Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems

In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evolutionary algorithms (MOEAs) is to balance the convergence and diversity of working populations. However, most state-of-the-art MOEAs show poor performance in balancing them, and can cause th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Swarm and evolutionary computation Ročník 54; s. 100651
Hlavní autori: Fan, Zhun, Wang, Zhaojun, Li, Wenji, Yuan, Yutong, You, Yugen, Yang, Zhi, Sun, Fuzan, Ruan, Jie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.05.2020
Predmet:
ISSN:2210-6502
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evolutionary algorithms (MOEAs) is to balance the convergence and diversity of working populations. However, most state-of-the-art MOEAs show poor performance in balancing them, and can cause the working populations to concentrate on part of the Pareto fronts, leading to serious imbalanced searching between preserving diversity and achieving convergence. This paper proposes a method which combines a multi-objective to multi-objective (M2M) decomposition approach with the push and pull search (PPS) framework, namely PPS-M2M. To be more specific, the proposed algorithm decomposes a CMOP into a set of simple CMOPs. Each simple CMOP corresponds to a sub-population and is solved in a collaborative manner. When dealing with constraints, each sub-population follows a procedure of “ignore the constraints in the push stage and consider the constraints in the pull stage”, which helps each working sub-population get across infeasible regions. In order to evaluate the performance of the proposed PPS-M2M, it is compared with the other nine algorithms, including CM2M, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and MODE-SaE on a set of benchmark CMOPs. The experimental results show that the proposed PPS-M2M is significantly better than the other nine algorithms. In addition, a set of constrained and imbalanced multi-objective optimization problems (CIMOPs) are suggested to compare PPS-M2M and PPS-MOEA/D. The experimental results show that the proposed PPS-M2M outperforms PPS-MOEA/D on CIMOPs.
AbstractList In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evolutionary algorithms (MOEAs) is to balance the convergence and diversity of working populations. However, most state-of-the-art MOEAs show poor performance in balancing them, and can cause the working populations to concentrate on part of the Pareto fronts, leading to serious imbalanced searching between preserving diversity and achieving convergence. This paper proposes a method which combines a multi-objective to multi-objective (M2M) decomposition approach with the push and pull search (PPS) framework, namely PPS-M2M. To be more specific, the proposed algorithm decomposes a CMOP into a set of simple CMOPs. Each simple CMOP corresponds to a sub-population and is solved in a collaborative manner. When dealing with constraints, each sub-population follows a procedure of “ignore the constraints in the push stage and consider the constraints in the pull stage”, which helps each working sub-population get across infeasible regions. In order to evaluate the performance of the proposed PPS-M2M, it is compared with the other nine algorithms, including CM2M, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and MODE-SaE on a set of benchmark CMOPs. The experimental results show that the proposed PPS-M2M is significantly better than the other nine algorithms. In addition, a set of constrained and imbalanced multi-objective optimization problems (CIMOPs) are suggested to compare PPS-M2M and PPS-MOEA/D. The experimental results show that the proposed PPS-M2M outperforms PPS-MOEA/D on CIMOPs.
