Label Space-Induced Pseudo Label Refinement for Multi-Source Black-Box Domain Adaptation

Conventional unsupervised domain adaptation (UDA) requires access to source data and/or source model parameters, prohibiting its practical application in terms of privacy, security, and intellectual property. Recent black-box UDA (BDA) reduces such constraints by defining a pseudo label from a singl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 34; s. 3181 - 3193
Hlavní autoři: Yoo, Chaehwa, Liu, Xiaofeng, Xing, Fangxu, Woo, Jonghye, Kang, Je-Won
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Conventional unsupervised domain adaptation (UDA) requires access to source data and/or source model parameters, prohibiting its practical application in terms of privacy, security, and intellectual property. Recent black-box UDA (BDA) reduces such constraints by defining a pseudo label from a single encapsulated source application programming interface (API) prediction, which allows for self-training of the target model. Nonetheless, existing methods have limited consideration for multi-source settings, in which multiple source domain APIs are available to generate pseudo labels. In this work, we introduce a novel training framework for multi-source BDA (MSBDA), dubbed Label Space-Induced Pseudo Label Refinement (LPR). Specifically, LPR incorporates a Pseudo label Refinery Network (PRN) that learns the relationship among source domains conditioned by the target domain only utilizing source API's prediction. The target model is adapted by our dual phases PRN. First, a warm-up phase targets to avoid failure due to noisy samples and provide an initial pseudo-label, which is followed by a label refinement phase with domain relationship exploration. We provide theoretical support for the mechanism of the LPR. Experimental results on four benchmark datasets demonstrate that MSBDA using LPR achieves competitive performance compared to state-of-the-art approaches with different DA settings.
AbstractList Conventional unsupervised domain adaptation (UDA) requires access to source data and/or source model parameters, prohibiting its practical application in terms of privacy, security, and intellectual property. Recent black-box UDA (BDA) reduces such constraints by defining a pseudo label from a single encapsulated source application programming interface (API) prediction, which allows for self-training of the target model. Nonetheless, existing methods have limited consideration for multi-source settings, in which multiple source domain APIs are available to generate pseudo labels. In this work, we introduce a novel training framework for multi-source BDA (MSBDA), dubbed Label Space-Induced Pseudo Label Refinement (LPR). Specifically, LPR incorporates a Pseudo label Refinery Network (PRN) that learns the relationship among source domains conditioned by the target domain only utilizing source API's prediction. The target model is adapted by our dual phases PRN. First, a warm-up phase targets to avoid failure due to noisy samples and provide an initial pseudo-label, which is followed by a label refinement phase with domain relationship exploration. We provide theoretical support for the mechanism of the LPR. Experimental results on four benchmark datasets demonstrate that MSBDA using LPR achieves competitive performance compared to state-of-the-art approaches with different DA settings.Conventional unsupervised domain adaptation (UDA) requires access to source data and/or source model parameters, prohibiting its practical application in terms of privacy, security, and intellectual property. Recent black-box UDA (BDA) reduces such constraints by defining a pseudo label from a single encapsulated source application programming interface (API) prediction, which allows for self-training of the target model. Nonetheless, existing methods have limited consideration for multi-source settings, in which multiple source domain APIs are available to generate pseudo labels. In this work, we introduce a novel training framework for multi-source BDA (MSBDA), dubbed Label Space-Induced Pseudo Label Refinement (LPR). Specifically, LPR incorporates a Pseudo label Refinery Network (PRN) that learns the relationship among source domains conditioned by the target domain only utilizing source API's prediction. The target model is adapted by our dual phases PRN. First, a warm-up phase targets to avoid failure due to noisy samples and provide an initial pseudo-label, which is followed by a label refinement phase with domain relationship exploration. We provide theoretical support for the mechanism of the LPR. Experimental results on four benchmark datasets demonstrate that MSBDA using LPR achieves competitive performance compared to state-of-the-art approaches with different DA settings.
Conventional unsupervised domain adaptation (UDA) requires access to source data and/or source model parameters, prohibiting its practical application in terms of privacy, security, and intellectual property. Recent black-box UDA (BDA) reduces such constraints by defining a pseudo label from a single encapsulated source application programming interface (API) prediction, which allows for self-training of the target model. Nonetheless, existing methods have limited consideration for multi-source settings, in which multiple source domain APIs are available to generate pseudo labels. In this work, we introduce a novel training framework for multi-source BDA (MSBDA), dubbed Label Space-Induced Pseudo Label Refinement (LPR). Specifically, LPR incorporates a Pseudo label Refinery Network (PRN) that learns the relationship among source domains conditioned by the target domain only utilizing source API's prediction. The target model is adapted by our dual phases PRN. First, a warm-up phase targets to avoid failure due to noisy samples and provide an initial pseudo-label, which is followed by a label refinement phase with domain relationship exploration. We provide theoretical support for the mechanism of the LPR. Experimental results on four benchmark datasets demonstrate that MSBDA using LPR achieves competitive performance compared to state-of-the-art approaches with different DA settings.
Author Yoo, Chaehwa
Xing, Fangxu
Woo, Jonghye
Kang, Je-Won
Liu, Xiaofeng
Author_xml – sequence: 1
  givenname: Chaehwa
  orcidid: 0000-0001-9880-2850
  surname: Yoo
  fullname: Yoo, Chaehwa
  organization: School of Electrical Engineering, Chungbuk National University, Cheongju, South Korea
– sequence: 2
  givenname: Xiaofeng
  orcidid: 0000-0002-4514-2016
  surname: Liu
  fullname: Liu, Xiaofeng
  organization: Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 3
  givenname: Fangxu
  orcidid: 0000-0002-0517-0952
  surname: Xing
  fullname: Xing, Fangxu
  organization: Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 4
  givenname: Jonghye
  orcidid: 0000-0002-5621-9218
  surname: Woo
  fullname: Woo, Jonghye
  organization: Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 5
  givenname: Je-Won
  orcidid: 0000-0002-1637-9479
  surname: Kang
  fullname: Kang, Je-Won
  email: jewonk@ewha.ac.kr
  organization: Department of Electronic and Electrical Engineering and the Graduate Program in Smart Factory, Ewha Womans University, Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40397626$$D View this record in MEDLINE/PubMed
BookMark eNpdkctrHDEMxk1IaV6991DKQC-5zFZ-r49JmsfCloQmhd4Gjy3DpDP2djwD6X9fL7tpoScJ6fcJSd8JOYwpIiHvKSwoBfP5afWwYMDkgksNjMEBOaZG0BpAsMOSg9S1psIckZOcnwGokFS9JUcCuNGKqWPyY21b7KvHjXVYr6KfHfrqIePsU7VrfcPQRRwwTlVIY_V17qeufkzz6LC67K37WV-ml-pLGmwXqwtvN5OduhTPyJtg-4zv9vGUfL-5frq6q9f3t6uri3XtOPCpVmC1XAbOgnJCCG-0oNTrNijeauOVMS5oF5jxPrBQCtpoC4FiK0VoKfBTcr6buxnTrxnz1Axddtj3NmKac8MZKLk0htKCfvoPfS5nxLJdoag0Uiz1duDHPTW3A_pmM3aDHX83rz8rAOwAN6acRwx_EQrN1pam2NJsbWn2thTJh52kQ8R_OAVYCiX4H8v3hiE
CODEN IIPRE4
Cites_doi 10.1109/CVPR.2017.316
10.1109/CVPR.2017.18
10.7551/mitpress/7503.003.0045
10.1007/978-3-030-01264-9_9
10.1109/CVPR.2009.5206848
10.1109/CVPR.2019.01053
10.1109/TIP.2021.3124674
10.1109/CVPR.2016.90
10.1117/12.2607895
10.1109/CVPR46437.2021.00997
10.1145/3240508.3240512
10.1109/ICCV.2019.00149
10.1007/978-3-030-58598-3_43
10.1109/CVPR.2017.572
10.1109/CVPR52688.2022.00784
10.1109/CVPR.2018.00887
10.1109/TIP.2019.2950768
