Optimizing distributed reentrant heterogeneous hybrid flowshop batch scheduling problem: Iterative construction-local search-reconstruction algorithm

•A MILP model for the DRHHFBSP is developed.•A construction heuristic capable of generating excellent solutions is developed.•An iterative construction-local search-reconstruction algorithm is designed. In recent years, the distributed hybrid flowshop scheduling problem (DHFSP) has garnered widespre...

Full description

Saved in:
Bibliographic Details
Published in:Swarm and evolutionary computation Vol. 90; p. 101681
Main Authors: He, Peng, Zhang, Biao, Lu, Chao, Meng, Lei-lei, Zou, Wen-qiang
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2024
Subjects:
ISSN:2210-6502
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A MILP model for the DRHHFBSP is developed.•A construction heuristic capable of generating excellent solutions is developed.•An iterative construction-local search-reconstruction algorithm is designed. In recent years, the distributed hybrid flowshop scheduling problem (DHFSP) has garnered widespread attention due to the continuous emergence of practical challenges. The production model, characterized by multiple varieties and small batches, is widely observed in the industrial sector. Additionally, in various real-world scenarios, batches often undergo repeated processes across multiple stages. This paper addresses the research gap by introducing the reentrant nature of batches and the heterogeneity of factories into the DHFSP, resulting in a novel problem referred to as the distributed reentrant heterogeneous hybrid flowshop batch scheduling problem (DRHHFBSP). To tackle this problem, we propose a mixed-integer linear programming (MILP) model. Given that this problem falls into the NP-hard category, an iterative construction-local search-reconstruction algorithm (ICLSRA) is designed. Specifically designed by incorporating construction, local search, and reconstruction processes that have different roles, this algorithm strikes a balance between local and global search. Comparative analysis with the MILP model and state-of-the-art algorithms demonstrates the superiority of ICLSRA in achieving efficient solutions for the DRHHFBSP.
AbstractList •A MILP model for the DRHHFBSP is developed.•A construction heuristic capable of generating excellent solutions is developed.•An iterative construction-local search-reconstruction algorithm is designed. In recent years, the distributed hybrid flowshop scheduling problem (DHFSP) has garnered widespread attention due to the continuous emergence of practical challenges. The production model, characterized by multiple varieties and small batches, is widely observed in the industrial sector. Additionally, in various real-world scenarios, batches often undergo repeated processes across multiple stages. This paper addresses the research gap by introducing the reentrant nature of batches and the heterogeneity of factories into the DHFSP, resulting in a novel problem referred to as the distributed reentrant heterogeneous hybrid flowshop batch scheduling problem (DRHHFBSP). To tackle this problem, we propose a mixed-integer linear programming (MILP) model. Given that this problem falls into the NP-hard category, an iterative construction-local search-reconstruction algorithm (ICLSRA) is designed. Specifically designed by incorporating construction, local search, and reconstruction processes that have different roles, this algorithm strikes a balance between local and global search. Comparative analysis with the MILP model and state-of-the-art algorithms demonstrates the superiority of ICLSRA in achieving efficient solutions for the DRHHFBSP.
ArticleNumber 101681
Author Zhang, Biao
Lu, Chao
Zou, Wen-qiang
He, Peng
Meng, Lei-lei
Author_xml – sequence: 1
  givenname: Peng
  surname: He
  fullname: He, Peng
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252000, PR China
– sequence: 2
  givenname: Biao
  orcidid: 0000-0003-4148-8172
  surname: Zhang
  fullname: Zhang, Biao
  email: zhangbiao@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252000, PR China
– sequence: 3
  givenname: Chao
  surname: Lu
  fullname: Lu, Chao
  organization: School of Computer Science, China University of Geosciences, Wuhan, 430074, PR China
– sequence: 4
  givenname: Lei-lei
  orcidid: 0000-0003-1439-4832
  surname: Meng
  fullname: Meng, Lei-lei
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252000, PR China
– sequence: 5
  givenname: Wen-qiang
  surname: Zou
  fullname: Zou, Wen-qiang
  organization: School of Computer Science, Liaocheng University, Liaocheng, 252000, PR China
BookMark eNqFkMtOwzAQRb0oEqX0C9j4B1LsvIPEAlU8KlViA2vLmUwaV4ld2U6r8h_8L0nLArEAbyx5fK7mnisy0UYjITecLTjj6e124Q64N4uQhfHpJecTMg1DzoI0YeElmTu3ZcNJWZgkxZR8vu686tSH0htaKeetKnuPFbWI2lupPW3QozUb1Gh6R5tjaVVF69YcXGN2tJQeGuqgwapvx5CdNWWL3R1dDZj0ao8UjB6Ce_DK6KA1IFvqUFpoAos_Z1S2G2OVb7prclHL1uH8-56R96fHt-VLsH59Xi0f1gFELPJBkqV5DjXHjPFIJpBgjGmaZpDVWVFgBVEcQ5GVnDGIywzKBFgqY8jzUuLwN5qR4pwL1jhnsRagvBx3GbqrVnAmRoliK05axahVnLUObPSL3VnVSXv8h7o_UzjU2iu0woFCDVipQYYXlVF_8l-Ni52T
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129716
crossref_primary_10_1016_j_swevo_2025_102076
crossref_primary_10_1016_j_eswa_2025_126603
crossref_primary_10_1016_j_jii_2025_100945
crossref_primary_10_1016_j_cie_2025_110983
crossref_primary_10_1016_j_engappai_2025_110537
crossref_primary_10_1016_j_swevo_2025_101996
crossref_primary_10_1016_j_swevo_2025_102015
Cites_doi 10.1016/j.knosys.2023.110309
10.1016/j.knosys.2021.107819
10.3390/app10031174
10.1080/00207543.2022.2031331
10.1016/j.engappai.2021.104375
10.1016/j.cor.2019.06.009
10.1016/j.swevo.2022.101143
10.1016/j.swevo.2020.100747
10.1016/j.cie.2020.106545
10.1016/j.swevo.2022.101058
10.1016/j.ejor.2006.06.066
10.1109/TETCI.2020.3022372
10.1016/j.cor.2021.105482
10.1016/j.swevo.2023.101374
10.1080/00207543.2020.1753897
10.1016/j.knosys.2022.108328
10.1016/j.knosys.2020.105527
10.1016/j.cie.2019.106154
10.1016/j.asoc.2020.106946
10.1016/j.cie.2022.108146
10.1016/j.ejor.2019.10.004
10.1109/TEVC.2021.3106168
10.1016/j.eswa.2023.119548
10.1080/0305215X.2019.1674295
10.1016/j.asoc.2023.110563
10.1007/s10732-019-09425-w
10.1016/j.knosys.2021.107874
10.1016/j.eswa.2022.117555
10.1016/j.promfg.2020.01.354
10.1016/j.eswa.2022.117256
10.1016/j.cie.2022.108366
10.32604/csse.2023.022716
10.1016/j.asoc.2021.107305
10.1109/TCYB.2020.3041494
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2024.101681
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2024_101681
S2210650224002190
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-57688cf1e7013a5c5e4e6667c7f799edc344c97b100c4b7cb5c06a4c88baee4e3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001298000400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Sat Nov 29 05:45:04 EST 2025
Tue Nov 18 22:32:55 EST 2025
Sat Aug 24 15:41:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed hybrid flowshop scheduling
Batch scheduling
Reentrant scheduling
Heuristic
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-57688cf1e7013a5c5e4e6667c7f799edc344c97b100c4b7cb5c06a4c88baee4e3
ORCID 0000-0003-1439-4832
0000-0003-4148-8172
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2024_101681
crossref_primary_10_1016_j_swevo_2024_101681
elsevier_sciencedirect_doi_10_1016_j_swevo_2024_101681
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Lu, Meng, Han, Sang, Jiang (bib0031) 2023; 217
Chen, Pan, Gao, Sang (bib0005) 2021; 104
Yang, Leus (bib0017) 2021; 27
Alfaro-Fernández, Ruiz, Pagnozzi, Stützle (bib0022) 2020; 282
Miyata, Nagano (bib0001) 2022; 171
Costa, Fernandez-Viagas, Framiñan (bib0021) 2020; 146
Qin, Han, Liu, Li, Pan (bib0035) 2022; 201
Meng, Zhang, Zhang, Gao, Ren, Sang (bib0006) 2023; 82
Wang, Xu, Gu (bib0014) 2022; 238
Mraihi, Driss, El-Haouzi (bib0002) 2023; 238
Liu (bib0016) 2008; 187
Lin, Liu, Chen (bib0023) 2020; 139
Lu, Liu, Zhang, Yin (bib0007) 2022; 204
Zhang, Pan, Meng, Zhang, Ren, Li, Jiang (bib0013) 2021; 106
Lei, Wang (bib0024) 2020; 52
Guo, Sang, Zhang, Meng, Liu (bib0032) 2022; 242
Meng, Gao, Ren, Zhang, Sang, Zhang (bib0011) 2022; 71
Li, Li, Pan, Gao, Tasgetiren (bib0026) 2019; 39
Pan, Gao, Wang (bib0004) 2020; 52
Shao, Shao, Pi (bib0008) 2020; 194
Li, Li, Gao, Zhang, Pan, Tasgetiren, Meng (bib0009) 2021; 59
Jemmali, Hidri (bib0018) 2023; 44
Li, Li, Gao (bib0030) 2021; 100
Gholami, Sun (bib0029) 2023; 264
Cai, Lei, Wang, Wang (bib0027) 2023; 61
Dong, Ye (bib0028) 2022; 169
Xuan, Li, Li (bib0015) 2023; 145
Shao, Shao, Pi (bib0034) 2021; 136
Zhang, Pan, Meng, Lu, Mou, Li (bib0012) 2022; 238
Shao, Shao, Pi (bib0003) 2020; 59
Wang, Wang (bib0010) 2021; 26
Wang, Pan, Gao, Wang (bib0033) 2022; 74
Öztop, Tasgetiren, Eliiyi, Pan (bib0019) 2019; 111
Pang, Xue, Tseng, Lim, Liu (bib0020) 2020; 10
Wang, Wang (bib0025) 2020; 5
Cai (10.1016/j.swevo.2024.101681_bib0027) 2023; 61
Jemmali (10.1016/j.swevo.2024.101681_bib0018) 2023; 44
Pang (10.1016/j.swevo.2024.101681_bib0020) 2020; 10
Meng (10.1016/j.swevo.2024.101681_bib0011) 2022; 71
Meng (10.1016/j.swevo.2024.101681_bib0006) 2023; 82
Lin (10.1016/j.swevo.2024.101681_bib0023) 2020; 139
Lei (10.1016/j.swevo.2024.101681_bib0024) 2020; 52
Liu (10.1016/j.swevo.2024.101681_bib0016) 2008; 187
Miyata (10.1016/j.swevo.2024.101681_bib0001) 2022; 171
Zhang (10.1016/j.swevo.2024.101681_bib0013) 2021; 106
Shao (10.1016/j.swevo.2024.101681_bib0034) 2021; 136
Pan (10.1016/j.swevo.2024.101681_bib0004) 2020; 52
Shao (10.1016/j.swevo.2024.101681_bib0003) 2020; 59
Zhang (10.1016/j.swevo.2024.101681_bib0031) 2023; 217
Wang (10.1016/j.swevo.2024.101681_bib0010) 2021; 26
Li (10.1016/j.swevo.2024.101681_bib0026) 2019; 39
Li (10.1016/j.swevo.2024.101681_bib0009) 2021; 59
Alfaro-Fernández (10.1016/j.swevo.2024.101681_bib0022) 2020; 282
Lu (10.1016/j.swevo.2024.101681_bib0007) 2022; 204
Wang (10.1016/j.swevo.2024.101681_bib0033) 2022; 74
Xuan (10.1016/j.swevo.2024.101681_bib0015) 2023; 145
Chen (10.1016/j.swevo.2024.101681_bib0005) 2021; 104
Wang (10.1016/j.swevo.2024.101681_bib0014) 2022; 238
Guo (10.1016/j.swevo.2024.101681_bib0032) 2022; 242
Zhang (10.1016/j.swevo.2024.101681_bib0012) 2022; 238
Costa (10.1016/j.swevo.2024.101681_bib0021) 2020; 146
Dong (10.1016/j.swevo.2024.101681_bib0028) 2022; 169
Shao (10.1016/j.swevo.2024.101681_bib0008) 2020; 194
Mraihi (10.1016/j.swevo.2024.101681_bib0002) 2023; 238
Qin (10.1016/j.swevo.2024.101681_bib0035) 2022; 201
Öztop (10.1016/j.swevo.2024.101681_bib0019) 2019; 111
Gholami (10.1016/j.swevo.2024.101681_bib0029) 2023; 264
Wang (10.1016/j.swevo.2024.101681_bib0025) 2020; 5
Li (10.1016/j.swevo.2024.101681_bib0030) 2021; 100
Yang (10.1016/j.swevo.2024.101681_bib0017) 2021; 27
References_xml – volume: 10
  start-page: 1174
  year: 2020
  ident: bib0020
  article-title: Hybrid flow shop scheduling problems using improved fireworks algorithm for permutation
  publication-title: Applied Sciences
– volume: 5
  start-page: 947
  year: 2020
  end-page: 961
  ident: bib0025
  article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling
  publication-title: IEEe Trans. Emerg. Top. Comput. Intell.
– volume: 59
  start-page: 3880
  year: 2021
  end-page: 3899
  ident: bib0009
  article-title: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Int. J. Prod. Res.
– volume: 82
  year: 2023
  ident: bib0006
  article-title: MILP modeling and optimization of multi-objective flexible job shop scheduling problem with controllable processing times
  publication-title: Swarm. Evol. Comput.
– volume: 169
  year: 2022
  ident: bib0028
  article-title: Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system
  publication-title: Comput. Ind. Eng.
– volume: 59
  year: 2020
  ident: bib0003
  article-title: Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem
  publication-title: Swarm. Evol. Comput.
– volume: 111
  start-page: 177
  year: 2019
  end-page: 196
  ident: bib0019
  article-title: Metaheuristic algorithms for the hybrid flowshop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 136
  year: 2021
  ident: bib0034
  article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 204
  year: 2022
  ident: bib0007
  article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
  publication-title: Expert. Syst. Appl.
– volume: 44
  start-page: 563
  year: 2023
  end-page: 577
  ident: bib0018
  article-title: Hybrid flow shop with setup times scheduling problem
  publication-title: Comput. Syst. Sci. Eng.
– volume: 201
  year: 2022
  ident: bib0035
  article-title: A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints
  publication-title: Expert. Syst. Appl.
– volume: 74
  year: 2022
  ident: bib0033
  article-title: An effective two-stage iterated greedy algorithm to minimize total tardiness for the distributed flowshop group scheduling problem
  publication-title: Swarm. Evol. Comput.
– volume: 146
  year: 2020
  ident: bib0021
  article-title: Solving the hybrid flow shop scheduling problem with limited human resource constraint
  publication-title: Comput. Ind. Eng.
– volume: 238
  year: 2022
  ident: bib0014
  article-title: A two-stage discrete water wave optimization algorithm for the flowshop lot-streaming scheduling problem with intermingling and variable lot sizes
  publication-title: Knowl. Based. Syst.
– volume: 106
  year: 2021
  ident: bib0013
  article-title: A collaborative variable neighborhood descent algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Appl. Soft. Comput.
– volume: 52
  start-page: 5999
  year: 2020
  end-page: 6012
  ident: bib0004
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEe Trans. Cybern.
– volume: 264
  year: 2023
  ident: bib0029
  article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Knowl. Based. Syst.
– volume: 242
  year: 2022
  ident: bib0032
  article-title: An effective metaheuristic with a differential flight strategy for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Knowl. Based. Syst.
– volume: 61
  start-page: 1233
  year: 2023
  end-page: 1251
  ident: bib0027
  article-title: A novel shuffled frog-leaping algorithm with reinforcement learning for distributed assembly hybrid flow shop scheduling
  publication-title: Int. J. Prod. Res.
– volume: 71
  year: 2022
  ident: bib0011
  article-title: Novel MILP and CP models for distributed hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm. Evol. Comput.
– volume: 187
  start-page: 1171
  year: 2008
  end-page: 1183
  ident: bib0016
  article-title: Single-job lot streaming in m-1 two-stage hybrid flowshops
  publication-title: Eur J Oper Res
– volume: 100
  year: 2021
  ident: bib0030
  article-title: A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem
  publication-title: Appl. Soft. Comput.
– volume: 217
  year: 2023
  ident: bib0031
  article-title: Reconfigurable distributed flowshop group scheduling with a nested variable neighborhood descent algorithm
  publication-title: Expert. Syst. Appl.
– volume: 238
  year: 2022
  ident: bib0012
  article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Knowl. Based. Syst.
– volume: 139
  year: 2020
  ident: bib0023
  article-title: Considering stockers in reentrant hybrid flow shop scheduling with limited buffer capacity
  publication-title: Comput. Ind. Eng.
– volume: 171
  year: 2022
  ident: bib0001
  article-title: An iterated greedy algorithm for distributed blocking flow shop with setup times and maintenance operations to minimize makespan
  publication-title: Comput. Ind. Eng.
– volume: 27
  start-page: 133
  year: 2021
  end-page: 158
  ident: bib0017
  article-title: Scheduling hybrid flow shops with time windows
  publication-title: J. Heuristics
– volume: 282
  start-page: 835
  year: 2020
  end-page: 845
  ident: bib0022
  article-title: Automatic algorithm design for hybrid flowshop scheduling problems
  publication-title: Eur J Oper Res
– volume: 194
  year: 2020
  ident: bib0008
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowl. Based. Syst.
– volume: 238
  year: 2023
  ident: bib0002
  article-title: Distributed permutation flow shop scheduling problem with worker flexibility: review, trends and model proposition
  publication-title: Expert. Syst. Appl.
– volume: 26
  start-page: 461
  year: 2021
  end-page: 475
  ident: bib0010
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Evolutionary Comput.
– volume: 104
  year: 2021
  ident: bib0005
  article-title: A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 52
  start-page: 1461
  year: 2020
  end-page: 1474
  ident: bib0024
  article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping
  publication-title: Engineering Optimization
– volume: 145
  year: 2023
  ident: bib0015
  article-title: An artificial immune differential evolution algorithm for scheduling a distributed heterogeneous flexible flowshop
  publication-title: Appl. Soft. Comput.
– volume: 39
  start-page: 1158
  year: 2019
  end-page: 1166
  ident: bib0026
  article-title: An artificial bee colony algorithm for the distributed hybrid flowshop scheduling problem
  publication-title: Procedia Manuf.
– volume: 264
  year: 2023
  ident: 10.1016/j.swevo.2024.101681_bib0029
  article-title: Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2023.110309
– volume: 238
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0012
  article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2021.107819
– volume: 10
  start-page: 1174
  issue: 3
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0020
  article-title: Hybrid flow shop scheduling problems using improved fireworks algorithm for permutation
  publication-title: Applied Sciences
  doi: 10.3390/app10031174
– volume: 61
  start-page: 1233
  issue: 4
  year: 2023
  ident: 10.1016/j.swevo.2024.101681_bib0027
  article-title: A novel shuffled frog-leaping algorithm with reinforcement learning for distributed assembly hybrid flow shop scheduling
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2022.2031331
– volume: 104
  year: 2021
  ident: 10.1016/j.swevo.2024.101681_bib0005
  article-title: A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104375
– volume: 111
  start-page: 177
  year: 2019
  ident: 10.1016/j.swevo.2024.101681_bib0019
  article-title: Metaheuristic algorithms for the hybrid flowshop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2019.06.009
– volume: 74
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0033
  article-title: An effective two-stage iterated greedy algorithm to minimize total tardiness for the distributed flowshop group scheduling problem
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2022.101143
– volume: 59
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0003
  article-title: Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop scheduling problem
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2020.100747
– volume: 146
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0021
  article-title: Solving the hybrid flow shop scheduling problem with limited human resource constraint
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106545
– volume: 71
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0011
  article-title: Novel MILP and CP models for distributed hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2022.101058
– volume: 187
  start-page: 1171
  issue: 3
  year: 2008
  ident: 10.1016/j.swevo.2024.101681_bib0016
  article-title: Single-job lot streaming in m-1 two-stage hybrid flowshops
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.06.066
– volume: 5
  start-page: 947
  issue: 6
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0025
  article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling
  publication-title: IEEe Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2020.3022372
– volume: 136
  year: 2021
  ident: 10.1016/j.swevo.2024.101681_bib0034
  article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105482
– volume: 238
  issue: C
  year: 2023
  ident: 10.1016/j.swevo.2024.101681_bib0002
  article-title: Distributed permutation flow shop scheduling problem with worker flexibility: review, trends and model proposition
  publication-title: Expert. Syst. Appl.
– volume: 82
  year: 2023
  ident: 10.1016/j.swevo.2024.101681_bib0006
  article-title: MILP modeling and optimization of multi-objective flexible job shop scheduling problem with controllable processing times
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2023.101374
– volume: 59
  start-page: 3880
  year: 2021
  ident: 10.1016/j.swevo.2024.101681_bib0009
  article-title: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1753897
– volume: 242
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0032
  article-title: An effective metaheuristic with a differential flight strategy for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2022.108328
– volume: 194
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0008
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2020.105527
– volume: 139
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0023
  article-title: Considering stockers in reentrant hybrid flow shop scheduling with limited buffer capacity
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106154
– volume: 100
  year: 2021
  ident: 10.1016/j.swevo.2024.101681_bib0030
  article-title: A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.106946
– volume: 169
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0028
  article-title: Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108146
– volume: 282
  start-page: 835
  issue: 3
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0022
  article-title: Automatic algorithm design for hybrid flowshop scheduling problems
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2019.10.004
– volume: 26
  start-page: 461
  year: 2021
  ident: 10.1016/j.swevo.2024.101681_bib0010
  article-title: A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Evolutionary Comput.
  doi: 10.1109/TEVC.2021.3106168
– volume: 217
  year: 2023
  ident: 10.1016/j.swevo.2024.101681_bib0031
  article-title: Reconfigurable distributed flowshop group scheduling with a nested variable neighborhood descent algorithm
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.119548
– volume: 52
  start-page: 1461
  issue: 9
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0024
  article-title: Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with memeplex grouping
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2019.1674295
– volume: 145
  year: 2023
  ident: 10.1016/j.swevo.2024.101681_bib0015
  article-title: An artificial immune differential evolution algorithm for scheduling a distributed heterogeneous flexible flowshop
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110563
– volume: 27
  start-page: 133
  issue: 1–2
  year: 2021
  ident: 10.1016/j.swevo.2024.101681_bib0017
  article-title: Scheduling hybrid flow shops with time windows
  publication-title: J. Heuristics
  doi: 10.1007/s10732-019-09425-w
– volume: 238
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0014
  article-title: A two-stage discrete water wave optimization algorithm for the flowshop lot-streaming scheduling problem with intermingling and variable lot sizes
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2021.107874
– volume: 204
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0007
  article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2022.117555
– volume: 39
  start-page: 1158
  year: 2019
  ident: 10.1016/j.swevo.2024.101681_bib0026
  article-title: An artificial bee colony algorithm for the distributed hybrid flowshop scheduling problem
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.01.354
– volume: 201
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0035
  article-title: A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2022.117256
– volume: 171
  year: 2022
  ident: 10.1016/j.swevo.2024.101681_bib0001
  article-title: An iterated greedy algorithm for distributed blocking flow shop with setup times and maintenance operations to minimize makespan
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108366
– volume: 44
  start-page: 563
  year: 2023
  ident: 10.1016/j.swevo.2024.101681_bib0018
  article-title: Hybrid flow shop with setup times scheduling problem
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.022716
– volume: 106
  year: 2021
  ident: 10.1016/j.swevo.2024.101681_bib0013
  article-title: A collaborative variable neighborhood descent algorithm for the hybrid flowshop scheduling problem with consistent sublots
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.107305
– volume: 52
  start-page: 5999
  issue: 7
  year: 2020
  ident: 10.1016/j.swevo.2024.101681_bib0004
  article-title: An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems
  publication-title: IEEe Trans. Cybern.
  doi: 10.1109/TCYB.2020.3041494
SSID ssj0000602559
Score 2.3845854
Snippet •A MILP model for the DRHHFBSP is developed.•A construction heuristic capable of generating excellent solutions is developed.•An iterative construction-local...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101681
SubjectTerms Batch scheduling
Distributed hybrid flowshop scheduling
Heuristic
Reentrant scheduling
Title Optimizing distributed reentrant heterogeneous hybrid flowshop batch scheduling problem: Iterative construction-local search-reconstruction algorithm
URI https://dx.doi.org/10.1016/j.swevo.2024.101681
Volume 90
WOSCitedRecordID wos001298000400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMvfCPGl_zAW8iUbzt7G2hoQ2ggbUh9ixLHpZmypGpLu_F_7P_lznbclE4TIPESVW7spL5fz3enu_sR8jYt01jEceBKn0s3whpgLnzhiqKMWR6whI0Va8lndnLCR6P062Bw3dXCLGvWNPzyMp3-V1HDGAgbS2f_Qtx2URiAzyB0uILY4fpHgv8CSuCi-okhgBK74iKhlcQaFRXHbRZgG8JetjBfYvrr5Aprtpxx3a7mk3bqFKCbJw74vHAGmVJ1RTmDoYNj1YIZc41Eu-4866rz0NEb6SoP237n5PX3dlYtJhd9K_h0lc80NYdcmr3A5D2hGCY2UgOOdA2aNOdrP8L9vspbm070w6QO2BHM1lUxB1m5taz6wY0gsmlyJuK2VXWDijEAN9UFy3JDi2vS0a0DQccmzvfmK_hBe_gINaZpYn7rtH2KC-O6mFcLmty7Q3YCFqd8SHYOjg9Hn2zwzkuUK4bEhd27dB2tVO7g1tNutnp6lszZQ3LfuCD0QEPnERnI5jF50NF7UKPtn5DrNZJoD0nUIoluIIlqJNEOSVQhia6RRA2S9qnFEd3GEb0RR9Ti6Cn59vHw7MORa1g8XAHm0cJFh5aLsS8ZeBs5KAYZSfCZmWBjlqayFGEUiZQVvueJqGCiiIWX5JHgvMgl3Bs-I8OmbeRzQmVYJKGMeVoUYzjgeQ7uPs_DIPUFy3lQ7pKg2-VMmBb3yLRSZ10u43mmRJOhaDItml3yzk6a6g4vt9-edOLLjJGqjc8MIHfbxBf_OvElubf-a7wiQ9h5-ZrcFctFNZ-9MdD8BU5Ww5A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+distributed+reentrant+heterogeneous+hybrid+flowshop+batch+scheduling+problem%3A+Iterative+construction-local+search-reconstruction+algorithm&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=He%2C+Peng&rft.au=Zhang%2C+Biao&rft.au=Lu%2C+Chao&rft.au=Meng%2C+Lei-lei&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=90&rft_id=info:doi/10.1016%2Fj.swevo.2024.101681&rft.externalDocID=S2210650224002190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon