 1 reduces the FHGD to HGD. The accurate estimation of NCAR system parameters representing electrically stimulated muscle model validates the efficacy and robustness of the proposed FHGD in comparison with the standard HGD.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2022.111913