DBHC: A DBSCAN-based hierarchical clustering algorithm
Clustering is the process of partitioning objects of a dataset into some groups according to similarities and dissimilarities between its objects. DBSCAN is one of the most important clustering algorithms in the density based approach of clustering. In spite of the numerous advantages of the DBSCAN...
Gespeichert in:
| Veröffentlicht in: | Data & knowledge engineering Jg. 135; S. 101922 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2021
|
| Schlagworte: | |
| ISSN: | 0169-023X, 1872-6933 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Clustering is the process of partitioning objects of a dataset into some groups according to similarities and dissimilarities between its objects. DBSCAN is one of the most important clustering algorithms in the density based approach of clustering. In spite of the numerous advantages of the DBSCAN algorithm, it has two important input parameters, MinPts and Eps, which determining their values is still a great challenge. This problem arises because values of these parameters are heavily dependent on data distribution. To overcome this challenge, firstly features of these parameters are investigated and the data distribution are analyzed. Then a DBSCAN-based hierarchical clustering (DBHC) method is proposed in this paper in order to fix this challenge. For this purpose, DBHC first determines values of these parameters using the notion of k nearest neighbor and k-dist plot. Because most of the real world data is not distributed uniformly, it is needed to be produced several values for the Eps parameter. Then, DBHC executes the DBSCAN algorithm several times based on the number of Eps produced earlier. Finally, DBHC method merges obtained clusters if the number of produced clusters is larger than the number which has estimated by the user. To evaluate the performance of the DBHC method, several experiments were performed on some of benchmark datasets of UCI database. Obtained results were compared with other previous works. The obtained results consistently showed that the DBHC method led to better results in comparison to the other works. |
|---|---|
| AbstractList | Clustering is the process of partitioning objects of a dataset into some groups according to similarities and dissimilarities between its objects. DBSCAN is one of the most important clustering algorithms in the density based approach of clustering. In spite of the numerous advantages of the DBSCAN algorithm, it has two important input parameters, MinPts and Eps, which determining their values is still a great challenge. This problem arises because values of these parameters are heavily dependent on data distribution. To overcome this challenge, firstly features of these parameters are investigated and the data distribution are analyzed. Then a DBSCAN-based hierarchical clustering (DBHC) method is proposed in this paper in order to fix this challenge. For this purpose, DBHC first determines values of these parameters using the notion of k nearest neighbor and k-dist plot. Because most of the real world data is not distributed uniformly, it is needed to be produced several values for the Eps parameter. Then, DBHC executes the DBSCAN algorithm several times based on the number of Eps produced earlier. Finally, DBHC method merges obtained clusters if the number of produced clusters is larger than the number which has estimated by the user. To evaluate the performance of the DBHC method, several experiments were performed on some of benchmark datasets of UCI database. Obtained results were compared with other previous works. The obtained results consistently showed that the DBHC method led to better results in comparison to the other works. |
| ArticleNumber | 101922 |
| Author | Latifi-Pakdehi, Alireza Daneshpour, Negin |
| Author_xml | – sequence: 1 givenname: Alireza surname: Latifi-Pakdehi fullname: Latifi-Pakdehi, Alireza email: alireza.latifi@yahoo.com – sequence: 2 givenname: Negin orcidid: 0000-0003-3951-4060 surname: Daneshpour fullname: Daneshpour, Negin email: ndaneshpour@sru.ac.ir |
| BookMark | eNqFkM1Kw0AUhQepYFt9Ajd5gdT5SSYZwUWbqhWKLlRwN9zO3LRT00RmRsG3N7WuXOjqwuF-B843IoO2a5GQc0YnjDJ5sZ1YiPA64ZSzfaI4PyJDVhY8lUqIARn2XyqlXLyckFEIW0opz2g-JHI-W1SXyTSZzx6r6X26goA22Tj04M3GGWgS07yHiN616wSadedd3OxOyXENTcCznzsmzzfXT9UiXT7c3lXTZWoEFTHNQVGV2RyoNJSjVNYC1qjKErmAnGcrmpcoacGgVCXUhawZ5spYicIUthBjog69xncheKy1cRGi69rowTWaUb0XoLf6W4DeC9AHAT0rfrFv3u3Af_5DXR0o7Gd99B50MA5bg9Z5NFHbzv3JfwHKnXYt |
| CitedBy_id | crossref_primary_10_1016_j_commatsci_2025_114019 crossref_primary_10_1016_j_foodcont_2023_109740 crossref_primary_10_3390_electronics12153213 crossref_primary_10_1007_s00500_025_10405_5 crossref_primary_10_1016_j_ijar_2023_108968 crossref_primary_10_3390_s23073749 crossref_primary_10_1109_TII_2025_3567403 crossref_primary_10_1177_18761364251359900 crossref_primary_10_1109_JSEN_2024_3403232 crossref_primary_10_1016_j_neucom_2024_127329 crossref_primary_10_1016_j_ecoinf_2022_101952 crossref_primary_10_1016_j_ipm_2022_102949 crossref_primary_10_1016_j_eswa_2025_128269 crossref_primary_10_3390_axioms11080411 crossref_primary_10_1016_j_measurement_2023_113042 crossref_primary_10_3390_drones8100561 crossref_primary_10_1371_journal_pone_0313890 crossref_primary_10_1364_AO_479772 crossref_primary_10_1007_s12145_023_00959_z crossref_primary_10_4018_IJIRR_315764 crossref_primary_10_1016_j_cplett_2025_141863 crossref_primary_10_1016_j_jhydrol_2025_133566 crossref_primary_10_1007_s12633_025_03338_z crossref_primary_10_1007_s13369_025_10277_9 crossref_primary_10_1049_itr2_12166 crossref_primary_10_1088_1402_4896_ad9650 crossref_primary_10_1007_s10115_023_02038_7 crossref_primary_10_3390_drones9010064 crossref_primary_10_1016_j_ins_2024_120731 |
| Cites_doi | 10.1016/j.neucom.2015.05.109 10.1016/j.comcom.2020.12.019 10.1016/j.ejor.2013.11.002 10.1016/j.engappai.2011.09.017 10.1016/j.chemolab.2012.11.006 10.1016/j.patrec.2011.04.008 10.1016/j.patcog.2016.03.008 10.1109/TPAMI.1979.4766909 10.1016/j.patcog.2020.107624 10.1007/s10586-017-0818-3 10.1016/S0169-7439(01)00111-3 10.1016/j.patcog.2018.05.030 10.1016/j.knosys.2016.12.006 10.1016/S0896-8411(03)00064-7 10.1007/s11042-019-07885-7 10.1016/j.phpro.2012.02.174 10.1016/j.engappai.2014.12.005 10.1016/j.eswa.2013.10.025 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.datak.2021.101922 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-6933 |
| ExternalDocumentID | 10_1016_j_datak_2021_101922 S0169023X21000495 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSV SSZ T5K WUQ XPP ZMT ZY4 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-5a9094d5a06c02e69ddaefe988e23a524b058e6071a898af76f1e59cd6e3c7d73 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702828000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-023X |
| IngestDate | Sat Nov 29 07:23:55 EST 2025 Tue Nov 18 22:39:54 EST 2025 Fri Feb 23 02:43:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DBSCAN Density based clustering Clustering Hierarchical clustering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-5a9094d5a06c02e69ddaefe988e23a524b058e6071a898af76f1e59cd6e3c7d73 |
| ORCID | 0000-0003-3951-4060 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_datak_2021_101922 crossref_primary_10_1016_j_datak_2021_101922 elsevier_sciencedirect_doi_10_1016_j_datak_2021_101922 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Data & knowledge engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Esmaelnejad, Habibi, Yeganeh (b26) 2010 Gu, Jiao, Yang, Zhao (b36) 2017; 119 Tran, Drab, Daszykowski (b12) 2013; 120 Karami, Johansson (b27) 2014; 91 Aggarwal, Reddy (b40) 2013 M. Charrad, Y. Lechevallier, M.B. Ahmed, G. Saporta, On the number of clusters in block clustering algorithms, in: FLAIRS Conference, 2010. Li, Bi, Wang, Han (b19) 2021; 167 Arbelaitz, Gurrutxaga, Muguerza, PéRez, Perona (b45) 2013 Bache, Lichman (b39) 2013 Ankerst, Breunig, Kriegel, Sander (b25) 1999; vol. 28 Starczewski, Cader (b29) 2019 Chen, Zhou, Bouguila, Wang, Chen, Du (b15) 2021; 109 Jahirabadkar, Kulkarni (b11) 2014; 41 Kumar, Reddy (b13) 2016; 58 Elbatta, Ashour (b22) 2013; 6 Sharma, Rathi (b30) 2016 Uncu, Gruver, Kotak, Sabaz, Alibhai, Ng (b20) 2006; vol. 4 Gaonkar, Sawant (b23) 2013; 2 Davies, Bouldin (b43) 1979; 1 Quintana, Getz, Hed, Domany, Cohen (b5) 2003; 21 Zhang, Wang, Li, Chen, Wang, Lei (b16) 2016 Braune, Besecke, Kruse (b35) 2015 Sawant (b24) 2014; 1 Gholizadeh, Saadatfar, Hanafi (b18) 2020 Chen, Tang, Bouguila, Wang, Du, Li (b14) 2018; 83 Rousseeuw (b44) 1987 yu Song, ping Guo, Wang (b31) 2018 Daszykowski, Walczak, Massart (b28) 2001; 56 Lv (b2) 2016; 171 Jia, Xiao, Liu, Jiao (b3) 2011; 32 Valarmathy, Krishnaveni (b34) 2020 Liu, Yang, He (b17) 2017; 20 Sun, Chen, Fang, Wun, Xu (b7) 2012; 25 Darong, Peng (b21) 2012; 24 Akbari, Dahlan, Ibrahim, Alizadeh (b4) 2015; 39 De Angelis, Dias (b6) 2014; 234 Li, Deng, Zhang (b37) 2019; 78 Mistry, Pandya, Rathwa, Kachroo, Jivani (b32) 2021 Berkhin (b41) 2006 Starczewski, Cader (b33) 2020 Cormen, Leiserson, Rivest, Stein (b38) 2009 Kim, Choi, Yoo, o. S. Nasridinov (b1) 2018; 75 Han, Pei, Kamber (b8) 2011 Ester, Kriegel, Sander, Xu (b10) 1996; vol. 96 Nazari, Kang, Asharif, Sung, Ogawa (b9) 2015 Sharma (10.1016/j.datak.2021.101922_b30) 2016 Li (10.1016/j.datak.2021.101922_b19) 2021; 167 Karami (10.1016/j.datak.2021.101922_b27) 2014; 91 Zhang (10.1016/j.datak.2021.101922_b16) 2016 Liu (10.1016/j.datak.2021.101922_b17) 2017; 20 Esmaelnejad (10.1016/j.datak.2021.101922_b26) 2010 Bache (10.1016/j.datak.2021.101922_b39) 2013 Tran (10.1016/j.datak.2021.101922_b12) 2013; 120 Gaonkar (10.1016/j.datak.2021.101922_b23) 2013; 2 Chen (10.1016/j.datak.2021.101922_b14) 2018; 83 Darong (10.1016/j.datak.2021.101922_b21) 2012; 24 Elbatta (10.1016/j.datak.2021.101922_b22) 2013; 6 Ankerst (10.1016/j.datak.2021.101922_b25) 1999; vol. 28 Kumar (10.1016/j.datak.2021.101922_b13) 2016; 58 Chen (10.1016/j.datak.2021.101922_b15) 2021; 109 Braune (10.1016/j.datak.2021.101922_b35) 2015 Lv (10.1016/j.datak.2021.101922_b2) 2016; 171 Li (10.1016/j.datak.2021.101922_b37) 2019; 78 Kim (10.1016/j.datak.2021.101922_b1) 2018; 75 De Angelis (10.1016/j.datak.2021.101922_b6) 2014; 234 Sun (10.1016/j.datak.2021.101922_b7) 2012; 25 Starczewski (10.1016/j.datak.2021.101922_b33) 2020 Arbelaitz (10.1016/j.datak.2021.101922_b45) 2013 Jahirabadkar (10.1016/j.datak.2021.101922_b11) 2014; 41 Gholizadeh (10.1016/j.datak.2021.101922_b18) 2020 10.1016/j.datak.2021.101922_b42 yu Song (10.1016/j.datak.2021.101922_b31) 2018 Berkhin (10.1016/j.datak.2021.101922_b41) 2006 Akbari (10.1016/j.datak.2021.101922_b4) 2015; 39 Nazari (10.1016/j.datak.2021.101922_b9) 2015 Quintana (10.1016/j.datak.2021.101922_b5) 2003; 21 Daszykowski (10.1016/j.datak.2021.101922_b28) 2001; 56 Uncu (10.1016/j.datak.2021.101922_b20) 2006; vol. 4 Ester (10.1016/j.datak.2021.101922_b10) 1996; vol. 96 Jia (10.1016/j.datak.2021.101922_b3) 2011; 32 Sawant (10.1016/j.datak.2021.101922_b24) 2014; 1 Davies (10.1016/j.datak.2021.101922_b43) 1979; 1 Gu (10.1016/j.datak.2021.101922_b36) 2017; 119 Valarmathy (10.1016/j.datak.2021.101922_b34) 2020 Cormen (10.1016/j.datak.2021.101922_b38) 2009 Rousseeuw (10.1016/j.datak.2021.101922_b44) 1987 Han (10.1016/j.datak.2021.101922_b8) 2011 Starczewski (10.1016/j.datak.2021.101922_b29) 2019 Aggarwal (10.1016/j.datak.2021.101922_b40) 2013 Mistry (10.1016/j.datak.2021.101922_b32) 2021 |
| References_xml | – year: 2006 ident: b41 article-title: A survey of clustering data mining techniques publication-title: Grouping Multidimensional Data – year: 2013 ident: b39 article-title: UCI machine learning repository – volume: 21 start-page: 65 year: 2003 end-page: 75 ident: b5 article-title: Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bio-informatic approach to immune complexity publication-title: J. Autoimmun. – volume: 39 start-page: 146 year: 2015 end-page: 156 ident: b4 article-title: Hierarchical cluster ensemble selection publication-title: Eng. Appl. Artif. Intell. – start-page: 93 year: 2010 end-page: 102 ident: b26 article-title: A novel method to find appropriate publication-title: Asian Conference on Intelligent Information and Database Systems – volume: 58 start-page: 39 year: 2016 end-page: 48 ident: b13 article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method publication-title: Pattern Recognit. – volume: 78 start-page: 33261 year: 2019 end-page: 33277 ident: b37 article-title: Sparse learning based on clustering by fast search and find of density peaks publication-title: Multimedia Tools Appl. – volume: 75 start-page: 1 year: 2018 end-page: 28 ident: b1 article-title: AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities publication-title: J. Supercomput. – volume: 119 start-page: 113 year: 2017 end-page: 125 ident: b36 article-title: Sparse learning based fuzzy c-means clustering publication-title: Knowl.-Based Syst. – volume: 91 year: 2014 ident: b27 article-title: Choosing dbscan parameters automatically using differential evolution publication-title: Int. J. Comput. Appl. – volume: 32 start-page: 1456 year: 2011 end-page: 1467 ident: b3 article-title: Bagging-based spectral clustering ensemble selection publication-title: Pattern Recognit. Lett. – volume: 25 start-page: 376 year: 2012 end-page: 391 ident: b7 article-title: Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization publication-title: Eng. Appl. Artif. Intell. – start-page: 243 year: 2013 end-page: 256 ident: b45 article-title: An extensive comparative study of cluster validity indices – volume: vol. 28 start-page: 49 year: 1999 end-page: 60 ident: b25 article-title: Optics: ordering points to identify the clustering structure publication-title: ACM Sigmod Record – start-page: 1062 year: 2018 end-page: 1070 ident: b31 article-title: The parameter configuration method of DBSCAN clustering algorithm publication-title: 5th International Conference on Systems and Informatics (ICSAI) – year: 2009 ident: b38 article-title: Introduction to Algorithms – start-page: 53 year: 1987 end-page: 65 ident: b44 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis – start-page: 148 year: 2015 end-page: 152 ident: b9 article-title: A new hierarchical clustering algorithm publication-title: 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) – reference: M. Charrad, Y. Lechevallier, M.B. Ahmed, G. Saporta, On the number of clusters in block clustering algorithms, in: FLAIRS Conference, 2010. – volume: 83 start-page: 375 year: 2018 end-page: 387 ident: b14 article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data publication-title: Pattern Recognit. – year: 2011 ident: b8 article-title: Data Mining: Concepts and Techniques – volume: 1 start-page: 224 year: 1979 end-page: 227 ident: b43 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 171 start-page: 9 year: 2016 end-page: 22 ident: b2 article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures publication-title: Neurocomputing – start-page: 555 year: 2020 end-page: 565 ident: b33 article-title: Grid-based approach to determining parameters of the DBSCAN algorithm publication-title: Artificial Intelligence and Soft Computing (ICAISC) – start-page: 433 year: 2016 end-page: 441 ident: b30 article-title: Efficient density-based clustering using automatic parameter detection publication-title: International Congress on Information and Communication Technology, Advances in Intelligent Systems and Computing – volume: 120 start-page: 92 year: 2013 end-page: 96 ident: b12 article-title: Revised DBSCAN algorithm to cluster data with dense adjacent clusters publication-title: Chemometr. Intell. Lab. Syst. – start-page: 193 year: 2015 end-page: 213 ident: b35 article-title: Density based clustering: Alternatives to DBSCAN publication-title: Partitional Clustering Algorithms – volume: 24 start-page: 1166 year: 2012 end-page: 1170 ident: b21 article-title: Grid-based DBSCAN algorithm with referential parameters publication-title: Physics Procedia – volume: 167 start-page: 75 year: 2021 end-page: 84 ident: b19 article-title: A method of two-stage clustering learning based on improved DBSCAN and density peak algorithm publication-title: Comput. Commun. – volume: 6 start-page: 14 year: 2013 ident: b22 article-title: A dynamic method for discovering density varied clusters publication-title: Int. J. Signal Process., Imag. Process. Pattern Recognit. – volume: 1 year: 2014 ident: b24 article-title: Adaptive methods for determining DBSCAN parameters publication-title: Int. J. Innov. Sci., Eng. Technol. – volume: 234 start-page: 720 year: 2014 end-page: 730 ident: b6 article-title: Mining categorical sequences from data using a hybrid clustering method publication-title: European J. Oper. Res. – start-page: 245 year: 2016 end-page: 256 ident: b16 article-title: Dboost: a fast algorithm for dbscan-based clustering on high dimensional data publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining – volume: 20 start-page: 1313 year: 2017 end-page: 1323 ident: b17 article-title: A novel DBSCAN with entropy and probability for mixed data publication-title: Cluster Comput. – year: 2020 ident: b34 article-title: A novel method to enhance the performance evaluation of DBSCAN clustering algorithm using different distinguished metrics publication-title: J. Mater. Today: Proc. – volume: vol. 4 start-page: 2976 year: 2006 end-page: 2981 ident: b20 article-title: Gridbscan: Grid density-based spatial clustering of applications with noise publication-title: 2006 IEEE International Conference on Systems, Man and Cybernetics – start-page: 420 year: 2019 end-page: 430 ident: b29 article-title: Determining the eps parameter of the DBSCAN algorithm publication-title: 18th International Conference on Artificial Intelligence and Soft Computing (ICAISC) – start-page: 213 year: 2021 end-page: 226 ident: b32 article-title: AEDBSCAN—Adaptive epsilon density-based spatial clustering of applications with noise publication-title: Progress in Advanced Computing and Intelligent Engineering – year: 2013 ident: b40 article-title: Data Clustering: Algorithms and Applications – volume: 41 start-page: 2939 year: 2014 end-page: 2946 ident: b11 article-title: Algorithm to determine publication-title: Expert Syst. Appl. – year: 2020 ident: b18 article-title: K-DBSCAN: An improved DBSCAN algorithm for big data publication-title: J. Supercomput. – volume: 56 start-page: 83 year: 2001 end-page: 92 ident: b28 article-title: Looking for natural patterns in data: Part 1. Density-based approach publication-title: Chemometr. Intell. Lab. Syst. – volume: 2 start-page: 11 year: 2013 end-page: 16 ident: b23 article-title: AutoEpsDBSCAN: DBSCAN with Eps automatic for large dataset publication-title: Int. J. Adv. Comput. Theory Eng. – volume: vol. 96 start-page: 226 year: 1996 end-page: 231 ident: b10 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Kdd – volume: 109 year: 2021 ident: b15 article-title: BLOCK-DBSCAN: Fast clustering for large scale data publication-title: Pattern Recognit. – volume: 171 start-page: 9 year: 2016 ident: 10.1016/j.datak.2021.101922_b2 article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.109 – volume: 167 start-page: 75 year: 2021 ident: 10.1016/j.datak.2021.101922_b19 article-title: A method of two-stage clustering learning based on improved DBSCAN and density peak algorithm publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.12.019 – ident: 10.1016/j.datak.2021.101922_b42 – volume: 234 start-page: 720 issue: 3 year: 2014 ident: 10.1016/j.datak.2021.101922_b6 article-title: Mining categorical sequences from data using a hybrid clustering method publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2013.11.002 – volume: 25 start-page: 376 issue: 2 year: 2012 ident: 10.1016/j.datak.2021.101922_b7 article-title: Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.09.017 – volume: 120 start-page: 92 year: 2013 ident: 10.1016/j.datak.2021.101922_b12 article-title: Revised DBSCAN algorithm to cluster data with dense adjacent clusters publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.11.006 – start-page: 148 year: 2015 ident: 10.1016/j.datak.2021.101922_b9 article-title: A new hierarchical clustering algorithm – start-page: 555 year: 2020 ident: 10.1016/j.datak.2021.101922_b33 article-title: Grid-based approach to determining parameters of the DBSCAN algorithm – year: 2011 ident: 10.1016/j.datak.2021.101922_b8 – volume: 1 issue: 4 year: 2014 ident: 10.1016/j.datak.2021.101922_b24 article-title: Adaptive methods for determining DBSCAN parameters publication-title: Int. J. Innov. Sci., Eng. Technol. – volume: 6 start-page: 14 issue: 1 year: 2013 ident: 10.1016/j.datak.2021.101922_b22 article-title: A dynamic method for discovering density varied clusters publication-title: Int. J. Signal Process., Imag. Process. Pattern Recognit. – start-page: 1062 year: 2018 ident: 10.1016/j.datak.2021.101922_b31 article-title: The parameter configuration method of DBSCAN clustering algorithm – start-page: 433 year: 2016 ident: 10.1016/j.datak.2021.101922_b30 article-title: Efficient density-based clustering using automatic parameter detection – volume: 32 start-page: 1456 issue: 10 year: 2011 ident: 10.1016/j.datak.2021.101922_b3 article-title: Bagging-based spectral clustering ensemble selection publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.04.008 – volume: vol. 96 start-page: 226 year: 1996 ident: 10.1016/j.datak.2021.101922_b10 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 58 start-page: 39 year: 2016 ident: 10.1016/j.datak.2021.101922_b13 article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.008 – start-page: 245 year: 2016 ident: 10.1016/j.datak.2021.101922_b16 article-title: Dboost: a fast algorithm for dbscan-based clustering on high dimensional data – year: 2020 ident: 10.1016/j.datak.2021.101922_b34 article-title: A novel method to enhance the performance evaluation of DBSCAN clustering algorithm using different distinguished metrics publication-title: J. Mater. Today: Proc. – year: 2013 ident: 10.1016/j.datak.2021.101922_b39 – volume: 1 start-page: 224 issue: 2 year: 1979 ident: 10.1016/j.datak.2021.101922_b43 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – volume: 109 year: 2021 ident: 10.1016/j.datak.2021.101922_b15 article-title: BLOCK-DBSCAN: Fast clustering for large scale data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107624 – start-page: 93 year: 2010 ident: 10.1016/j.datak.2021.101922_b26 article-title: A novel method to find appropriate ɛ for DBSCAN – start-page: 213 year: 2021 ident: 10.1016/j.datak.2021.101922_b32 article-title: AEDBSCAN—Adaptive epsilon density-based spatial clustering of applications with noise – volume: 75 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.datak.2021.101922_b1 article-title: AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities publication-title: J. Supercomput. – volume: 20 start-page: 1313 year: 2017 ident: 10.1016/j.datak.2021.101922_b17 article-title: A novel DBSCAN with entropy and probability for mixed data publication-title: Cluster Comput. doi: 10.1007/s10586-017-0818-3 – year: 2009 ident: 10.1016/j.datak.2021.101922_b38 – volume: 56 start-page: 83 issue: 2 year: 2001 ident: 10.1016/j.datak.2021.101922_b28 article-title: Looking for natural patterns in data: Part 1. Density-based approach publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00111-3 – volume: vol. 28 start-page: 49 year: 1999 ident: 10.1016/j.datak.2021.101922_b25 article-title: Optics: ordering points to identify the clustering structure – year: 2006 ident: 10.1016/j.datak.2021.101922_b41 article-title: A survey of clustering data mining techniques – volume: 83 start-page: 375 year: 2018 ident: 10.1016/j.datak.2021.101922_b14 article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.05.030 – year: 2013 ident: 10.1016/j.datak.2021.101922_b40 – volume: 119 start-page: 113 year: 2017 ident: 10.1016/j.datak.2021.101922_b36 article-title: Sparse learning based fuzzy c-means clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.12.006 – year: 2020 ident: 10.1016/j.datak.2021.101922_b18 article-title: K-DBSCAN: An improved DBSCAN algorithm for big data publication-title: J. Supercomput. – volume: 21 start-page: 65 issue: 1 year: 2003 ident: 10.1016/j.datak.2021.101922_b5 article-title: Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bio-informatic approach to immune complexity publication-title: J. Autoimmun. doi: 10.1016/S0896-8411(03)00064-7 – volume: 78 start-page: 33261 year: 2019 ident: 10.1016/j.datak.2021.101922_b37 article-title: Sparse learning based on clustering by fast search and find of density peaks publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-07885-7 – start-page: 420 year: 2019 ident: 10.1016/j.datak.2021.101922_b29 article-title: Determining the eps parameter of the DBSCAN algorithm – volume: 2 start-page: 11 issue: 2 year: 2013 ident: 10.1016/j.datak.2021.101922_b23 article-title: AutoEpsDBSCAN: DBSCAN with Eps automatic for large dataset publication-title: Int. J. Adv. Comput. Theory Eng. – start-page: 53 year: 1987 ident: 10.1016/j.datak.2021.101922_b44 – volume: 24 start-page: 1166 year: 2012 ident: 10.1016/j.datak.2021.101922_b21 article-title: Grid-based DBSCAN algorithm with referential parameters publication-title: Physics Procedia doi: 10.1016/j.phpro.2012.02.174 – volume: 39 start-page: 146 year: 2015 ident: 10.1016/j.datak.2021.101922_b4 article-title: Hierarchical cluster ensemble selection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.12.005 – volume: vol. 4 start-page: 2976 year: 2006 ident: 10.1016/j.datak.2021.101922_b20 article-title: Gridbscan: Grid density-based spatial clustering of applications with noise – start-page: 193 year: 2015 ident: 10.1016/j.datak.2021.101922_b35 article-title: Density based clustering: Alternatives to DBSCAN – volume: 41 start-page: 2939 issue: 6 year: 2014 ident: 10.1016/j.datak.2021.101922_b11 article-title: Algorithm to determine ɛ-distance parameter in density based clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.10.025 – volume: 91 issue: 7 year: 2014 ident: 10.1016/j.datak.2021.101922_b27 article-title: Choosing dbscan parameters automatically using differential evolution publication-title: Int. J. Comput. Appl. – start-page: 243 year: 2013 ident: 10.1016/j.datak.2021.101922_b45 |
| SSID | ssj0002405 |
| Score | 2.4643302 |
| Snippet | Clustering is the process of partitioning objects of a dataset into some groups according to similarities and dissimilarities between its objects. DBSCAN is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101922 |
| SubjectTerms | Clustering DBSCAN Density based clustering Hierarchical clustering |
| Title | DBHC: A DBSCAN-based hierarchical clustering algorithm |
| URI | https://dx.doi.org/10.1016/j.datak.2021.101922 |
| Volume | 135 |
| WOSCitedRecordID | wos000702828000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002405 issn: 0169-023X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVgy4ELLV-i0KIcuC2usk78xS3dLSocVkgUaW-RYzu0ZUlXuymq-PWMncQJUK3ogUsUWcnEyhuNx_b4PYTexJrTlDOFC1MonNqYYsmIxkWZpkYKt4NYerEJPp-LxUJ-amUVN15OgFeVuLmRq_8KNbQB2O7o7B3gDkahAe4BdLgC7HD9J-Bnx6fT5rz57PjzNJtjN1CZsdO89rsGnhFkee0IEvwBxeXXq_VFff59mKbOVK28U4Qlt7HtiQtDEY9yhUYYklBjvTbwOFtCBP0ZIj24lN2cr6DX3umcBsRwlYFMQhlVWHhk0EC8dm8fORM6iH0Tly2SW8Nys0Jw6cyrb0fO_lH_9O8k2H8MTqFksKtGu8y9kdwZyRsj99EO4VSKEdrJPpwsPoaRGLKVpoS17XvHOuXr-_7qy-2ZySDbONtDj9ppQpQ18D5G92z1BO12EhxRG5GfIubQfhdl0RDraIh11GMdBayfoS_vT86mp7iVwsAacowaUyVhHm6oipmOiWXSGGVLK4WwJFGUpEVMhXVcgUpIoUrOyomlUhtmE80NT56jUXVV2RcoInHhCHpgZk9sanQphNZGJCXTXE-MjPcR6X5DrlueeCdXssy3QLCP3oaXVg1NyvbHWfd_8zbTazK4HDxm24sv7_adV-hh78wHaFSvr-0heqB_1Beb9evWXX4BXVNwVQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DBHC%3A+A+DBSCAN-based+hierarchical+clustering+algorithm&rft.jtitle=Data+%26+knowledge+engineering&rft.au=Latifi-Pakdehi%2C+Alireza&rft.au=Daneshpour%2C+Negin&rft.date=2021-09-01&rft.issn=0169-023X&rft.volume=135&rft.spage=101922&rft_id=info:doi/10.1016%2Fj.datak.2021.101922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_datak_2021_101922 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-023X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-023X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-023X&client=summon |