Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems
In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evolutionary algorithms (MOEAs) is to balance the convergence and diversity of working populations. However, most state-of-the-art MOEAs show poor performance in balancing them, and can cause th...
Uložené v:
| Vydané v: | Swarm and evolutionary computation Ročník 54; s. 100651 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.05.2020
|
| Predmet: | |
| ISSN: | 2210-6502 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evolutionary algorithms (MOEAs) is to balance the convergence and diversity of working populations. However, most state-of-the-art MOEAs show poor performance in balancing them, and can cause the working populations to concentrate on part of the Pareto fronts, leading to serious imbalanced searching between preserving diversity and achieving convergence. This paper proposes a method which combines a multi-objective to multi-objective (M2M) decomposition approach with the push and pull search (PPS) framework, namely PPS-M2M. To be more specific, the proposed algorithm decomposes a CMOP into a set of simple CMOPs. Each simple CMOP corresponds to a sub-population and is solved in a collaborative manner. When dealing with constraints, each sub-population follows a procedure of “ignore the constraints in the push stage and consider the constraints in the pull stage”, which helps each working sub-population get across infeasible regions. In order to evaluate the performance of the proposed PPS-M2M, it is compared with the other nine algorithms, including CM2M, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and MODE-SaE on a set of benchmark CMOPs. The experimental results show that the proposed PPS-M2M is significantly better than the other nine algorithms. In addition, a set of constrained and imbalanced multi-objective optimization problems (CIMOPs) are suggested to compare PPS-M2M and PPS-MOEA/D. The experimental results show that the proposed PPS-M2M outperforms PPS-MOEA/D on CIMOPs. |
|---|---|
| AbstractList | In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evolutionary algorithms (MOEAs) is to balance the convergence and diversity of working populations. However, most state-of-the-art MOEAs show poor performance in balancing them, and can cause the working populations to concentrate on part of the Pareto fronts, leading to serious imbalanced searching between preserving diversity and achieving convergence. This paper proposes a method which combines a multi-objective to multi-objective (M2M) decomposition approach with the push and pull search (PPS) framework, namely PPS-M2M. To be more specific, the proposed algorithm decomposes a CMOP into a set of simple CMOPs. Each simple CMOP corresponds to a sub-population and is solved in a collaborative manner. When dealing with constraints, each sub-population follows a procedure of “ignore the constraints in the push stage and consider the constraints in the pull stage”, which helps each working sub-population get across infeasible regions. In order to evaluate the performance of the proposed PPS-M2M, it is compared with the other nine algorithms, including CM2M, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and MODE-SaE on a set of benchmark CMOPs. The experimental results show that the proposed PPS-M2M is significantly better than the other nine algorithms. In addition, a set of constrained and imbalanced multi-objective optimization problems (CIMOPs) are suggested to compare PPS-M2M and PPS-MOEA/D. The experimental results show that the proposed PPS-M2M outperforms PPS-MOEA/D on CIMOPs. |
| ArticleNumber | 100651 |
| Author | Ruan, Jie Wang, Zhaojun Fan, Zhun Yuan, Yutong You, Yugen Li, Wenji Sun, Fuzan Yang, Zhi |