10.1109/TPAMI.2021.3103390
10.1109/CVPR.2019.00234
10.1007/978-3-030-01219-9_18
10.1109/CVPR42600.2020.00874
10.1109/CVPR.2018.00417
10.1145/3109859.3109861
10.1109/CVPR.2018.00400
10.1007/978-3-319-49409-8_35
10.1109/CVPR.2017.107
10.1109/ICCV.2013.274
10.1109/TIP.2021.3056212
10.1609/aaai.v32i1.11767
10.1109/CVPR.2018.00392
10.1561/116.00000192
10.24963/ijcai.2021/402
10.1609/aaai.v34i04.6123
10.1609/aaai.v33i01.33015989
10.5555/2946645.2946704
10.1109/CVPR42600.2020.00408
10.1109/TIP.2023.3295929
10.1007/978-3-642-15561-1_16
10.1109/LSP.2022.3194414
10.1109/CVPR42600.2020.01237
10.1109/TIP.2024.3353539
10.1109/CVPR.2017.547
10.1109/TIP.2021.3065254
10.1109/TIP.2023.3258753
10.1109/TIP.2022.3152052
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2025.3570220
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3193
ExternalDocumentID 40397626
10_1109_TIP_2025_3570220
11008464
Genre orig-research
Journal Article
GrantInformation_xml – fundername: MSIT (60%)
  grantid: NRF-2022R1A2C4002052
– fundername: Ministry of Science and ICT (MSIT), South Korea, through the Information Technology Research Center (ITRC) Support Program supervised by the Institute for Information and Communications Technology Planning and Evaluation (IITP)
  grantid: IITP-2025-RS-2020-II201460
– fundername: Culture, Sports and Tourism Research and Development Program through Korea Creative Content Agency grant funded by the Ministry of Culture, Sports and Tourism in 2024 (20%)
  grantid: RS-2024-00439534
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c303t-60a758f32f6c444d97411d7bf63b79d699cf7cf29ddf2f9d6797a0f1eb54fb103
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502241500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 22:49:49 EDT 2025
Tue Jul 22 15:12:10 EDT 2025
Mon Jul 21 05:31:03 EDT 2025
Sat Nov 29 07:47:17 EST 2025
Wed Aug 27 01:52:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-60a758f32f6c444d97411d7bf63b79d699cf7cf29ddf2f9d6797a0f1eb54fb103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9880-2850
0000-0002-1637-9479
0000-0002-5621-9218
0000-0002-4514-2016
0000-0002-0517-0952
PMID 40397626
PQID 3215954870
PQPubID 85429
PageCount 13
ParticipantIDs proquest_journals_3215954870
ieee_primary_11008464
crossref_primary_10_1109_TIP_2025_3570220
proquest_miscellaneous_3206589911
pubmed_primary_40397626
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
Venkat (ref45); 33
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref10
ref54
Long (ref28); 37
ref17
ref16
ref18
Hoffman (ref14)
Long (ref29)
ref51
Liang (ref21)
ref46
ref48
ref47
ref42
ref41
ref44
ref43
Wei (ref49) 2020
ref7
ref4
ref3
ref6
ref5
ref40
Dong (ref8); 34
ref35
ref37
Lee (ref19); 3
ref36
ref31
ref33
Zhang (ref57) 2021
ref2
ref1
ref39
ref38
Zhao (ref60); 31
Xie (ref50)
Yang (ref55) 2022
ref24
ref23
ref26
ref25
Paszke (ref34) 2017
ref63
ref22
ref27
Dosovitskiy (ref9)
Li (ref20); 31
Hoffman (ref13)
ref62
Mansour (ref32); 21
ref61
Long (ref30)
References_xml – ident: ref44
  doi: 10.1109/CVPR.2017.316
– ident: ref2
  doi: 10.1109/CVPR.2017.18
– ident: ref5
  doi: 10.7551/mitpress/7503.003.0045
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Algorithms and theory for multiple-source adaptation
– ident: ref3
  doi: 10.1007/978-3-030-01264-9_9
– ident: ref6
  doi: 10.1109/CVPR.2009.5206848
– ident: ref18
  doi: 10.1109/CVPR.2019.01053
– ident: ref15
  doi: 10.1109/TIP.2021.3124674
– volume: 3
  start-page: 896
  issue: 2
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref19
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– ident: ref12
  doi: 10.1109/CVPR.2016.90
– ident: ref25
  doi: 10.1117/12.2607895
– ident: ref1
  doi: 10.1109/CVPR46437.2021.00997
– year: 2022
  ident: ref55
  article-title: Divide to adapt: Mitigating confirmation bias for domain adaptation of black-box predictors
  publication-title: arXiv:2205.14467
– volume: 31
  start-page: 6799
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref20
  article-title: Extracting relationships by multi-domain matching
– ident: ref48
  doi: 10.1145/3240508.3240512
– volume: 37
  start-page: 97
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref28
  article-title: Learning transferable features with deep adaptation networks
– start-page: 5423
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref50
  article-title: Learning semantic representations for unsupervised domain adaptation
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref9
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– ident: ref37
  doi: 10.1109/ICCV.2019.00149
– ident: ref47
  doi: 10.1007/978-3-030-58598-3_43
– volume: 31
  start-page: 8559
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref60
  article-title: Adversarial multiple source domain adaptation
– ident: ref46
  doi: 10.1109/CVPR.2017.572
– start-page: 1989
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref14
  article-title: CyCADA: Cycle-consistent adversarial domain adaptation
– ident: ref23
  doi: 10.1109/CVPR52688.2022.00784
– ident: ref42
  doi: 10.1109/CVPR.2018.00887
– ident: ref4
  doi: 10.1109/TIP.2019.2950768
– volume: 33
  start-page: 4647
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref45
  article-title: Your classifier can secretly suffice multi-source domain adaptation
– volume: 34
  start-page: 2848
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref8
  article-title: Confident anchor-induced multi-source free domain adaptation
– ident: ref22
  doi: 10.1109/TPAMI.2021.3103390
– ident: ref33
  doi: 10.1109/CVPR.2019.00234
– ident: ref62
  doi: 10.1007/978-3-030-01219-9_18
– ident: ref56
  doi: 10.1109/CVPR42600.2020.00874
– ident: ref53
  doi: 10.1109/CVPR.2018.00417
– ident: ref16
  doi: 10.1145/3109859.3109861
– ident: ref59
  doi: 10.1109/CVPR.2018.00400
– ident: ref43
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref54
  doi: 10.1109/CVPR.2017.107
– ident: ref27
  doi: 10.1109/ICCV.2013.274
– ident: ref10
  doi: 10.1109/TIP.2021.3056212
– year: 2020
  ident: ref49
  article-title: Theoretical analysis of self-training with deep networks on unlabeled data
  publication-title: arXiv:2010.03622
– ident: ref36
  doi: 10.1609/aaai.v32i1.11767
– ident: ref41
  doi: 10.1109/CVPR.2018.00392
– ident: ref26
  doi: 10.1561/116.00000192
– ident: ref38
  doi: 10.24963/ijcai.2021/402
– year: 2017
  ident: ref34
  article-title: Automatic differentiation in PyTorch
– ident: ref52
  doi: 10.1609/aaai.v34i04.6123
– ident: ref61
  doi: 10.1609/aaai.v33i01.33015989
– ident: ref11
  doi: 10.5555/2946645.2946704
– ident: ref7
  doi: 10.1109/CVPR42600.2020.00408
– ident: ref31
  doi: 10.1109/TIP.2023.3295929
– ident: ref40
  doi: 10.1007/978-3-642-15561-1_16
– volume: 21
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref32
  article-title: Domain adaptation with multiple sources
– year: 2021
  ident: ref57
  article-title: Unsupervised domain adaptation of black-box source models
  publication-title: arXiv:2101.02839
