Exponential stability of Itô-type linear functional difference equations
We study the stability properties of rather general linear stochastic functional difference equations and offer a partial justification of an important result in the stability analysis, which is known as “the Bohl–Perron principle” and which helps us to deduce exponential Lyapunov stability from the...
Uloženo v:
| Vydáno v: | Computers & mathematics with applications (1987) Ročník 66; číslo 11; s. 2295 - 2306 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2013
|
| Témata: | |
| ISSN: | 0898-1221, 1873-7668 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the stability properties of rather general linear stochastic functional difference equations and offer a partial justification of an important result in the stability analysis, which is known as “the Bohl–Perron principle” and which helps us to deduce exponential Lyapunov stability from the input-to-state stability with respect to non-weighted functional spaces. We use a special technique based on integral regularization, which proved to be powerful in the general theory of linear functional differential and difference equations. In addition to the general framework, we provide a number of examples demonstrating the efficiency of our results. |
|---|---|
| ISSN: | 0898-1221 1873-7668 |
| DOI: | 10.1016/j.camwa.2013.06.012 |