| Author_xml | – sequence: 1 givenname: Zhun surname: Fan fullname: Fan, Zhun email: zfan@stu.edu.cn organization: Department of Electronic Engineering, Shantou University, Guangdong, China – sequence: 2 givenname: Zhaojun surname: Wang fullname: Wang, Zhaojun organization: Department of Electronic Engineering, Shantou University, Guangdong, China – sequence: 3 givenname: Wenji surname: Li fullname: Li, Wenji organization: Department of Electronic Engineering, Shantou University, Guangdong, China – sequence: 4 givenname: Yutong surname: Yuan fullname: Yuan, Yutong organization: Department of Electronic Engineering, Shantou University, Guangdong, China – sequence: 5 givenname: Yugen surname: You fullname: You, Yugen organization: Department of Electronic Engineering, Shantou University, Guangdong, China – sequence: 6 givenname: Zhi surname: Yang fullname: Yang, Zhi organization: Department of Electronic Engineering, Shantou University, Guangdong, China – sequence: 7 givenname: Fuzan surname: Sun fullname: Sun, Fuzan organization: Department of Electronic Engineering, Shantou University, Guangdong, China – sequence: 8 givenname: Jie surname: Ruan fullname: Ruan, Jie organization: Department of Electronic Engineering, Shantou University, Guangdong, China |
| BookMark | eNqFkL9OwzAQhz0UiVL6BCx-gRTHjpN0YEAV_6RWMMBsOfaZOiR2Zaep4OlJWiYG8HKS777T_b4LNHHeAUJXKVmkJM2v60U8QO8XlNDxh-Q8naAppSlJck7oOZrHWJPh5YRyvpwi_7KPWyydxrt90-AIMqgthrYCrUFj64Ye3tANNkG2cPDhAxsfcPRNb907Vt7FLkjrhtl233Q28VUNqrM9YL_rbGu_ZGe9w7vgqwbaeInOjGwizH_qDL3d372uHpP188PT6nadKEZYl-Sk5GAY15mpWFnIsljmvGRGgaZUlmCMMkVRcqUyxTXL07TKdAF5xhUrSijZDLHTXhV8jAGM2AXbyvApUiJGVaIWR1ViVCVOqgZq-YtStjsGGEM2_7A3JxaGWL2FIKKy4IaLbRiMCO3tn_w3YtKMiQ |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2022_108732 crossref_primary_10_1109_TEVC_2022_3230822 crossref_primary_10_1109_TEVC_2022_3199775 crossref_primary_10_1038_s41598_025_06385_z crossref_primary_10_1016_j_engappai_2024_109876 crossref_primary_10_1007_s12293_021_00349_2 crossref_primary_10_1016_j_asoc_2023_110311 crossref_primary_10_1016_j_asoc_2024_111840 crossref_primary_10_1109_TAI_2024_3454025 crossref_primary_10_1016_j_asoc_2023_111006 crossref_primary_10_1016_j_asoc_2025_113788 crossref_primary_10_1016_j_asoc_2024_111800 crossref_primary_10_1109_TCYB_2021_3108563 crossref_primary_10_1016_j_swevo_2023_101372 crossref_primary_10_1016_j_knosys_2024_111998 crossref_primary_10_3390_biomimetics8020136 crossref_primary_10_1016_j_knosys_2022_110112 crossref_primary_10_1109_TEVC_2022_3155533 crossref_primary_10_1007_s40747_024_01542_9 crossref_primary_10_1016_j_cie_2022_108251 crossref_primary_10_1016_j_ins_2024_120339 crossref_primary_10_1109_TSMC_2023_3299570 crossref_primary_10_1016_j_asoc_2022_109904 crossref_primary_10_1109_TCYB_2021_3056176 crossref_primary_10_1186_s41601_022_00271_w crossref_primary_10_1016_j_swevo_2025_102030 crossref_primary_10_1109_ACCESS_2021_3085529 crossref_primary_10_1016_j_knosys_2021_107263 crossref_primary_10_1109_TCYB_2022_3151793 crossref_primary_10_1016_j_asoc_2024_112442 crossref_primary_10_1016_j_matcom_2024_02_012 crossref_primary_10_1016_j_swevo_2023_101417 crossref_primary_10_1007_s12293_022_00360_1 crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_1016_j_swevo_2022_101178 crossref_primary_10_4018_IJCINI_355766 crossref_primary_10_1016_j_swevo_2022_101055 crossref_primary_10_1016_j_ins_2023_119260 crossref_primary_10_1109_TSMC_2021_3061698 crossref_primary_10_1016_j_swevo_2025_102044 crossref_primary_10_1109_TETCI_2022_3221940 crossref_primary_10_1109_TCYB_2023_3329947 crossref_primary_10_1109_TEVC_2021_3089155 crossref_primary_10_1016_j_swevo_2023_101272 crossref_primary_10_1109_TEVC_2022_3202723 crossref_primary_10_1109_JIOT_2021_3067732 crossref_primary_10_1007_s44336_024_00006_5 crossref_primary_10_1016_j_swevo_2024_101728 crossref_primary_10_1016_j_asoc_2024_112428 crossref_primary_10_1016_j_swevo_2022_101209 crossref_primary_10_1016_j_swevo_2021_101020 crossref_primary_10_3390_sym14010116 crossref_primary_10_1016_j_swevo_2025_101941 crossref_primary_10_1109_TEVC_2022_3194729 crossref_primary_10_1109_TCYB_2024_3524457 |