ArticleNumber 100651
Author Ruan, Jie
Wang, Zhaojun
Fan, Zhun
Yuan, Yutong
You, Yugen
Li, Wenji
Sun, Fuzan
Yang, Zhi
Author_xml – sequence: 1
  givenname: Zhun
  surname: Fan
  fullname: Fan, Zhun
  email: zfan@stu.edu.cn
  organization: Department of Electronic Engineering, Shantou University, Guangdong, China
– sequence: 2
  givenname: Zhaojun
  surname: Wang
  fullname: Wang, Zhaojun
  organization: Department of Electronic Engineering, Shantou University, Guangdong, China
– sequence: 3
  givenname: Wenji
  surname: Li
  fullname: Li, Wenji
  organization: Department of Electronic Engineering, Shantou University, Guangdong, China
– sequence: 4
  givenname: Yutong
  surname: Yuan
  fullname: Yuan, Yutong
  organization: Department of Electronic Engineering, Shantou University, Guangdong, China
– sequence: 5
  givenname: Yugen
  surname: You
  fullname: You, Yugen
  organization: Department of Electronic Engineering, Shantou University, Guangdong, China
– sequence: 6
  givenname: Zhi
  surname: Yang
  fullname: Yang, Zhi
  organization: Department of Electronic Engineering, Shantou University, Guangdong, China
– sequence: 7
  givenname: Fuzan
  surname: Sun
  fullname: Sun, Fuzan
  organization: Department of Electronic Engineering, Shantou University, Guangdong, China
– sequence: 8
  givenname: Jie
  surname: Ruan
  fullname: Ruan, Jie
  organization: Department of Electronic Engineering, Shantou University, Guangdong, China
BookMark eNqFkL9OwzAQhz0UiVL6BCx-gRTHjpN0YEAV_6RWMMBsOfaZOiR2Zaep4OlJWiYG8HKS777T_b4LNHHeAUJXKVmkJM2v60U8QO8XlNDxh-Q8naAppSlJck7oOZrHWJPh5YRyvpwi_7KPWyydxrt90-AIMqgthrYCrUFj64Ye3tANNkG2cPDhAxsfcPRNb907Vt7FLkjrhtl233Q28VUNqrM9YL_rbGu_ZGe9w7vgqwbaeInOjGwizH_qDL3d372uHpP188PT6nadKEZYl-Sk5GAY15mpWFnIsljmvGRGgaZUlmCMMkVRcqUyxTXL07TKdAF5xhUrSijZDLHTXhV8jAGM2AXbyvApUiJGVaIWR1ViVCVOqgZq-YtStjsGGEM2_7A3JxaGWL2FIKKy4IaLbRiMCO3tn_w3YtKMiQ
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108732
crossref_primary_10_1109_TEVC_2022_3230822
crossref_primary_10_1109_TEVC_2022_3199775
crossref_primary_10_1038_s41598_025_06385_z
crossref_primary_10_1016_j_engappai_2024_109876
crossref_primary_10_1007_s12293_021_00349_2
crossref_primary_10_1016_j_asoc_2023_110311
crossref_primary_10_1016_j_asoc_2024_111840
crossref_primary_10_1109_TAI_2024_3454025
crossref_primary_10_1016_j_asoc_2023_111006
crossref_primary_10_1016_j_asoc_2025_113788
crossref_primary_10_1016_j_asoc_2024_111800
crossref_primary_10_1109_TCYB_2021_3108563
crossref_primary_10_1016_j_swevo_2023_101372
crossref_primary_10_1016_j_knosys_2024_111998
crossref_primary_10_3390_biomimetics8020136
crossref_primary_10_1016_j_knosys_2022_110112
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1007_s40747_024_01542_9
crossref_primary_10_1016_j_cie_2022_108251
crossref_primary_10_1016_j_ins_2024_120339
crossref_primary_10_1109_TSMC_2023_3299570
crossref_primary_10_1016_j_asoc_2022_109904
crossref_primary_10_1109_TCYB_2021_3056176
crossref_primary_10_1186_s41601_022_00271_w
crossref_primary_10_1016_j_swevo_2025_102030
crossref_primary_10_1109_ACCESS_2021_3085529
crossref_primary_10_1016_j_knosys_2021_107263
crossref_primary_10_1109_TCYB_2022_3151793
crossref_primary_10_1016_j_asoc_2024_112442
crossref_primary_10_1016_j_matcom_2024_02_012
crossref_primary_10_1016_j_swevo_2023_101417
crossref_primary_10_1007_s12293_022_00360_1
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_1016_j_swevo_2022_101178
crossref_primary_10_4018_IJCINI_355766
crossref_primary_10_1016_j_swevo_2022_101055
crossref_primary_10_1016_j_ins_2023_119260
crossref_primary_10_1109_TSMC_2021_3061698
crossref_primary_10_1016_j_swevo_2025_102044
crossref_primary_10_1109_TETCI_2022_3221940
crossref_primary_10_1109_TCYB_2023_3329947
crossref_primary_10_1109_TEVC_2021_3089155
crossref_primary_10_1016_j_swevo_2023_101272
crossref_primary_10_1109_TEVC_2022_3202723
crossref_primary_10_1109_JIOT_2021_3067732
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1016_j_swevo_2024_101728
crossref_primary_10_1016_j_asoc_2024_112428
crossref_primary_10_1016_j_swevo_2022_101209
crossref_primary_10_1016_j_swevo_2021_101020
crossref_primary_10_3390_sym14010116
crossref_primary_10_1016_j_swevo_2025_101941
crossref_primary_10_1109_TEVC_2022_3194729
crossref_primary_10_1109_TCYB_2024_3524457
Cites_doi 10.1016/j.jspi.2007.04.032
10.1109/4235.797969
10.1109/TEVC.2013.2281533
10.1109/4235.996017
10.1016/S0045-7825(99)00389-8
10.1016/j.swevo.2011.02.002
10.1080/01621459.1993.10476358
10.1080/0305215X.2010.493937
10.1016/j.asoc.2019.02.041
10.1093/biomet/75.4.800
10.1016/j.asoc.2018.10.027
10.1109/TEVC.2014.2350995
10.1093/biomet/77.3.663
10.1007/s00500-019-03794-x
10.1109/TEVC.2003.810761
10.1016/j.asoc.2012.07.027
10.1177/003754979406200405
10.1016/j.asoc.2017.12.002
10.1109/4235.873238
10.1109/TCYB.2017.2737554
10.1142/S0218001416590023
10.1109/TCYB.2017.2780274
10.1016/j.swevo.2018.08.017
10.1093/biomet/75.2.383
10.1109/TEVC.2017.2744674
10.1109/TSMCB.2006.886164
10.2307/2531823
10.1016/j.asoc.2017.06.053
10.1016/j.swevo.2011.10.001
10.1109/TEVC.2008.2009032
10.1109/TIE.2008.2006935
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2020.100651
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2020_100651
S2210650218310629
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SSH
SST
SSV
SSW
SSZ
T5K
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-6085ef35d4fb387a8796583fced22a8effcf7785cc4c5d3611b4d7e645c378e83
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528484400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Wed Nov 05 20:41:32 EST 2025
Tue Nov 18 20:45:14 EST 2025
Sun Apr 06 06:53:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords NSGA-II
Constraint-handling mechanisms
Constrained multi-objective evolutionary algorithms
Push and pull search
Multi-objective to multi-objective (M2M) decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-6085ef35d4fb387a8796583fced22a8effcf7785cc4c5d3611b4d7e645c378e83
ParticipantIDs crossref_primary_10_1016_j_swevo_2020_100651
crossref_citationtrail_10_1016_j_swevo_2020_100651
elsevier_sciencedirect_doi_10_1016_j_swevo_2020_100651
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Wang (bib8) 2019
Wang, Cai, Cui, Min, Chen (bib9) 2017
Zitzler, Thiele (bib39) 1999; 3
Peng, Liu, Gu (bib32) 2017; 60
Qu, Suganthan (bib16) 2011; 43
Zhang, Zhou, Zhao, Suganthan, Liu, Tiwari (bib36) 2008
Cai, Mei, Fan, Zhang (bib3) 2018; 22
Li (bib46) 2008; 138
Liu, Peng, Gu, Wen (bib28) 2016; 30
Homaifar, Qi, Lai (bib17) 1994; 62
Asafuddoula, Ray, Sarker, Alam (bib31) 2012
Deb, Datta (bib12) 2010
Derrac, García, Molina, Herrera (bib47) 2011; 1
Wang, Cai, Guo, Zhou (bib15) 2007; 37
Holm (bib40) 1979; 6
Holland, Copenhaver (bib41) 1987
Cai, Mei, Fan (bib4) 2018; 48
Yang, Liu, Tan, Wang (bib33) 2019; 80
Wang, Li, Xue, Wang (bib7) 2019
Woldesenbet, Yen, Tessema (bib20) 2009; 13
Takahama, Sakai (bib25) 2010
Runarsson, Yao (bib14) 2000; 4
Mezura-Montes, Palomeque-Ortiz (bib22) 2009
Yang, Cai, Fan (bib29) 2014
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib37) 2019
Kalyanmoy (bib1) 2001
Rizk-Allah, El-Sehiemy, Wang (bib34) 2018; 63
Finner (bib42) 1993; 88
Mezura-Montes, Coello (bib11) 2011; 1
Mezura-Montes, Velázquez-Reyes, Coello (bib21) 2006
Fan, Fang, Li, Cai, Wei, Goodman (bib5) 2019; 74
Jan, Khanum (bib30) 2013; 13
Hochberg (bib43) 1988; 75
Rom (bib45) 1990; 77
Leguizamon, Coello Coello (bib24) 2007
Liu, Gu, Zhang (bib26) 2014; 18
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib27) 2019; 44
Fan, Liu, Sorensen, Wang (bib23) 2009; 56
Joines, Houck (bib18) 1994
Bosman, Thierens (bib38) 2003; 7
Deb (bib13) 2000; 186
Deb, Pratap, Agarwal, Meyarivan (bib2) 2002; 6
Fan, Li, Cai, Huang, Fang, You, Mo, Wei, Goodman (bib6) 2019; 23
Wang, Tan (bib19) 2019; 49
Cai, Li, Fan, Zhang (bib10) 2015; 19
Takahama, Sakai (bib35) 2006
Hommel (bib44) 1988; 75
Jan (10.1016/j.swevo.2020.100651_bib30) 2013; 13
Rom (10.1016/j.swevo.2020.100651_bib45) 1990; 77
Cai (10.1016/j.swevo.2020.100651_bib10) 2015; 19
Homaifar (10.1016/j.swevo.2020.100651_bib17) 1994; 62
Mezura-Montes (10.1016/j.swevo.2020.100651_bib21) 2006
Woldesenbet (10.1016/j.swevo.2020.100651_bib20) 2009; 13
Zitzler (10.1016/j.swevo.2020.100651_bib39) 1999; 3
Fan (10.1016/j.swevo.2020.100651_bib37) 2019
Finner (10.1016/j.swevo.2020.100651_bib42) 1993; 88
Wang (10.1016/j.swevo.2020.100651_bib15) 2007; 37
Bosman (10.1016/j.swevo.2020.100651_bib38) 2003; 7
Cai (10.1016/j.swevo.2020.100651_bib4) 2018; 48
Qu (10.1016/j.swevo.2020.100651_bib16) 2011; 43
Joines (10.1016/j.swevo.2020.100651_bib18) 1994
Deb (10.1016/j.swevo.2020.100651_bib2) 2002; 6
Fan (10.1016/j.swevo.2020.100651_bib5) 2019; 74
Fan (10.1016/j.swevo.2020.100651_bib6) 2019; 23
Runarsson (10.1016/j.swevo.2020.100651_bib14) 2000; 4
Holland (10.1016/j.swevo.2020.100651_bib41) 1987
Peng (10.1016/j.swevo.2020.100651_bib32) 2017; 60
Liu (10.1016/j.swevo.2020.100651_bib26) 2014; 18
Hommel (10.1016/j.swevo.2020.100651_bib44) 1988; 75
Kalyanmoy (10.1016/j.swevo.2020.100651_bib1) 2001
Yang (10.1016/j.swevo.2020.100651_bib33) 2019; 80
Zhang (10.1016/j.swevo.2020.100651_bib36) 2008
Asafuddoula (10.1016/j.swevo.2020.100651_bib31) 2012
Derrac (10.1016/j.swevo.2020.100651_bib47) 2011; 1
Rizk-Allah (10.1016/j.swevo.2020.100651_bib34) 2018; 63
Mezura-Montes (10.1016/j.swevo.2020.100651_bib22) 2009
Wang (10.1016/j.swevo.2020.100651_bib19) 2019; 49
Yang (10.1016/j.swevo.2020.100651_bib29) 2014
Fan (10.1016/j.swevo.2020.100651_bib27) 2019; 44
Takahama (10.1016/j.swevo.2020.100651_bib25) 2010
Fan (10.1016/j.swevo.2020.100651_bib23) 2009; 56
Leguizamon (10.1016/j.swevo.2020.100651_bib24) 2007
Wang (10.1016/j.swevo.2020.100651_bib7) 2019
Mezura-Montes (10.1016/j.swevo.2020.100651_bib11) 2011; 1
Deb (10.1016/j.swevo.2020.100651_bib12) 2010
Takahama (10.1016/j.swevo.2020.100651_bib35) 2006
Wang (10.1016/j.swevo.2020.100651_bib9) 2017
Cai (10.1016/j.swevo.2020.100651_bib3) 2018; 22
Liu (10.1016/j.swevo.2020.100651_bib8) 2019
Deb (10.1016/j.swevo.2020.100651_bib13) 2000; 186
Holm (10.1016/j.swevo.2020.100651_bib40) 1979; 6
Liu (10.1016/j.swevo.2020.100651_bib28) 2016; 30
Hochberg (10.1016/j.swevo.2020.100651_bib43) 1988; 75
Li (10.1016/j.swevo.2020.100651_bib46) 2008; 138
References_xml – start-page: 417
  year: 1987
  end-page: 423
  ident: bib41
  article-title: An improved sequentially rejective Bonferroni test procedure
  publication-title: Biometrics
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: bib20
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 65
  year: 1979
  end-page: 70
  ident: bib40
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat.
– start-page: 1
  year: 2019
  end-page: 15
  ident: bib7
  article-title: Utilizing the correlation between constraints and objective function for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 138
  start-page: 1521
  year: 2008
  end-page: 1527
  ident: bib46
  article-title: A two-step rejection procedure for testing multiple hypotheses
  publication-title: J. Stat. Plann. Inference
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib39
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– year: 2008
  ident: bib36
  article-title: Multiobjective Optimization Test Instances for the Cec 2009 Special Session and Competition
– start-page: 1181
  year: 2014
  end-page: 1186
  ident: bib29
  article-title: Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results
  publication-title: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO Comp '14
– start-page: 1
  year: 2019
  end-page: 28
  ident: bib37
  article-title: Difficulty Adjustable and Scalable Constrained Multi-Objective Test Problem Toolkit
– volume: 13
  start-page: 128
  year: 2013
  end-page: 148
  ident: bib30
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput.
– volume: 75
  start-page: 383
  year: 1988
  end-page: 386
  ident: bib44
  article-title: A stage wise rejective multiple test procedure based on a modified bonferroni test
  publication-title: Biometrika
– volume: 22
  start-page: 564
  year: 2018
  end-page: 577
  ident: bib3
  article-title: A constrained decomposition approach with grids for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 1
  year: 2019
  end-page: 20
  ident: bib6
  article-title: An improved epsilon constraint-handling method in MOEA/D for cmops with large infeasible regions
  publication-title: Soft Comput.
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: bib13
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 4
  start-page: 284
  year: 2000
  end-page: 294
  ident: bib14
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2006
  end-page: 8
  ident: bib35
  article-title: Constrained optimization by the
  publication-title: 2006 IEEE International Conference on Evolutionary Computation
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: bib38
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 88
  start-page: 920
  year: 1993
  end-page: 923
  ident: bib42
  article-title: On a monotonicity problem in step-down multiple test procedures
  publication-title: Publ. Am. Stat. Assoc.
– start-page: 165
  year: 2007
  end-page: 172
  ident: bib24
  article-title: A boundary search based ACO algorithm coupled with stochastic ranking
  publication-title: 2007 IEEE Congress on Evolutionary Computation
– start-page: 1
  year: 2017
  end-page: 12
  ident: bib9
  article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 18
  start-page: 450
  year: 2014
  end-page: 455
  ident: bib26
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 80
  start-page: 42
  year: 2019
  end-page: 56
  ident: bib33
  article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
  publication-title: Appl. Soft Comput.
– year: 2001
  ident: bib1
  article-title: Multi Objective Optimization Using Evolutionary Algorithms
– start-page: 25
  year: 2006
  end-page: 32
  ident: bib21
  article-title: Modified differential evolution for constrained optimization
  publication-title: 2006 IEEE International Conference on Evolutionary Computation
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: bib27
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 63
  start-page: 206
  year: 2018
  end-page: 222
  ident: bib34
  article-title: A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution
  publication-title: Appl. Soft Comput.
– volume: 30
  year: 2016
  ident: bib28
  article-title: A constrained multi-objective evolutionary algorithm based on boundary search and archive
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
– start-page: 1375
  year: 2009
  end-page: 1382
  ident: bib22
  article-title: Parameter control in differential evolution for constrained optimization
  publication-title: 2009 IEEE Congress on Evolutionary Computation
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib47
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib12
  article-title: A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach
  publication-title: IEEE Congress on Evolutionary Computation
– start-page: 579
  year: 1994
  end-page: 584
  ident: bib18
  article-title: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's
  publication-title: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence
– volume: 56
  start-page: 937
  year: 2009
  end-page: 948
  ident: bib23
  article-title: Improved differential evolution based on stochastic ranking for robust layout synthesis of mems components
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 1
  year: 2019
  end-page: 15
  ident: bib8
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2012
  end-page: 8
  ident: bib31
  article-title: An adaptive constraint handling approach embedded MOEA/D
  publication-title: 2012 IEEE Congress on Evolutionary Computation
– start-page: 1
  year: 2010
  end-page: 9
  ident: bib25
  article-title: Constrained optimization by the
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 19
  start-page: 508
  year: 2015
  end-page: 523
  ident: bib10
  article-title: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib2
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 403
  year: 2011
  end-page: 416
  ident: bib16
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Eng. Optim.
– volume: 74
  start-page: 621
  year: 2019
  end-page: 633
  ident: bib5
  article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
– volume: 37
  start-page: 560
  year: 2007
  end-page: 575
  ident: bib15
  article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics)
– volume: 75
  start-page: 800
  year: 1988
  end-page: 802
  ident: bib43
  article-title: A sharper bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
– volume: 60
  start-page: 613
  year: 2017
  end-page: 622
  ident: bib32
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 48
  start-page: 2335
  year: 2018
  end-page: 2348
  ident: bib4
  article-title: A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors
  publication-title: IEEE Trans. Cybern.
– volume: 49
  start-page: 542
  year: 2019
  end-page: 555
  ident: bib19
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Trans. Cybern.
– volume: 77
  start-page: 663
  year: 1990
  end-page: 665
  ident: bib45
  article-title: A sequentially rejective test procedure based on a modified bonferroni inequality
  publication-title: Biometrika
– volume: 1
  start-page: 173
  year: 2011
  end-page: 194
  ident: bib11
  article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future
  publication-title: Swarm Evol. Comput.
– volume: 62
  start-page: 242
  year: 1994
  end-page: 253
  ident: bib17
  article-title: Constrained optimization via genetic algorithms
  publication-title: Simulation
– volume: 138
  start-page: 1521
  issue: 6
  year: 2008
  ident: 10.1016/j.swevo.2020.100651_bib46
  article-title: A two-step rejection procedure for testing multiple hypotheses
  publication-title: J. Stat. Plann. Inference
  doi: 10.1016/j.jspi.2007.04.032
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.swevo.2020.100651_bib39
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 18
  start-page: 450
  issue: 3
  year: 2014
  ident: 10.1016/j.swevo.2020.100651_bib26
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281533
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2020.100651_bib2
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  ident: 10.1016/j.swevo.2020.100651_bib13
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– start-page: 25
  year: 2006
  ident: 10.1016/j.swevo.2020.100651_bib21
  article-title: Modified differential evolution for constrained optimization
– start-page: 1
  year: 2012
  ident: 10.1016/j.swevo.2020.100651_bib31
  article-title: An adaptive constraint handling approach embedded MOEA/D
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2020.100651_bib47
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 88
  start-page: 920
  issue: 423
  year: 1993
  ident: 10.1016/j.swevo.2020.100651_bib42
  article-title: On a monotonicity problem in step-down multiple test procedures
  publication-title: Publ. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476358
– volume: 43
  start-page: 403
  issue: 4
  year: 2011
  ident: 10.1016/j.swevo.2020.100651_bib16
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2010.493937
– volume: 80
  start-page: 42
  year: 2019
  ident: 10.1016/j.swevo.2020.100651_bib33
  article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.041
– volume: 75
  start-page: 800
  issue: 4
  year: 1988
  ident: 10.1016/j.swevo.2020.100651_bib43
  article-title: A sharper bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
  doi: 10.1093/biomet/75.4.800
– volume: 74
  start-page: 621
  year: 2019
  ident: 10.1016/j.swevo.2020.100651_bib5
  article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.027
– start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100651_bib8
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 165
  year: 2007
  ident: 10.1016/j.swevo.2020.100651_bib24
  article-title: A boundary search based ACO algorithm coupled with stochastic ranking
– volume: 19
  start-page: 508
  issue: 4
  year: 2015
  ident: 10.1016/j.swevo.2020.100651_bib10
  article-title: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350995
– volume: 6
  start-page: 65
  issue: 2
  year: 1979
  ident: 10.1016/j.swevo.2020.100651_bib40
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat.
– volume: 77
  start-page: 663
  issue: 3
  year: 1990
  ident: 10.1016/j.swevo.2020.100651_bib45
  article-title: A sequentially rejective test procedure based on a modified bonferroni inequality
  publication-title: Biometrika
  doi: 10.1093/biomet/77.3.663
– volume: 23
  start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100651_bib6
  article-title: An improved epsilon constraint-handling method in MOEA/D for cmops with large infeasible regions
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03794-x
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  ident: 10.1016/j.swevo.2020.100651_bib38
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810761
– year: 2008
  ident: 10.1016/j.swevo.2020.100651_bib36
– volume: 13
  start-page: 128
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2020.100651_bib30
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.07.027
– year: 2001
  ident: 10.1016/j.swevo.2020.100651_bib1
– start-page: 1
  year: 2010
  ident: 10.1016/j.swevo.2020.100651_bib12
  article-title: A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach
– volume: 62
  start-page: 242
  issue: 4
  year: 1994
  ident: 10.1016/j.swevo.2020.100651_bib17
  article-title: Constrained optimization via genetic algorithms
  publication-title: Simulation
  doi: 10.1177/003754979406200405
– volume: 63
  start-page: 206
  year: 2018
  ident: 10.1016/j.swevo.2020.100651_bib34
  article-title: A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.002
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.swevo.2020.100651_bib14
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.873238
– start-page: 1
  year: 2017
  ident: 10.1016/j.swevo.2020.100651_bib9
  article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm
  publication-title: IEEE Trans. Emerg. Top. Comput.
– start-page: 1181
  year: 2014
  ident: 10.1016/j.swevo.2020.100651_bib29
  article-title: Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results
– start-page: 1
  year: 2006
  ident: 10.1016/j.swevo.2020.100651_bib35
  article-title: Constrained optimization by the ϵ constrained differential evolution with gradient-based mutation and feasible elites
– volume: 48
  start-page: 2335
  issue: 8
  year: 2018
  ident: 10.1016/j.swevo.2020.100651_bib4
  article-title: A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2737554
– volume: 30
  issue: 1
  year: 2016
  ident: 10.1016/j.swevo.2020.100651_bib28
  article-title: A constrained multi-objective evolutionary algorithm based on boundary search and archive
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
  doi: 10.1142/S0218001416590023
– volume: 49
  start-page: 542
  issue: 2
  year: 2019
  ident: 10.1016/j.swevo.2020.100651_bib19
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2780274
– start-page: 1
  year: 2010
  ident: 10.1016/j.swevo.2020.100651_bib25
  article-title: Constrained optimization by the ϵ constrained differential evolution with an archive and gradient-based mutation
– start-page: 579
  year: 1994
  ident: 10.1016/j.swevo.2020.100651_bib18
  article-title: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.swevo.2020.100651_bib27
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– volume: 75
  start-page: 383
  issue: 2
  year: 1988
  ident: 10.1016/j.swevo.2020.100651_bib44
  article-title: A stage wise rejective multiple test procedure based on a modified bonferroni test
  publication-title: Biometrika
  doi: 10.1093/biomet/75.2.383
– start-page: 1375
  year: 2009
  ident: 10.1016/j.swevo.2020.100651_bib22
  article-title: Parameter control in differential evolution for constrained optimization
– start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100651_bib37
– volume: 22
  start-page: 564
  issue: 4
  year: 2018
  ident: 10.1016/j.swevo.2020.100651_bib3
  article-title: A constrained decomposition approach with grids for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2744674
– volume: 37
  start-page: 560
  issue: 3
  year: 2007
  ident: 10.1016/j.swevo.2020.100651_bib15
  article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics)
  doi: 10.1109/TSMCB.2006.886164
– start-page: 417
  year: 1987
  ident: 10.1016/j.swevo.2020.100651_bib41
  article-title: An improved sequentially rejective Bonferroni test procedure
  publication-title: Biometrics
  doi: 10.2307/2531823
– volume: 60
  start-page: 613
  year: 2017
  ident: 10.1016/j.swevo.2020.100651_bib32
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.053
– volume: 1
  start-page: 173
  issue: 4
  year: 2011
  ident: 10.1016/j.swevo.2020.100651_bib11
  article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.10.001
– start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100651_bib7
  article-title: Utilizing the correlation between constraints and objective function for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.swevo.2020.100651_bib20
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009032
– volume: 56
  start-page: 937
  issue: 4
  year: 2009
  ident: 10.1016/j.swevo.2020.100651_bib23
  article-title: Improved differential evolution based on stochastic ranking for robust layout synthesis of mems components
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.2006935
SSID ssj0000602559
Score 2.4675093
Snippet In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evolutionary algorithms (MOEAs) is to balance the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100651
SubjectTerms Constrained multi-objective evolutionary algorithms
Constraint-handling mechanisms
Multi-objective to multi-objective (M2M) decomposition
NSGA-II
Push and pull search
Title Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems
URI https://dx.doi.org/10.1016/j.swevo.2020.100651
Volume 54
WOSCitedRecordID wos000528484400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL41OMAfKBW8jUOontHCe0CdCYJm1oZZco8QdrtCVV23T783mO7TSlaAIkLlHl1E7s99PT7728D4TeC8UoHSoWUk1kGFNVhIUkOhxRwWkilaa2ZP4xOznh43F6OhhMfS7M8ppVFb-7S6f_VdQwBsI2qbN_Ie5uURiA3yB0uILY4fpHgj9t5jZbbQrWZeC8GuqmUKBiTKGlwHyeIV8D7cOy2khDeKelzb81JWVz4J7SBhuGdVFapRjUoF5uXN5m4DrRzPvs9uw2n9mWG2rp9miC8kTbOWLtk_-R9bteXjXd0IXzXF9e5XW5Gj5uww0uVFVOOg3V2NnfGyCuP_p-CzJcRQlaZ9pGQo3ReQQs0BBI45qCtlWmN3S9dTuU-_Nb2NO-eYQJ-aCufu16Ee0zs7BZd2Qaq1GSPkDbhCUp6MHtg8-H4y-dX25IWyvL9CT07-KLVbVhgRtP-z2h6ZGU8yfosbMu8IFFxVM0UNUztOM7d2CnyJ-j2oAEg6CwAQm2IMEeJHhSwT0MIMEdSDCABDuQ4B5I8C8gwX2QYA-SF-jb0eH5x0-ha70RCuA0i5ACE1c6SmSsi4iznDNTJCjSQklCcq60FpoxnggRi0RGdDQqYskUjRMRMa549BJtVXWlXiEM_FcLMpJwL4lpnhdpQpQcSi7BlCYp20XEn18mXF16s4XrzAcglll76Jk59Mwe-i760E2a2rIs9_-desFkjllaxpgBmO6b-PpfJ-6hRyvQv0Fbi1mj3qKHYrmYzGfvHOh-AuTho74
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Push+and+pull+search+embedded+in+an+M2M+framework+for+solving+constrained+multi-objective+optimization+problems&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Fan%2C+Zhun&rft.au=Wang%2C+Zhaojun&rft.au=Li%2C+Wenji&rft.au=Yuan%2C+Yutong&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=54&rft_id=info:doi/10.1016%2Fj.swevo.2020.100651&rft.externalDocID=S2210650218310629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon