Extracting deltas from column oriented NoSQL databases for different incremental applications and diverse data targets
This paper describes the Change Data Capture (CDC) problems in the context of column-oriented NoSQL databases (CoNoSQLDBs). CDC is a term mostly used by ETL tools and data warehousing environments (DW) to depict a data processing of extracting data changes made at the data sources. Based on analyzin...
Uloženo v:
| Vydáno v: | Data & knowledge engineering Ročník 93; s. 42 - 59 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.09.2014
|
| Témata: | |
| ISSN: | 0169-023X, 1872-6933 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper describes the Change Data Capture (CDC) problems in the context of column-oriented NoSQL databases (CoNoSQLDBs). CDC is a term mostly used by ETL tools and data warehousing environments (DW) to depict a data processing of extracting data changes made at the data sources. Based on analyzing the impacts and constraints caused by the core features of CoNoSQLDBs, we propose a logical change data (delta) model and the corresponding delta representations which could work with different incremental applications and diverse data targets. Moreover, we present five feasible CDC approaches, i.e. Timestamp-based approach, Audit-column approach, Log-based approach, Trigger-based approach and Snapshot differential approach and indicate the performance winners under different circumstances. |
|---|---|
| ISSN: | 0169-023X 1872-6933 |
| DOI: | 10.1016/j.datak.2014.07.002 |