| Cites_doi | 10.1016/j.jspi.2007.04.032 10.1109/4235.797969 10.1109/TEVC.2013.2281533 10.1109/4235.996017 10.1016/S0045-7825(99)00389-8 10.1016/j.swevo.2011.02.002 10.1080/01621459.1993.10476358 10.1080/0305215X.2010.493937 10.1016/j.asoc.2019.02.041 10.1093/biomet/75.4.800 10.1016/j.asoc.2018.10.027 10.1109/TEVC.2014.2350995 10.1093/biomet/77.3.663 10.1007/s00500-019-03794-x 10.1109/TEVC.2003.810761 10.1016/j.asoc.2012.07.027 10.1177/003754979406200405 10.1016/j.asoc.2017.12.002 10.1109/4235.873238 10.1109/TCYB.2017.2737554 10.1142/S0218001416590023 10.1109/TCYB.2017.2780274 10.1016/j.swevo.2018.08.017 10.1093/biomet/75.2.383 10.1109/TEVC.2017.2744674 10.1109/TSMCB.2006.886164 10.2307/2531823 10.1016/j.asoc.2017.06.053 10.1016/j.swevo.2011.10.001 10.1109/TEVC.2008.2009032 10.1109/TIE.2008.2006935 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2020.100651 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2020_100651 S2210650218310629 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABGRD ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADQTV ADTZH AEBSH AECPX AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV EBS EFJIC EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SSH SST SSV SSW SSZ T5K ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c303t-6085ef35d4fb387a8796583fced22a8effcf7785cc4c5d3611b4d7e645c378e83 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528484400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Wed Nov 05 20:41:32 EST 2025 Tue Nov 18 20:45:14 EST 2025 Sun Apr 06 06:53:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | NSGA-II Constraint-handling mechanisms Constrained multi-objective evolutionary algorithms Push and pull search Multi-objective to multi-objective (M2M) decomposition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-6085ef35d4fb387a8796583fced22a8effcf7785cc4c5d3611b4d7e645c378e83 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2020_100651 crossref_citationtrail_10_1016_j_swevo_2020_100651 elsevier_sciencedirect_doi_10_1016_j_swevo_2020_100651 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 2020-05-00 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Liu, Wang (bib8) 2019 Wang, Cai, Cui, Min, Chen (bib9) 2017 Zitzler, Thiele (bib39) 1999; 3 Peng, Liu, Gu (bib32) 2017; 60 Qu, Suganthan (bib16) 2011; 43 Zhang, Zhou, Zhao, Suganthan, Liu, Tiwari (bib36) 2008 Cai, Mei, Fan, Zhang (bib3) 2018; 22 Li (bib46) 2008; 138 Liu, Peng, Gu, Wen (bib28) 2016; 30 Homaifar, Qi, Lai (bib17) 1994; 62 Asafuddoula, Ray, Sarker, Alam (bib31) 2012 Deb, Datta (bib12) 2010 Derrac, García, Molina, Herrera (bib47) 2011; 1 Wang, Cai, Guo, Zhou (bib15) 2007; 37 Holm (bib40) 1979; 6 Holland, Copenhaver (bib41) 1987 Cai, Mei, Fan (bib4) 2018; 48 Yang, Liu, Tan, Wang (bib33) 2019; 80 Wang, Li, Xue, Wang (bib7) 2019 Woldesenbet, Yen, Tessema (bib20) 2009; 13 Takahama, Sakai (bib25) 2010 Runarsson, Yao (bib14) 2000; 4 Mezura-Montes, Palomeque-Ortiz (bib22) 2009 Yang, Cai, Fan (bib29) 2014 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib37) 2019 Kalyanmoy (bib1) 2001 Rizk-Allah, El-Sehiemy, Wang (bib34) 2018; 63 Finner (bib42) 1993; 88 Mezura-Montes, Coello (bib11) 2011; 1 Mezura-Montes, Velázquez-Reyes, Coello (bib21) 2006 Fan, Fang, Li, Cai, Wei, Goodman (bib5) 2019; 74 Jan, Khanum (bib30) 2013; 13 Hochberg (bib43) 1988; 75 Rom (bib45) 1990; 77 Leguizamon, Coello Coello (bib24) 2007 Liu, Gu, Zhang (bib26) 2014; 18 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib27) 2019; 44 Fan, Liu, Sorensen, Wang (bib23) 2009; 56 Joines, Houck (bib18) 1994 Bosman, Thierens (bib38) 2003; 7 Deb (bib13) 2000; 186 Deb, Pratap, Agarwal, Meyarivan (bib2) 2002; 6 Fan, Li, Cai, Huang, Fang, You, Mo, Wei, Goodman (bib6) 2019; 23 Wang, Tan (bib19) 2019; 49 Cai, Li, Fan, Zhang (bib10) 2015; 19 Takahama, Sakai (bib35) 2006 Hommel (bib44) 1988; 75 Jan (10.1016/j.swevo.2020.100651_bib30) 2013; 13 Rom (10.1016/j.swevo.2020.100651_bib45) 