Exponential stability of Itô-type linear functional difference equations

We study the stability properties of rather general linear stochastic functional difference equations and offer a partial justification of an important result in the stability analysis, which is known as “the Bohl–Perron principle” and which helps us to deduce exponential Lyapunov stability from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) Jg. 66; H. 11; S. 2295 - 2306
Hauptverfasser: Kadiev, Ramazan, Ponosov, Arcady
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2013
Schlagworte:
ISSN:0898-1221, 1873-7668
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the stability properties of rather general linear stochastic functional difference equations and offer a partial justification of an important result in the stability analysis, which is known as “the Bohl–Perron principle” and which helps us to deduce exponential Lyapunov stability from the input-to-state stability with respect to non-weighted functional spaces. We use a special technique based on integral regularization, which proved to be powerful in the general theory of linear functional differential and difference equations. In addition to the general framework, we provide a number of examples demonstrating the efficiency of our results.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2013.06.012