DBHC: A DBSCAN-based hierarchical clustering algorithm

Clustering is the process of partitioning objects of a dataset into some groups according to similarities and dissimilarities between its objects. DBSCAN is one of the most important clustering algorithms in the density based approach of clustering. In spite of the numerous advantages of the DBSCAN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data & knowledge engineering Jg. 135; S. 101922
Hauptverfasser: Latifi-Pakdehi, Alireza, Daneshpour, Negin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2021
Schlagworte:
ISSN:0169-023X, 1872-6933
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Clustering is the process of partitioning objects of a dataset into some groups according to similarities and dissimilarities between its objects. DBSCAN is one of the most important clustering algorithms in the density based approach of clustering. In spite of the numerous advantages of the DBSCAN algorithm, it has two important input parameters, MinPts and Eps, which determining their values is still a great challenge. This problem arises because values of these parameters are heavily dependent on data distribution. To overcome this challenge, firstly features of these parameters are investigated and the data distribution are analyzed. Then a DBSCAN-based hierarchical clustering (DBHC) method is proposed in this paper in order to fix this challenge. For this purpose, DBHC first determines values of these parameters using the notion of k nearest neighbor and k-dist plot. Because most of the real world data is not distributed uniformly, it is needed to be produced several values for the Eps parameter. Then, DBHC executes the DBSCAN algorithm several times based on the number of Eps produced earlier. Finally, DBHC method merges obtained clusters if the number of produced clusters is larger than the number which has estimated by the user. To evaluate the performance of the DBHC method, several experiments were performed on some of benchmark datasets of UCI database. Obtained results were compared with other previous works. The obtained results consistently showed that the DBHC method led to better results in comparison to the other works.
AbstractList Clustering is the process of partitioning objects of a dataset into some groups according to similarities and dissimilarities between its objects. DBSCAN is one of the most important clustering algorithms in the density based approach of clustering. In spite of the numerous advantages of the DBSCAN algorithm, it has two important input parameters, MinPts and Eps, which determining their values is still a great challenge. This problem arises because values of these parameters are heavily dependent on data distribution. To overcome this challenge, firstly features of these parameters are investigated and the data distribution are analyzed. Then a DBSCAN-based hierarchical clustering (DBHC) method is proposed in this paper in order to fix this challenge. For this purpose, DBHC first determines values of these parameters using the notion of k nearest neighbor and k-dist plot. Because most of the real world data is not distributed uniformly, it is needed to be produced several values for the Eps parameter. Then, DBHC executes the DBSCAN algorithm several times based on the number of Eps produced earlier. Finally, DBHC method merges obtained clusters if the number of produced clusters is larger than the number which has estimated by the user. To evaluate the performance of the DBHC method, several experiments were performed on some of benchmark datasets of UCI database. Obtained results were compared with other previous works. The obtained results consistently showed that the DBHC method led to better results in comparison to the other works.
ArticleNumber 101922
Author Latifi-Pakdehi, Alireza
Daneshpour, Negin
Author_xml – sequence: 1
  givenname: Alireza
  surname: Latifi-Pakdehi
  fullname: Latifi-Pakdehi, Alireza
  email: alireza.latifi@yahoo.com
– sequence: 2
  givenname: Negin
  orcidid: 0000-0003-3951-4060
  surname: Daneshpour
  fullname: Daneshpour, Negin
  email: ndaneshpour@sru.ac.ir
BookMark eNqFkM1Kw0AUhQepYFt9Ajd5gdT5SSYZwUWbqhWKLlRwN9zO3LRT00RmRsG3N7WuXOjqwuF-B843IoO2a5GQc0YnjDJ5sZ1YiPA64ZSzfaI4PyJDVhY8lUqIARn2XyqlXLyckFEIW0opz2g-JHI-W1SXyTSZzx6r6X26goA22Tj04M3GGWgS07yHiN616wSadedd3OxOyXENTcCznzsmzzfXT9UiXT7c3lXTZWoEFTHNQVGV2RyoNJSjVNYC1qjKErmAnGcrmpcoacGgVCXUhawZ5spYicIUthBjog69xncheKy1cRGi69rowTWaUb0XoLf6W4DeC9AHAT0rfrFv3u3Af_5DXR0o7Gd99B50MA5bg9Z5NFHbzv3JfwHKnXYt
CitedBy_id crossref_primary_10_1016_j_commatsci_2025_114019
crossref_primary_10_1016_j_foodcont_2023_109740
crossref_primary_10_3390_electronics12153213
crossref_primary_10_1007_s00500_025_10405_5
crossref_primary_10_1016_j_ijar_2023_108968
crossref_primary_10_3390_s23073749
crossref_primary_10_1109_TII_2025_3567403
crossref_primary_10_1177_18761364251359900
crossref_primary_10_1109_JSEN_2024_3403232
crossref_primary_10_1016_j_neucom_2024_127329
crossref_primary_10_1016_j_ecoinf_2022_101952
crossref_primary_10_1016_j_ipm_2022_102949
crossref_primary_10_1016_j_eswa_2025_128269
crossref_primary_10_3390_axioms11080411
crossref_primary_10_1016_j_measurement_2023_113042
crossref_primary_10_3390_drones8100561
crossref_primary_10_1371_journal_pone_0313890
crossref_primary_10_1364_AO_479772
crossref_primary_10_1007_s12145_023_00959_z
crossref_primary_10_4018_IJIRR_315764
crossref_primary_10_1016_j_cplett_2025_141863
crossref_primary_10_1016_j_jhydrol_2025_133566
crossref_primary_10_1007_s12633_025_03338_z
crossref_primary_10_1007_s13369_025_10277_9
crossref_primary_10_1049_itr2_12166
crossref_primary_10_1088_1402_4896_ad9650
crossref_primary_10_1007_s10115_023_02038_7
crossref_primary_10_3390_drones9010064
crossref_primary_10_1016_j_ins_2024_120731
Cites_doi 10.1016/j.neucom.2015.05.109
10.1016/j.comcom.2020.12.019
10.1016/j.ejor.2013.11.002
10.1016/j.engappai.2011.09.017
10.1016/j.chemolab.2012.11.006
10.1016/j.patrec.2011.04.008
10.1016/j.patcog.2016.03.008
10.1109/TPAMI.1979.4766909
10.1016/j.patcog.2020.107624
10.1007/s10586-017-0818-3
10.1016/S0169-7439(01)00111-3
10.1016/j.patcog.2018.05.030
10.1016/j.knosys.2016.12.006
10.1016/S0896-8411(03)00064-7
10.1007/s11042-019-07885-7
10.1016/j.phpro.2012.02.174
10.1016/j.engappai.2014.12.005
10.1016/j.eswa.2013.10.025
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.datak.2021.101922
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6933
ExternalDocumentID 10_1016_j_datak_2021_101922
S0169023X21000495
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-5a9094d5a06c02e69ddaefe988e23a524b058e6071a898af76f1e59cd6e3c7d73
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702828000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-023X
IngestDate Sat Nov 29 07:23:55 EST 2025
Tue Nov 18 22:39:54 EST 2025
Fri Feb 23 02:43:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DBSCAN
Density based clustering
Clustering
Hierarchical clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-5a9094d5a06c02e69ddaefe988e23a524b058e6071a898af76f1e59cd6e3c7d73
ORCID 0000-0003-3951-4060
ParticipantIDs crossref_citationtrail_10_1016_j_datak_2021_101922
crossref_primary_10_1016_j_datak_2021_101922
elsevier_sciencedirect_doi_10_1016_j_datak_2021_101922
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Data & knowledge engineering
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Esmaelnejad, Habibi, Yeganeh (b26) 2010
Gu, Jiao, Yang, Zhao (b36) 2017; 119
Tran, Drab, Daszykowski (b12) 2013; 120
Karami, Johansson (b27) 2014; 91
Aggarwal, Reddy (b40) 2013
M. Charrad, Y. Lechevallier, M.B. Ahmed, G. Saporta, On the number of clusters in block clustering algorithms, in: FLAIRS Conference, 2010.
Li, Bi, Wang, Han (b19) 2021; 167
Arbelaitz, Gurrutxaga, Muguerza, PéRez, Perona (b45) 2013
Bache, Lichman (b39) 2013
Ankerst, Breunig, Kriegel, Sander (b25) 1999; vol. 28
Starczewski, Cader (b29) 2019
Chen, Zhou, Bouguila, Wang, Chen, Du (b15) 2021; 109
Jahirabadkar, Kulkarni (b11) 2014; 41
Kumar, Reddy (b13) 2016; 58
Elbatta, Ashour (b22) 2013; 6
Sharma, Rathi (b30) 2016
Uncu, Gruver, Kotak, Sabaz, Alibhai, Ng (b20) 2006; vol. 4
Gaonkar, Sawant (b23) 2013; 2
Davies, Bouldin (b43) 1979; 1
Quintana, Getz, Hed, Domany, Cohen (b5) 2003; 21
Zhang, Wang, Li, Chen, Wang, Lei (b16) 2016
Braune, Besecke, Kruse (b35) 2015
Sawant (b24) 2014; 1
Gholizadeh, Saadatfar, Hanafi (b18) 2020
Chen, Tang, Bouguila, Wang, Du, Li (b14) 2018; 83
Rousseeuw (b44) 1987
yu Song, ping Guo, Wang (b31) 2018
Daszykowski, Walczak, Massart (b28) 2001; 56
Lv (b2) 2016; 171
Jia, Xiao, Liu, Jiao (b3) 2011; 32
Valarmathy, Krishnaveni (b34) 2020
Liu, Yang, He (b17) 2017; 20
Sun, Chen, Fang, Wun, Xu (b7) 2012; 25
Darong, Peng (b21) 2012; 24
Akbari, Dahlan, Ibrahim, Alizadeh (b4) 2015; 39
De Angelis, Dias (b6) 2014; 234
Li, Deng, Zhang (b37) 2019; 78
Mistry, Pandya, Rathwa, Kachroo, Jivani (b32) 2021
Berkhin (b41) 2006
Starczewski, Cader (b33) 2020
Cormen, Leiserson, Rivest, Stein (b38) 2009
Kim, Choi, Yoo, o. S. Nasridinov (b1) 2018; 75
Han, Pei, Kamber (b8) 2011
Ester, Kriegel, Sander, Xu (b10) 1996; vol. 96
Nazari, Kang, Asharif, Sung, Ogawa (b9) 2015
Sharma (10.1016/j.datak.2021.101922_b30) 2016
Li (10.1016/j.datak.2021.101922_b19) 2021; 167
Karami (10.1016/j.datak.2021.101922_b27) 2014; 91
Zhang (10.1016/j.datak.2021.101922_b16) 2016
Liu (10.1016/j.datak.2021.101922_b17) 2017; 20
Esmaelnejad (10.1016/j.datak.2021.101922_b26) 2010
Bache (10.1016/j.datak.2021.101922_b39) 2013
Tran (10.1016/j.datak.2021.101922_b12) 2013; 120
Gaonkar (10.1016/j.datak.2021.101922_b23) 2013; 2
Chen (10.1016/j.datak.2021.101922_b14) 2018; 83
Darong (10.1016/j.datak.2021.101922_b21) 2012; 24
Elbatta (10.1016/j.datak.2021.101922_b22) 2013; 6
Ankerst (10.1016/j.datak.2021.101922_b25) 1999; vol. 28
Kumar (10.1016/j.datak.2021.101922_b13) 2016; 58
Chen (10.1016/j.datak.2021.101922_b15) 2021; 109
Braune (10.1016/j.datak.2021.101922_b35) 2015
Lv (10.1016/j.datak.2021.101922_b2) 2016; 171
Li (10.1016/j.datak.2021.101922_b37) 2019; 78
Kim (10.1016/j.datak.2021.101922_b1) 2018; 75
De Angelis (10.1016/j.datak.2021.101922_b6) 2014; 234
Sun (10.1016/j.datak.2021.101922_b7) 2012; 25
Starczewski (10.1016/j.datak.2021.101922_b33) 2020
Arbelaitz (10.1016/j.datak.2021.101922_b45) 2013
Jahirabadkar (10.1016/j.datak.2021.101922_b11) 2014; 41
Gholizadeh (10.1016/j.datak.2021.101922_b18) 2020
10.1016/j.datak.2021.101922_b42
yu Song (10.1016/j.datak.2021.101922_b31) 2018
Berkhin (10.1016/j.datak.2021.101922_b41) 2006
Akbari (10.1016/j.datak.2021.101922_b4) 2015; 39
Nazari (10.1016/j.datak.2021.101922_b9) 2015
Quintana (10.1016/j.datak.2021.101922_b5) 2003; 21
Daszykowski (10.1016/j.datak.2021.101922_b28) 2001; 56
Uncu (10.1016/j.datak.2021.101922_b20) 2006; vol. 4
Ester (10.1016/j.datak.2021.101922_b10) 1996; vol. 96
Jia (10.1016/j.datak.2021.101922_b3) 2011; 32
Sawant (10.1016/j.datak.2021.101922_b24) 2014; 1
Davies (10.1016/j.datak.2021.101922_b43) 1979; 1
Gu (10.1016/j.datak.2021.101922_b36) 2017; 119
Valarmathy (10.1016/j.datak.2021.101922_b34) 2020
Cormen (10.1016/j.datak.2021.101922_b38) 2009
Rousseeuw (10.1016/j.datak.2021.101922_b44) 1987
Han (10.1016/j.datak.2021.101922_b8) 2011
Starczewski (10.1016/j.datak.2021.101922_b29) 2019
Aggarwal (10.1016/j.datak.2021.101922_b40) 2013
Mistry (10.1016/j.datak.2021.101922_b32) 2021
References_xml – year: 2006
  ident: b41
  article-title: A survey of clustering data mining techniques
  publication-title: Grouping Multidimensional Data
– year: 2013
  ident: b39
  article-title: UCI machine learning repository
– volume: 21
  start-page: 65
  year: 2003
  end-page: 75
  ident: b5
  article-title: Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bio-informatic approach to immune complexity
  publication-title: J. Autoimmun.
– volume: 39
  start-page: 146
  year: 2015
  end-page: 156
  ident: b4
  article-title: Hierarchical cluster ensemble selection
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 93
  year: 2010
  end-page: 102
  ident: b26
  article-title: A novel method to find appropriate
  publication-title: Asian Conference on Intelligent Information and Database Systems
– volume: 58
  start-page: 39
  year: 2016
  end-page: 48
  ident: b13
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recognit.
– volume: 78
  start-page: 33261
  year: 2019
  end-page: 33277
  ident: b37
  article-title: Sparse learning based on clustering by fast search and find of density peaks
  publication-title: Multimedia Tools Appl.
– volume: 75
  start-page: 1
  year: 2018
  end-page: 28
  ident: b1
  article-title: AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities
  publication-title: J. Supercomput.
– volume: 119
  start-page: 113
  year: 2017
  end-page: 125
  ident: b36
  article-title: Sparse learning based fuzzy c-means clustering
  publication-title: Knowl.-Based Syst.
– volume: 91
  year: 2014
  ident: b27
  article-title: Choosing dbscan parameters automatically using differential evolution
  publication-title: Int. J. Comput. Appl.
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1467
  ident: b3
  article-title: Bagging-based spectral clustering ensemble selection
  publication-title: Pattern Recognit. Lett.
– volume: 25
  start-page: 376
  year: 2012
  end-page: 391
  ident: b7
  article-title: Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 243
  year: 2013
  end-page: 256
  ident: b45
  article-title: An extensive comparative study of cluster validity indices
– volume: vol. 28
  start-page: 49
  year: 1999
  end-page: 60
  ident: b25
  article-title: Optics: ordering points to identify the clustering structure
  publication-title: ACM Sigmod Record
– start-page: 1062
  year: 2018
  end-page: 1070
  ident: b31
  article-title: The parameter configuration method of DBSCAN clustering algorithm
  publication-title: 5th International Conference on Systems and Informatics (ICSAI)
– year: 2009
  ident: b38
  article-title: Introduction to Algorithms
– start-page: 53
  year: 1987
  end-page: 65
  ident: b44
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
– start-page: 148
  year: 2015
  end-page: 152
  ident: b9
  article-title: A new hierarchical clustering algorithm
  publication-title: 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)
– reference: M. Charrad, Y. Lechevallier, M.B. Ahmed, G. Saporta, On the number of clusters in block clustering algorithms, in: FLAIRS Conference, 2010.
– volume: 83
  start-page: 375
  year: 2018
  end-page: 387
  ident: b14
  article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data
  publication-title: Pattern Recognit.
– year: 2011
  ident: b8
  article-title: Data Mining: Concepts and Techniques
– volume: 1
  start-page: 224
  year: 1979
  end-page: 227
  ident: b43
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 171
  start-page: 9
  year: 2016
  end-page: 22
  ident: b2
  article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures
  publication-title: Neurocomputing
– start-page: 555
  year: 2020
  end-page: 565
  ident: b33
  article-title: Grid-based approach to determining parameters of the DBSCAN algorithm
  publication-title: Artificial Intelligence and Soft Computing (ICAISC)
– start-page: 433
  year: 2016
  end-page: 441
  ident: b30
  article-title: Efficient density-based clustering using automatic parameter detection
  publication-title: International Congress on Information and Communication Technology, Advances in Intelligent Systems and Computing
– volume: 120
  start-page: 92
  year: 2013
  end-page: 96
  ident: b12
  article-title: Revised DBSCAN algorithm to cluster data with dense adjacent clusters
  publication-title: Chemometr. Intell. Lab. Syst.
– start-page: 193
  year: 2015
  end-page: 213
  ident: b35
  article-title: Density based clustering: Alternatives to DBSCAN
  publication-title: Partitional Clustering Algorithms
– volume: 24
  start-page: 1166
  year: 2012
  end-page: 1170
  ident: b21
  article-title: Grid-based DBSCAN algorithm with referential parameters
  publication-title: Physics Procedia
– volume: 167
  start-page: 75
  year: 2021
  end-page: 84
  ident: b19
  article-title: A method of two-stage clustering learning based on improved DBSCAN and density peak algorithm
  publication-title: Comput. Commun.
– volume: 6
  start-page: 14
  year: 2013
  ident: b22
  article-title: A dynamic method for discovering density varied clusters
  publication-title: Int. J. Signal Process., Imag. Process. Pattern Recognit.
– volume: 1
  year: 2014
  ident: b24
  article-title: Adaptive methods for determining DBSCAN parameters
  publication-title: Int. J. Innov. Sci., Eng. Technol.
– volume: 234
  start-page: 720
  year: 2014
  end-page: 730
  ident: b6
  article-title: Mining categorical sequences from data using a hybrid clustering method
  publication-title: European J. Oper. Res.
– start-page: 245
  year: 2016
  end-page: 256
  ident: b16
  article-title: Dboost: a fast algorithm for dbscan-based clustering on high dimensional data
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
– volume: 20
  start-page: 1313
  year: 2017
  end-page: 1323
  ident: b17
  article-title: A novel DBSCAN with entropy and probability for mixed data
  publication-title: Cluster Comput.
– year: 2020
  ident: b34
  article-title: A novel method to enhance the performance evaluation of DBSCAN clustering algorithm using different distinguished metrics
  publication-title: J. Mater. Today: Proc.
– volume: vol. 4
  start-page: 2976
  year: 2006
  end-page: 2981
  ident: b20
  article-title: Gridbscan: Grid density-based spatial clustering of applications with noise
  publication-title: 2006 IEEE International Conference on Systems, Man and Cybernetics
– start-page: 420
  year: 2019
  end-page: 430
  ident: b29
  article-title: Determining the eps parameter of the DBSCAN algorithm
  publication-title: 18th International Conference on Artificial Intelligence and Soft Computing (ICAISC)
– start-page: 213
  year: 2021
  end-page: 226
  ident: b32
  article-title: AEDBSCAN—Adaptive epsilon density-based spatial clustering of applications with noise
  publication-title: Progress in Advanced Computing and Intelligent Engineering
– year: 2013
  ident: b40
  article-title: Data Clustering: Algorithms and Applications
– volume: 41
  start-page: 2939
  year: 2014
  end-page: 2946
  ident: b11
  article-title: Algorithm to determine
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b18
  article-title: K-DBSCAN: An improved DBSCAN algorithm for big data
  publication-title: J. Supercomput.
– volume: 56
  start-page: 83
  year: 2001
  end-page: 92
  ident: b28
  article-title: Looking for natural patterns in data: Part 1. Density-based approach
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 2
  start-page: 11
  year: 2013
  end-page: 16
  ident: b23
  article-title: AutoEpsDBSCAN: DBSCAN with Eps automatic for large dataset
  publication-title: Int. J. Adv. Comput. Theory Eng.
– volume: vol. 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b10
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– volume: 109
  year: 2021
  ident: b15
  article-title: BLOCK-DBSCAN: Fast clustering for large scale data
  publication-title: Pattern Recognit.
– volume: 171
  start-page: 9
  year: 2016
  ident: 10.1016/j.datak.2021.101922_b2
  article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.109
– volume: 167
  start-page: 75
  year: 2021
  ident: 10.1016/j.datak.2021.101922_b19
  article-title: A method of two-stage clustering learning based on improved DBSCAN and density peak algorithm
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.12.019
– ident: 10.1016/j.datak.2021.101922_b42
– volume: 234
  start-page: 720
  issue: 3
  year: 2014
  ident: 10.1016/j.datak.2021.101922_b6
  article-title: Mining categorical sequences from data using a hybrid clustering method
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2013.11.002
– volume: 25
  start-page: 376
  issue: 2
  year: 2012
  ident: 10.1016/j.datak.2021.101922_b7
  article-title: Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.09.017
– volume: 120
  start-page: 92
  year: 2013
  ident: 10.1016/j.datak.2021.101922_b12
  article-title: Revised DBSCAN algorithm to cluster data with dense adjacent clusters
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.11.006
– start-page: 148
  year: 2015
  ident: 10.1016/j.datak.2021.101922_b9
  article-title: A new hierarchical clustering algorithm
– start-page: 555
  year: 2020
  ident: 10.1016/j.datak.2021.101922_b33
  article-title: Grid-based approach to determining parameters of the DBSCAN algorithm
– year: 2011
  ident: 10.1016/j.datak.2021.101922_b8
– volume: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.datak.2021.101922_b24
  article-title: Adaptive methods for determining DBSCAN parameters
  publication-title: Int. J. Innov. Sci., Eng. Technol.
– volume: 6
  start-page: 14
  issue: 1
  year: 2013
  ident: 10.1016/j.datak.2021.101922_b22
  article-title: A dynamic method for discovering density varied clusters
  publication-title: Int. J. Signal Process., Imag. Process. Pattern Recognit.
– start-page: 1062
  year: 2018
  ident: 10.1016/j.datak.2021.101922_b31
  article-title: The parameter configuration method of DBSCAN clustering algorithm
– start-page: 433
  year: 2016
  ident: 10.1016/j.datak.2021.101922_b30
  article-title: Efficient density-based clustering using automatic parameter detection
– volume: 32
  start-page: 1456
  issue: 10
  year: 2011
  ident: 10.1016/j.datak.2021.101922_b3
  article-title: Bagging-based spectral clustering ensemble selection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.04.008
– volume: vol. 96
  start-page: 226
  year: 1996
  ident: 10.1016/j.datak.2021.101922_b10
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 58
  start-page: 39
  year: 2016
  ident: 10.1016/j.datak.2021.101922_b13
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.008
– start-page: 245
  year: 2016
  ident: 10.1016/j.datak.2021.101922_b16
  article-title: Dboost: a fast algorithm for dbscan-based clustering on high dimensional data
– year: 2020
  ident: 10.1016/j.datak.2021.101922_b34
  article-title: A novel method to enhance the performance evaluation of DBSCAN clustering algorithm using different distinguished metrics
  publication-title: J. Mater. Today: Proc.
– year: 2013
  ident: 10.1016/j.datak.2021.101922_b39
– volume: 1
  start-page: 224
  issue: 2
  year: 1979
  ident: 10.1016/j.datak.2021.101922_b43
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– volume: 109
  year: 2021
  ident: 10.1016/j.datak.2021.101922_b15
  article-title: BLOCK-DBSCAN: Fast clustering for large scale data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107624
– start-page: 93
  year: 2010
  ident: 10.1016/j.datak.2021.101922_b26
  article-title: A novel method to find appropriate ɛ for DBSCAN
– start-page: 213
  year: 2021
  ident: 10.1016/j.datak.2021.101922_b32
  article-title: AEDBSCAN—Adaptive epsilon density-based spatial clustering of applications with noise
– volume: 75
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.datak.2021.101922_b1
  article-title: AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities
  publication-title: J. Supercomput.
– volume: 20
  start-page: 1313
  year: 2017
  ident: 10.1016/j.datak.2021.101922_b17
  article-title: A novel DBSCAN with entropy and probability for mixed data
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-0818-3
– year: 2009
  ident: 10.1016/j.datak.2021.101922_b38
– volume: 56
  start-page: 83
  issue: 2
  year: 2001
  ident: 10.1016/j.datak.2021.101922_b28
  article-title: Looking for natural patterns in data: Part 1. Density-based approach
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00111-3
– volume: vol. 28
  start-page: 49
  year: 1999
  ident: 10.1016/j.datak.2021.101922_b25
  article-title: Optics: ordering points to identify the clustering structure
– year: 2006
  ident: 10.1016/j.datak.2021.101922_b41
  article-title: A survey of clustering data mining techniques
– volume: 83
  start-page: 375
  year: 2018
  ident: 10.1016/j.datak.2021.101922_b14
  article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.030
– year: 2013
  ident: 10.1016/j.datak.2021.101922_b40
– volume: 119
  start-page: 113
  year: 2017
  ident: 10.1016/j.datak.2021.101922_b36
  article-title: Sparse learning based fuzzy c-means clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.12.006
– year: 2020
  ident: 10.1016/j.datak.2021.101922_b18
  article-title: K-DBSCAN: An improved DBSCAN algorithm for big data
  publication-title: J. Supercomput.
– volume: 21
  start-page: 65
  issue: 1
  year: 2003
  ident: 10.1016/j.datak.2021.101922_b5
  article-title: Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bio-informatic approach to immune complexity
  publication-title: J. Autoimmun.
  doi: 10.1016/S0896-8411(03)00064-7
– volume: 78
  start-page: 33261
  year: 2019
  ident: 10.1016/j.datak.2021.101922_b37
  article-title: Sparse learning based on clustering by fast search and find of density peaks
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-07885-7
– start-page: 420
  year: 2019
  ident: 10.1016/j.datak.2021.101922_b29
  article-title: Determining the eps parameter of the DBSCAN algorithm
– volume: 2
  start-page: 11
  issue: 2
  year: 2013
  ident: 10.1016/j.datak.2021.101922_b23
  article-title: AutoEpsDBSCAN: DBSCAN with Eps automatic for large dataset
  publication-title: Int. J. Adv. Comput. Theory Eng.
– start-page: 53
  year: 1987
  ident: 10.1016/j.datak.2021.101922_b44
– volume: 24
  start-page: 1166
  year: 2012
  ident: 10.1016/j.datak.2021.101922_b21
  article-title: Grid-based DBSCAN algorithm with referential parameters
  publication-title: Physics Procedia
  doi: 10.1016/j.phpro.2012.02.174
– volume: 39
  start-page: 146
  year: 2015
  ident: 10.1016/j.datak.2021.101922_b4
  article-title: Hierarchical cluster ensemble selection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.12.005
– volume: vol. 4
  start-page: 2976
  year: 2006
  ident: 10.1016/j.datak.2021.101922_b20
  article-title: Gridbscan: Grid density-based spatial clustering of applications with noise
– start-page: 193
  year: 2015
  ident: 10.1016/j.datak.2021.101922_b35
  article-title: Density based clustering: Alternatives to DBSCAN
– volume: 41
  start-page: 2939
  issue: 6
  year: 2014
  ident: 10.1016/j.datak.2021.101922_b11
  article-title: Algorithm to determine ɛ-distance parameter in density based clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.10.025
– volume: 91
  issue: 7
  year: 2014
  ident: 10.1016/j.datak.2021.101922_b27
  article-title: Choosing dbscan parameters automatically using differential evolution
  publication-title: Int. J. Comput. Appl.
– start-page: 243
  year: 2013
  ident: 10.1016/j.datak.2021.101922_b45
SSID ssj0002405
Score 2.4643302
Snippet Clustering is the process of partitioning objects of a dataset into some groups according to similarities and dissimilarities between its objects. DBSCAN is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101922
SubjectTerms Clustering
DBSCAN
Density based clustering
Hierarchical clustering
Title DBHC: A DBSCAN-based hierarchical clustering algorithm
URI https://dx.doi.org/10.1016/j.datak.2021.101922
Volume 135
WOSCitedRecordID wos000702828000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002405
  issn: 0169-023X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVgy4ELLV-i0KIcuC2usk78xS3dLSocVkgUaW-RYzu0ZUlXuymq-PWMncQJUK3ogUsUWcnEyhuNx_b4PYTexJrTlDOFC1MonNqYYsmIxkWZpkYKt4NYerEJPp-LxUJ-amUVN15OgFeVuLmRq_8KNbQB2O7o7B3gDkahAe4BdLgC7HD9J-Bnx6fT5rz57PjzNJtjN1CZsdO89rsGnhFkee0IEvwBxeXXq_VFff59mKbOVK28U4Qlt7HtiQtDEY9yhUYYklBjvTbwOFtCBP0ZIj24lN2cr6DX3umcBsRwlYFMQhlVWHhk0EC8dm8fORM6iH0Tly2SW8Nys0Jw6cyrb0fO_lH_9O8k2H8MTqFksKtGu8y9kdwZyRsj99EO4VSKEdrJPpwsPoaRGLKVpoS17XvHOuXr-_7qy-2ZySDbONtDj9ppQpQ18D5G92z1BO12EhxRG5GfIubQfhdl0RDraIh11GMdBayfoS_vT86mp7iVwsAacowaUyVhHm6oipmOiWXSGGVLK4WwJFGUpEVMhXVcgUpIoUrOyomlUhtmE80NT56jUXVV2RcoInHhCHpgZk9sanQphNZGJCXTXE-MjPcR6X5DrlueeCdXssy3QLCP3oaXVg1NyvbHWfd_8zbTazK4HDxm24sv7_adV-hh78wHaFSvr-0heqB_1Beb9evWXX4BXVNwVQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DBHC%3A+A+DBSCAN-based+hierarchical+clustering+algorithm&rft.jtitle=Data+%26+knowledge+engineering&rft.au=Latifi-Pakdehi%2C+Alireza&rft.au=Daneshpour%2C+Negin&rft.date=2021-09-01&rft.issn=0169-023X&rft.volume=135&rft.spage=101922&rft_id=info:doi/10.1016%2Fj.datak.2021.101922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_datak_2021_101922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-023X&client=summon