1990; 77 Cai (10.1016/j.swevo.2020.100651_bib10) 2015; 19 Homaifar (10.1016/j.swevo.2020.100651_bib17) 1994; 62 Mezura-Montes (10.1016/j.swevo.2020.100651_bib21) 2006 Woldesenbet (10.1016/j.swevo.2020.100651_bib20) 2009; 13 Zitzler (10.1016/j.swevo.2020.100651_bib39) 1999; 3 Fan (10.1016/j.swevo.2020.100651_bib37) 2019 Finner (10.1016/j.swevo.2020.100651_bib42) 1993; 88 Wang (10.1016/j.swevo.2020.100651_bib15) 2007; 37 Bosman (10.1016/j.swevo.2020.100651_bib38) 2003; 7 Cai (10.1016/j.swevo.2020.100651_bib4) 2018; 48 Qu (10.1016/j.swevo.2020.100651_bib16) 2011; 43 Joines (10.1016/j.swevo.2020.100651_bib18) 1994 Deb (10.1016/j.swevo.2020.100651_bib2) 2002; 6 Fan (10.1016/j.swevo.2020.100651_bib5) 2019; 74 Fan (10.1016/j.swevo.2020.100651_bib6) 2019; 23 Runarsson (10.1016/j.swevo.2020.100651_bib14) 2000; 4 Holland (10.1016/j.swevo.2020.100651_bib41) 1987 Peng (10.1016/j.swevo.2020.100651_bib32) 2017; 60 Liu (10.1016/j.swevo.2020.100651_bib26) 2014; 18 Hommel (10.1016/j.swevo.2020.100651_bib44) 1988; 75 Kalyanmoy (10.1016/j.swevo.2020.100651_bib1) 2001 Yang (10.1016/j.swevo.2020.100651_bib33) 2019; 80 Zhang (10.1016/j.swevo.2020.100651_bib36) 2008 Asafuddoula (10.1016/j.swevo.2020.100651_bib31) 2012 Derrac (10.1016/j.swevo.2020.100651_bib47) 2011; 1 Rizk-Allah (10.1016/j.swevo.2020.100651_bib34) 2018; 63 Mezura-Montes (10.1016/j.swevo.2020.100651_bib22) 2009 Wang (10.1016/j.swevo.2020.100651_bib19) 2019; 49 Yang (10.1016/j.swevo.2020.100651_bib29) 2014 Fan (10.1016/j.swevo.2020.100651_bib27) 2019; 44 Takahama (10.1016/j.swevo.2020.100651_bib25) 2010 Fan (10.1016/j.swevo.2020.100651_bib23) 2009; 56 Leguizamon (10.1016/j.swevo.2020.100651_bib24) 2007 Wang (10.1016/j.swevo.2020.100651_bib7) 2019 Mezura-Montes (10.1016/j.swevo.2020.100651_bib11) 2011; 1 Deb (10.1016/j.swevo.2020.100651_bib12) 2010 Takahama (10.1016/j.swevo.2020.100651_bib35) 2006 Wang (10.1016/j.swevo.2020.100651_bib9) 2017 Cai (10.1016/j.swevo.2020.100651_bib3) 2018; 22 Liu (10.1016/j.swevo.2020.100651_bib8) 2019 Deb (10.1016/j.swevo.2020.100651_bib13) 2000; 186 Holm (10.1016/j.swevo.2020.100651_bib40) 1979; 6 Liu (10.1016/j.swevo.2020.100651_bib28) 2016; 30 Hochberg (10.1016/j.swevo.2020.100651_bib43) 1988; 75 Li (10.1016/j.swevo.2020.100651_bib46) 2008; 138 |
| References_xml | – start-page: 417 year: 1987 end-page: 423 ident: bib41 article-title: An improved sequentially rejective Bonferroni test procedure publication-title: Biometrics – volume: 13 start-page: 514 year: 2009 end-page: 525 ident: bib20 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 65 year: 1979 end-page: 70 ident: bib40 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. – start-page: 1 year: 2019 end-page: 15 ident: bib7 article-title: Utilizing the correlation between constraints and objective function for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 138 start-page: 1521 year: 2008 end-page: 1527 ident: bib46 article-title: A two-step rejection procedure for testing multiple hypotheses publication-title: J. Stat. Plann. Inference – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bib39 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach publication-title: IEEE Trans. Evol. Comput. – year: 2008 ident: bib36 article-title: Multiobjective Optimization Test Instances for the Cec 2009 Special Session and Competition – start-page: 1181 year: 2014 end-page: 1186 ident: bib29 article-title: Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results publication-title: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO Comp '14 – start-page: 1 year: 2019 end-page: 28 ident: bib37 article-title: Difficulty Adjustable and Scalable Constrained Multi-Objective Test Problem Toolkit – volume: 13 start-page: 128 year: 2013 end-page: 148 ident: bib30 article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl. Soft Comput. – volume: 75 start-page: 383 year: 1988 end-page: 386 ident: bib44 article-title: A stage wise rejective multiple test procedure based on a modified bonferroni test publication-title: Biometrika – volume: 22 start-page: 564 year: 2018 end-page: 577 ident: bib3 article-title: A constrained decomposition approach with grids for evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 1 year: 2019 end-page: 20 ident: bib6 article-title: An improved epsilon constraint-handling method in MOEA/D for cmops with large infeasible regions publication-title: Soft Comput. – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: bib13 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. – volume: 4 start-page: 284 year: 2000 end-page: 294 ident: bib14 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2006 end-page: 8 ident: bib35 article-title: Constrained optimization by the publication-title: 2006 IEEE International Conference on Evolutionary Computation – volume: 7 start-page: 174 year: 2003 end-page: 188 ident: bib38 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 88 start-page: 920 year: 1993 end-page: 923 ident: bib42 article-title: On a monotonicity problem in step-down multiple test procedures publication-title: Publ. Am. Stat. Assoc. – start-page: 165 year: 2007 end-page: 172 ident: bib24 article-title: A boundary search based ACO algorithm coupled with stochastic ranking publication-title: 2007 IEEE Congress on Evolutionary Computation – start-page: 1 year: 2017 end-page: 12 ident: bib9 article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 18 start-page: 450 year: 2014 end-page: 455 ident: bib26 article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems publication-title: IEEE Trans. Evol. Comput. – volume: 80 start-page: 42 year: 2019 end-page: 56 ident: bib33 article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio publication-title: Appl. Soft Comput. – year: 2001 ident: bib1 article-title: Multi Objective Optimization Using Evolutionary Algorithms – start-page: 25 year: 2006 end-page: 32 ident: bib21 article-title: Modified differential evolution for constrained optimization publication-title: 2006 IEEE International Conference on Evolutionary Computation – volume: 44 start-page: 665 year: 2019 end-page: 679 ident: bib27 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. – volume: 63 start-page: 206 year: 2018 end-page: 222 ident: bib34 article-title: A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution publication-title: Appl. Soft Comput. – volume: 30 year: 2016 ident: bib28 article-title: A constrained multi-objective evolutionary algorithm based on boundary search and archive publication-title: Int. J. Pattern Recogn. Artif. Intell. – start-page: 1375 year: 2009 end-page: 1382 ident: bib22 article-title: Parameter control in differential evolution for constrained optimization publication-title: 2009 IEEE Congress on Evolutionary Computation – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib47 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – start-page: 1 year: 2010 end-page: 8 ident: bib12 article-title: A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach publication-title: IEEE Congress on Evolutionary Computation – start-page: 579 year: 1994 end-page: 584 ident: bib18 article-title: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's publication-title: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence – volume: 56 start-page: 937 year: 2009 end-page: 948 ident: bib23 article-title: Improved differential evolution based on stochastic ranking for robust layout synthesis of mems components publication-title: IEEE Trans. Ind. Electron. – start-page: 1 year: 2019 end-page: 15 ident: bib8 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2012 end-page: 8 ident: bib31 article-title: An adaptive constraint handling approach embedded MOEA/D publication-title: 2012 IEEE Congress on Evolutionary Computation – start-page: 1 year: 2010 end-page: 9 ident: bib25 article-title: Constrained optimization by the publication-title: IEEE Congress on Evolutionary Computation – volume: 19 start-page: 508 year: 2015 end-page: 523 ident: bib10 article-title: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib2 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 43 start-page: 403 year: 2011 end-page: 416 ident: bib16 article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods publication-title: Eng. Optim. – volume: 74 start-page: 621 year: 2019 end-page: 633 ident: bib5 article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems publication-title: Appl. Soft Comput. – volume: 37 start-page: 560 year: 2007 end-page: 575 ident: bib15 article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics) – volume: 75 start-page: 800 year: 1988 end-page: 802 ident: bib43 article-title: A sharper bonferroni procedure for multiple tests of significance publication-title: Biometrika – volume: 60 start-page: 613 year: 2017 end-page: 622 ident: bib32 article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization publication-title: Appl. Soft Comput. – volume: 48 start-page: 2335 year: 2018 end-page: 2348 ident: bib4 article-title: A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors publication-title: IEEE Trans. Cybern. – volume: 49 start-page: 542 year: 2019 end-page: 555 ident: bib19 article-title: Improving metaheuristic algorithms with information feedback models publication-title: IEEE Trans. Cybern. – volume: 77 start-page: 663 year: 1990 end-page: 665 ident: bib45 article-title: A sequentially rejective test procedure based on a modified bonferroni inequality publication-title: Biometrika – volume: 1 start-page: 173 year: 2011 end-page: 194 ident: bib11 article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future publication-title: Swarm Evol. Comput. – volume: 62 start-page: 242 year: 1994 end-page: 253 ident: bib17 article-title: Constrained optimization via genetic algorithms publication-title: Simulation – volume: 138 start-page: 1521 issue: 6 year: 2008 ident: 10.1016/j.swevo.2020.100651_bib46 article-title: A two-step rejection procedure for testing multiple hypotheses publication-title: J. Stat. Plann. Inference doi: 10.1016/j.jspi.2007.04.032 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.swevo.2020.100651_bib39 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – volume: 18 start-page: 450 issue: 3 year: 2014 ident: 10.1016/j.swevo.2020.100651_bib26 article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281533 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.swevo.2020.100651_bib2 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 186 start-page: 311 issue: 2–4 year: 2000 ident: 10.1016/j.swevo.2020.100651_bib13 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – start-page: 25 year: 2006 ident: 10.1016/j.swevo.2020.100651_bib21 article-title: Modified differential evolution for constrained optimization – start-page: 1 year: 2012 ident: 10.1016/j.swevo.2020.100651_bib31 article-title: An adaptive constraint handling approach embedded MOEA/D – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.swevo.2020.100651_bib47 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 88 start-page: 920 issue: 423 year: 1993 ident: 10.1016/j.swevo.2020.100651_bib42 article-title: On a monotonicity problem in step-down multiple test procedures publication-title: Publ. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476358 – volume: 43 start-page: 403 issue: 4 year: 2011 ident: 10.1016/j.swevo.2020.100651_bib16 article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods publication-title: Eng. Optim. doi: 10.1080/0305215X.2010.493937 – volume: 80 start-page: 42 year: 2019 ident: 10.1016/j.swevo.2020.100651_bib33 article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.041 – volume: 75 start-page: 800 issue: 4 year: 1988 ident: 10.1016/j.swevo.2020.100651_bib43 article-title: A sharper bonferroni procedure for multiple tests of significance publication-title: Biometrika doi: 10.1093/biomet/75.4.800 – volume: 74 start-page: 621 year: 2019 ident: 10.1016/j.swevo.2020.100651_bib5 article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.027 – start-page: 1 year: 2019 ident: 10.1016/j.swevo.2020.100651_bib8 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. – start-page: 165 year: 2007 ident: 10.1016/j.swevo.2020.100651_bib24 article-title: A boundary search based ACO algorithm coupled with stochastic ranking – volume: 19 start-page: 508 issue: 4 year: 2015 ident: 10.1016/j.swevo.2020.100651_bib10 article-title: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2350995 – volume: 6 start-page: 65 issue: 2 year: 1979 ident: 10.1016/j.swevo.2020.100651_bib40 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. – volume: 77 start-page: 663 issue: 3 year: 1990 ident: 10.1016/j.swevo.2020.100651_bib45 article-title: A sequentially rejective test procedure based on a modified bonferroni inequality publication-title: Biometrika doi: 10.1093/biomet/77.3.663 – volume: 23 start-page: 1 year: 2019 ident: 10.1016/j.swevo.2020.100651_bib6 article-title: An improved epsilon constraint-handling method in MOEA/D for cmops with large infeasible regions publication-title: Soft Comput. doi: 10.1007/s00500-019-03794-x – volume: 7 start-page: 174 issue: 2 year: 2003 ident: 10.1016/j.swevo.2020.100651_bib38 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810761 – year: 2008 ident: 10.1016/j.swevo.2020.100651_bib36 – volume: 13 start-page: 128 issue: 1 year: 2013 ident: 10.1016/j.swevo.2020.100651_bib30 article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.07.027 – year: 2001 ident: 10.1016/j.swevo.2020.100651_bib1 – start-page: 1 year: 2010 ident: 10.1016/j.swevo.2020.100651_bib12 article-title: A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach – volume: 62 start-page: 242 issue: 4 year: 1994 ident: 10.1016/j.swevo.2020.100651_bib17 article-title: Constrained optimization via genetic algorithms publication-title: Simulation doi: 10.1177/003754979406200405 – volume: 63 start-page: 206 year: 2018 ident: 10.1016/j.swevo.2020.100651_bib34 article-title: A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.002 – volume: 4 start-page: 284 issue: 3 year: 2000 ident: 10.1016/j.swevo.2020.100651_bib14 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.873238 – start-page: 1 year: 2017 ident: 10.1016/j.swevo.2020.100651_bib9 article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm publication-title: IEEE Trans. Emerg. Top. Comput. – start-page: 1181 year: 2014 ident: 10.1016/j.swevo.2020.100651_bib29 article-title: Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results – start-page: 1 year: 2006 ident: 10.1016/j.swevo.2020.100651_bib35 article-title: Constrained optimization by the ϵ constrained differential evolution with gradient-based mutation and feasible elites – volume: 48 start-page: 2335 issue: 8 year: 2018 ident: 10.1016/j.swevo.2020.100651_bib4 article-title: A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2737554 – volume: 30 issue: 1 year: 2016 ident: 10.1016/j.swevo.2020.100651_bib28 article-title: A constrained multi-objective evolutionary algorithm based on boundary search and archive publication-title: Int. J. Pattern Recogn. Artif. Intell. doi: 10.1142/S0218001416590023 – volume: 49 start-page: 542 issue: 2 year: 2019 ident: 10.1016/j.swevo.2020.100651_bib19 article-title: Improving metaheuristic algorithms with information feedback models publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2780274 – start-page: 1 year: 2010 ident: 10.1016/j.swevo.2020.100651_bib25 article-title: Constrained optimization by the ϵ constrained differential evolution with an archive and gradient-based mutation – start-page: 579 year: 1994 ident: 10.1016/j.swevo.2020.100651_bib18 article-title: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's – volume: 44 start-page: 665 year: 2019 ident: 10.1016/j.swevo.2020.100651_bib27 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.017 – volume: 75 start-page: 383 issue: 2 year: 1988 ident: 10.1016/j.swevo.2020.100651_bib44 article-title: A stage wise rejective multiple test procedure based on a modified bonferroni test publication-title: Biometrika doi: 10.1093/biomet/75.2.383 – start-page: 1375 year: 2009 ident: 10.1016/j.swevo.2020.100651_bib22 article-title: Parameter control in differential evolution for constrained optimization – start-page: 1 year: 2019 ident: 10.1016/j.swevo.2020.100651_bib37 – volume: 22 start-page: 564 issue: 4 year: 2018 ident: 10.1016/j.swevo.2020.100651_bib3 article-title: A constrained decomposition approach with grids for evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2744674 – volume: 37 start-page: 560 issue: 3 year: 2007 ident: 10.1016/j.swevo.2020.100651_bib15 article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics) doi: 10.1109/TSMCB.2006.886164 – start-page: 417 year: 1987 ident: 10.1016/j.swevo.2020.100651_bib41 article-title: An improved sequentially rejective Bonferroni test procedure publication-title: Biometrics doi: 10.2307/2531823 – volume: 60 start-page: 613 year: 2017 ident: 10.1016/j.swevo.2020.100651_bib32 article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.053 – volume: 1 start-page: 173 issue: 4 year: 2011 ident: 10.1016/j.swevo.2020.100651_bib11 article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.10.001 – start-page: 1 year: 2019 ident: 10.1016/j.swevo.2020.100651_bib7 article-title: Utilizing the correlation between constraints and objective function for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 514 issue: 3 year: 2009 ident: 10.1016/j.swevo.2020.100651_bib20 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.2009032 – volume: 56 start-page: 937 issue: 4 year: 2009 ident: 10.1016/j.swevo.2020.100651_bib23 article-title: Improved differential evolution based on stochastic ranking for robust layout synthesis of mems components publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.2006935 |
| SSID | ssj0000602559 |
| Score | 2.4675093 |
| Snippet | In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evolutionary algorithms (MOEAs) is to balance the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100651 |
| SubjectTerms | Constrained multi-objective evolutionary algorithms Constraint-handling mechanisms Multi-objective to multi-objective (M2M) decomposition NSGA-II Push and pull search |
| Title | Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems |
| URI | https://dx.doi.org/10.1016/j.swevo.2020.100651 |
| Volume | 54 |
| WOSCitedRecordID | wos000528484400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL41OMAfKBW8jUOontHCe0CdCYJm1oZZco8QdrtCVV23T783mO7TSlaAIkLlHl1E7s99PT7728D4TeC8UoHSoWUk1kGFNVhIUkOhxRwWkilaa2ZP4xOznh43F6OhhMfS7M8ppVFb-7S6f_VdQwBsI2qbN_Ie5uURiA3yB0uILY4fpHgj9t5jZbbQrWZeC8GuqmUKBiTKGlwHyeIV8D7cOy2khDeKelzb81JWVz4J7SBhuGdVFapRjUoF5uXN5m4DrRzPvs9uw2n9mWG2rp9miC8kTbOWLtk_-R9bteXjXd0IXzXF9e5XW5Gj5uww0uVFVOOg3V2NnfGyCuP_p-CzJcRQlaZ9pGQo3ReQQs0BBI45qCtlWmN3S9dTuU-_Nb2NO-eYQJ-aCufu16Ee0zs7BZd2Qaq1GSPkDbhCUp6MHtg8-H4y-dX25IWyvL9CT07-KLVbVhgRtP-z2h6ZGU8yfosbMu8IFFxVM0UNUztOM7d2CnyJ-j2oAEg6CwAQm2IMEeJHhSwT0MIMEdSDCABDuQ4B5I8C8gwX2QYA-SF-jb0eH5x0-ha70RCuA0i5ACE1c6SmSsi4iznDNTJCjSQklCcq60FpoxnggRi0RGdDQqYskUjRMRMa549BJtVXWlXiEM_FcLMpJwL4lpnhdpQpQcSi7BlCYp20XEn18mXF16s4XrzAcglll76Jk59Mwe-i760E2a2rIs9_-desFkjllaxpgBmO6b-PpfJ-6hRyvQv0Fbi1mj3qKHYrmYzGfvHOh-AuTho74 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Push+and+pull+search+embedded+in+an+M2M+framework+for+solving+constrained+multi-objective+optimization+problems&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Fan%2C+Zhun&rft.au=Wang%2C+Zhaojun&rft.au=Li%2C+Wenji&rft.au=Yuan%2C+Yutong&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=54&rft_id=info:doi/10.1016%2Fj.swevo.2020.100651&rft.externalDocID=S2210650218310629 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |