Exponential stability of Itô-type linear functional difference equations

We study the stability properties of rather general linear stochastic functional difference equations and offer a partial justification of an important result in the stability analysis, which is known as “the Bohl–Perron principle” and which helps us to deduce exponential Lyapunov stability from the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 66; číslo 11; s. 2295 - 2306
Hlavní autoři: Kadiev, Ramazan, Ponosov, Arcady
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2013
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the stability properties of rather general linear stochastic functional difference equations and offer a partial justification of an important result in the stability analysis, which is known as “the Bohl–Perron principle” and which helps us to deduce exponential Lyapunov stability from the input-to-state stability with respect to non-weighted functional spaces. We use a special technique based on integral regularization, which proved to be powerful in the general theory of linear functional differential and difference equations. In addition to the general framework, we provide a number of examples demonstrating the efficiency of our results.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2013.06.012