– ident: ref24
  doi: 10.1109/LSP.2022.3194414
– ident: ref51
  doi: 10.1109/CVPR42600.2020.01237
– ident: ref17
  doi: 10.1109/TIP.2024.3353539
– ident: ref58
  doi: 10.1109/CVPR.2017.547
– ident: ref63
  doi: 10.1109/TIP.2021.3065254
– ident: ref35
  doi: 10.1109/TIP.2023.3258753
– start-page: 2208
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref29
  article-title: Deep transfer learning with joint adaptation networks
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Conditional adversarial domain adaptation
– start-page: 6028
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref21
  article-title: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation
– ident: ref39
  doi: 10.1109/TIP.2022.3152052
SSID ssj0014516
Score 2.467999
Snippet Conventional unsupervised domain adaptation (UDA) requires access to source data and/or source model parameters, prohibiting its practical application in terms...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3181
SubjectTerms Adaptation
Adaptation models
Application programming interface
Application programming interfaces
Black boxes
black-box
Closed box
Data models
label refinement
Labeling
Labels
multi-source
Network security
Predictive models
Refineries
Smoothing methods
Sports
Training
Unsupervised domain adaptation
Upper bound
Title Label Space-Induced Pseudo Label Refinement for Multi-Source Black-Box Domain Adaptation
URI https://ieeexplore.ieee.org/document/11008464
https://www.ncbi.nlm.nih.gov/pubmed/40397626
https://www.proquest.com/docview/3215954870
https://www.proquest.com/docview/3206589911
Volume 34
WOSCitedRecordID wos001502241500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLYWtEJw4P0YFlCQuHAI9JHWkyP7QCAhNOIhza1Km0QaCVrEzCB-PnbameXCgVvVOG0UO_Vnu7YBThS6yJEilCpLUCqrcmnKXEluH4Jlaqu-N6HZBN7e9odDPeiS1UMujHMu_HzmzvgyxPJtU03ZVXbO5c1IX6oFWEDENllrHjLgjrMhtJmhRML9s5hkpM8frgdkCSbZWZohZ5Yuw5KKWBFzSYVP6ij0V_kaagaVc7n2zcWuw2qHLcVFKwwb8MPVm7DW4UzRneLxJqx8KkK4BcMbU7oncU_Gs5PcyaMi4sHYTW0j2qE754mcXycI4oqQsyvvg9dfBAeg_N28i7_NsxnV4sKalza8vw2Pl_8e_lzJrt-CrEiRTWQeGbIefJr4vFJKWTI14thi6fO0RG1zrSuPlU-0tT7xdAM1msjHrsyUL-Mo3YHFuqndHgg0WU7EaRmbRNlYG60ymu1zQ18YG6U9OJ1te_HSltUogjkS6YK4VTC3io5bPdjm3f1P121sDw5mjCq6gzcuUoIwXMMOadrxfJiODMdBTO2aKdMw7iJgHPdgt2Xw_OEzudj_4qW_YJnX1jphDmBx8jp1h_CzepuMxq9HJJfD_lGQyw_mm9sC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BQLA9MOgK6xhgJF54cJsPJ54ft0HViVJVrEh9i5zYlipBMq0N2p-_Oyfp9tIH3qL4HFs-O_e7O98dwBchbWBREHKRRJILI1Ku81RwKh8i89gUZ077YhNyNjtbLtW8DVb3sTDWWn_5zA7p0fvyTVXUZCobUXozlJfiKTxLhIjCJlxr6zSgmrPeuZlILhH5d17JQI0WV3PUBaNkGCeSYkv34YUISBRTUoVHAslXWNkNNr3QGR_-53Rfw6sWXbLzZju8gSe27MFhizRZe47XPTh4lIbwCJZTnds_7BrVZ8uplkeBxPO1rU3FmqZf1iE5DccQ5DIftcuvvd2feRMgv6ju2Lfqr16V7Nzom8bB34ff4--LywlvKy7wAkXZhqeBRv3BxZFLCyGEQWUjDI3MXRrnUplUqcLJwkXKGBc5fCGV1IELbZ4Il4dB_Bb2yqq0x8CkTlIkjvNQR8KESiuRYG-XavzHmCAewNdu2bObJrFG5hWSQGXIrYy4lbXcGkCfVveBrl3YAZx2jMrao7fOYgQxlMVOYrfP22Y8NOQJ0aWtaqIh5IXQOBzAu4bB2493--Jkx6Cf4OVk8XOaTa9mP97DPs2zMcmcwt7mtrYf4Hnxb7Na3370u_MeSundYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+Space-Induced+Pseudo+Label+Refinement+for+Multi-Source+Black-Box+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yoo%2C+Chaehwa&rft.au=Liu%2C+Xiaofeng&rft.au=Xing%2C+Fangxu&rft.au=Woo%2C+Jonghye&rft.date=2025-01-01&rft.eissn=1941-0042&rft.volume=34&rft.spage=3181&rft_id=info:doi/10.1109%2FTIP.2025.3570220&rft_id=info%3Apmid%2F40397626&rft.externalDocID=40397626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon