Isotone Optimization in R : Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods

In this paper we give a general framework for isotone optimization. First we discuss a generalized version of the pool-adjacent-violators algorithm (PAVA) to minimize a separable convex function with simple chain constraints. Besides of general convex functions we extend existing PAVA implementation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical software Ročník 32; číslo 5
Hlavní autoři: Leeuw, Jan de, Hornik, Kurt, Mair, Patrick
Médium: Journal Article
Jazyk:angličtina
Vydáno: Foundation for Open Access Statistics 01.10.2009
Témata:
ISSN:1548-7660, 1548-7660
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we give a general framework for isotone optimization. First we discuss a generalized version of the pool-adjacent-violators algorithm (PAVA) to minimize a separable convex function with simple chain constraints. Besides of general convex functions we extend existing PAVA implementations in terms of observation weights, approaches for tie handling, and responses from repeated measurement designs. Since isotone optimization problems can be formulated as convex programming problems with linear constraints we the develop a primal active set method to solve such problem. This methodology is applied on specific loss functions relevant in statistics. Both approaches are implemented in the R package isotone.
ISSN:1548-7660
1548-7660
DOI:10.18637/jss.v032.i05