Exponential stability of Itô-type linear functional difference equations

We study the stability properties of rather general linear stochastic functional difference equations and offer a partial justification of an important result in the stability analysis, which is known as “the Bohl–Perron principle” and which helps us to deduce exponential Lyapunov stability from the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & mathematics with applications (1987) Ročník 66; číslo 11; s. 2295 - 2306
Hlavní autori: Kadiev, Ramazan, Ponosov, Arcady
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2013
Predmet:
ISSN:0898-1221, 1873-7668
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the stability properties of rather general linear stochastic functional difference equations and offer a partial justification of an important result in the stability analysis, which is known as “the Bohl–Perron principle” and which helps us to deduce exponential Lyapunov stability from the input-to-state stability with respect to non-weighted functional spaces. We use a special technique based on integral regularization, which proved to be powerful in the general theory of linear functional differential and difference equations. In addition to the general framework, we provide a number of examples demonstrating the efficiency of our results.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2013.06.012