Motion detection using block based bi-directional optical flow method

[Display omitted] •Optical flow based moving object detection algorithm is proposed.•Bi-directional optical flow field is used for motion estimation and detection.•A histogram and plot based thresholding scheme is employed for motion detection.•Foreground is detected using morphological operation, c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visual communication and image representation Vol. 49; pp. 89 - 103
Main Authors: Sengar, Sandeep Singh, Mukhopadhyay, Susanta
Format: Journal Article
Language:English
Published: Elsevier Inc 01.11.2017
Subjects:
ISSN:1047-3203, 1095-9076
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Optical flow based moving object detection algorithm is proposed.•Bi-directional optical flow field is used for motion estimation and detection.•A histogram and plot based thresholding scheme is employed for motion detection.•Foreground is detected using morphological operation, connected component analysis.•Our technique is compared with existing methods using real video datasets. Detecting moving objects from video frame sequences has a lot of useful applications in computer vision. This proposed method of moving object detection first estimates the bi-directional optical flow fields between (i) the current frame and the previous frame and between (ii) the current frame and the next frame. The bi-directional optical flow field is then subjected to normalization and enhancement. Each normalized and enhanced optical flow field is then divided into non-overlapping blocks. The moving objects are finally detected in the form of binary blobs by examining the histogram based thresholded values of such optical flow field of each block as well as the optical flow field of the candidate flow value. Our technique has been conceptualized, implemented and tested on real video data sets with complex background environment. The experimental results and quantitative evaluation establish that our technique achieves effective and efficient results than other existing methods.
AbstractList [Display omitted] •Optical flow based moving object detection algorithm is proposed.•Bi-directional optical flow field is used for motion estimation and detection.•A histogram and plot based thresholding scheme is employed for motion detection.•Foreground is detected using morphological operation, connected component analysis.•Our technique is compared with existing methods using real video datasets. Detecting moving objects from video frame sequences has a lot of useful applications in computer vision. This proposed method of moving object detection first estimates the bi-directional optical flow fields between (i) the current frame and the previous frame and between (ii) the current frame and the next frame. The bi-directional optical flow field is then subjected to normalization and enhancement. Each normalized and enhanced optical flow field is then divided into non-overlapping blocks. The moving objects are finally detected in the form of binary blobs by examining the histogram based thresholded values of such optical flow field of each block as well as the optical flow field of the candidate flow value. Our technique has been conceptualized, implemented and tested on real video data sets with complex background environment. The experimental results and quantitative evaluation establish that our technique achieves effective and efficient results than other existing methods.
Author Mukhopadhyay, Susanta
Sengar, Sandeep Singh
Author_xml – sequence: 1
  givenname: Sandeep Singh
  surname: Sengar
  fullname: Sengar, Sandeep Singh
  email: sandeep.iitdhanbad@gmail.com
– sequence: 2
  givenname: Susanta
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Susanta
BookMark eNqFkL1OwzAUhS1UJNrCE7DkBRKu4zSOBwZUlR-piAVmy7GvwSGNKzsU8fYkDRMDTOdIV9-Vzrcgs853SMglhYwCLa-arDloF7IcKM-gygD4CZlTEKtUAC9nYy94ynJgZ2QRYwMATLBiTjaPvne-Swz2qI_tI7ruNalbr9-TWkU0Se1S48J0Vm3i973TQ9rWfyY77N-8OSenVrURL35ySV5uN8_r-3T7dPewvtmmmgHr08KgWKlcMFaVqJQtrFI50srWohC1rsBWRgmBuS0LrpFTwzmtyhqKUlCrGFsSNv3VwccY0Mp9cDsVviQFOZqQjTyakKMJCZUcTAyU-EVp16txTR-Ua_9hrycWh1kHh0FG7bDTOBmRxrs_-W-vrX51
CitedBy_id crossref_primary_10_1016_j_measurement_2024_114336
crossref_primary_10_1007_s00138_020_01126_w
crossref_primary_10_1109_TITS_2024_3418949
crossref_primary_10_1007_s12204_020_2219_7
crossref_primary_10_1016_j_knosys_2022_109612
crossref_primary_10_1371_journal_pone_0308933
crossref_primary_10_1109_TCSVT_2020_3023175
crossref_primary_10_1007_s11042_019_08506_z
crossref_primary_10_1080_1206212X_2020_1758877
crossref_primary_10_1007_s10514_020_09964_3
crossref_primary_10_1016_j_displa_2023_102454
crossref_primary_10_1177_03611981231159128
crossref_primary_10_1016_j_aei_2020_101100
crossref_primary_10_1016_j_jvcir_2022_103686
crossref_primary_10_1007_s00521_019_04635_6
crossref_primary_10_1007_s11042_023_16556_7
crossref_primary_10_3390_rs15020417
Cites_doi 10.1109/TITS.2009.2030963
10.1016/j.imavis.2011.12.001
10.1016/0004-3702(81)90024-2
10.1016/j.robot.2010.06.002
10.1109/TAES.1976.308294
10.1007/s00521-013-1393-z
10.1016/j.jvcir.2015.03.003
10.1016/j.dsp.2012.07.017
10.1016/j.trit.2016.03.005
10.1016/j.jvcir.2016.10.016
10.1016/j.ijleo.2014.06.092
10.1109/TCSVT.2014.2335852
10.1016/j.patrec.2005.03.031
10.1109/34.868684
10.1109/34.868683
10.1016/j.imavis.2006.01.021
10.1016/j.compeleceng.2014.10.003
10.1109/TIE.2012.2206330
10.1016/j.ijleo.2016.03.061
10.1016/j.jvcir.2015.04.011
10.1016/j.cosrev.2014.04.001
10.1109/LSP.2014.2310494
10.1007/s13369-017-2672-2
10.1016/j.ijleo.2017.07.040
10.1016/j.measurement.2015.07.020
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jvcir.2017.08.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1095-9076
EndPage 103
ExternalDocumentID 10_1016_j_jvcir_2017_08_007
S1047320317301700
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMHC
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-4de95a293386eaaf4faa2e18fb949bc80f8da99e2f647ce71d77186b04691fa33
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416613800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1047-3203
IngestDate Sat Nov 29 04:56:35 EST 2025
Tue Nov 18 22:05:00 EST 2025
Fri Feb 23 02:24:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Block
Motion detection
Normalization
Morphology
Optical flow
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-4de95a293386eaaf4faa2e18fb949bc80f8da99e2f647ce71d77186b04691fa33
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_jvcir_2017_08_007
crossref_citationtrail_10_1016_j_jvcir_2017_08_007
elsevier_sciencedirect_doi_10_1016_j_jvcir_2017_08_007
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationTitle Journal of visual communication and image representation
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Horn, Schunck (b0145) 1981; 17
Megrhi, Jmal, Souidene, Beghdadi (b0025) 2016; 41
D.K. Prasad, D. Rajan, L. Rachmawati, E. Rajabaly, C. Quek, Video processing from electro-optical sensors for object detection and tracking in maritime environment: a survey, 2016, pp. 1–23. Available from: arXiv:1611.05842.
Database: Images & Video Clips (2), Collected by The HDTV Group, July, 2006.
Yan, Zhang, Xu, Dai, Zhang, Dai, Wu (b0135) 2014; 24
Stauffer, Grimson (b0115) 1999
Dougherty, Lotufo (b0205) 2003; Vol. 71
Sengar, Mukhopadhyay (b0220) 2017
Sengar, Mukhopadhyay (b0125) 2017; 42
Garcia, Gardel, Bravo, Lazaro, Martinez, Rodriguez (b0020) 2013; 60
Bouguet (b0080) 2001; 5
Yan, Zhang, Xu, Dai, Li, Dai, Wu (b0140) 2014; 21
Foresti, Micheloni, Piciarelli (b0065) 2005; 26
J.V.D. Vyver, Detection of Moving Objects in the HEVC Compressed Domain for Ultra-High Resolution Video, Master’s thesis, Ghent University, June 2016.
Sengar, Mukhopadhyay (b0005) 2016
Halidou, You, Hamidine, Etoundi, Diakite (b0070) 2014; 40
Sengar, Mukhopadhyay (b0040) 2016
Sengar, Mukhopadhyay (b0050) 2017
Bouwmans (b0045) 2014; 11
Deng, Cahill (b0195) 1993; vol. 3
Oliver, Rosario, Pentland (b0110) 2000; 22
Haritaoglu, Harwood, Davis (b0120) 2000; 22
Motlagh, Nakhaeinia, Tang, Karasfi, Khaksar (b0015) 2014; 24
Maddalena, Petrosino (b0105) 2012
Caviar Test Case Scenarios, dataset, Dec, 2011.
vidme, videodata, July, 2015.
Foy (b0200) 1976; 12
Zhao, Xia, Xu, Shi, Liu (b0010) 2016; 37
Tagliasacchi (b0170) 2007; 25
Liao, Chen, Chung (b0185) 2001; 17
Xin, Hou, Dong, Ding (b0190) 2014; 125
R.T. Collins, A.J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt, L. Wixson, A system for video surveillance and monitoring, Tech. Rep. CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May 2000.
.
Liu, Yu (b0180) 2009
Paul, Singh, Midya, Roy, Dogra (b0085) 2016
Schwarz, Mkhitaryan, Mateus, Navab (b0155) 2012; 30
Caballero, Castillo, Cantos, Tomas (b0075) 2010; 58
Choi, Pak, Ahn, Lee, Lim, Song (b0160) 2015; 75
Bouwmans (b0095) 2012
Sengar, Mukhopadhyay (b0175) 2016; 127
Hu, Chen, Chen, Huang, Wu (b0090) 2015; 30
Chen, Xu, Yang, Zhang (b0150) 2013; 23
Xu, Dong, Zhang, Xu (b0100) 2016; 1
Kim, Ye, Kim (b0165) 2010
Bouwmans, Sobral, Javed, Jung, Zahzah (b0060) 2016
Candamo, Shreve, Goldgof, Sapper, Kasturi (b0030) 2010; 11
Zhao (10.1016/j.jvcir.2017.08.007_b0010) 2016; 37
Sengar (10.1016/j.jvcir.2017.08.007_b0125) 2017; 42
Sengar (10.1016/j.jvcir.2017.08.007_b0220) 2017
Megrhi (10.1016/j.jvcir.2017.08.007_b0025) 2016; 41
Bouwmans (10.1016/j.jvcir.2017.08.007_b0045) 2014; 11
Stauffer (10.1016/j.jvcir.2017.08.007_b0115) 1999
Xin (10.1016/j.jvcir.2017.08.007_b0190) 2014; 125
Halidou (10.1016/j.jvcir.2017.08.007_b0070) 2014; 40
Chen (10.1016/j.jvcir.2017.08.007_b0150) 2013; 23
10.1016/j.jvcir.2017.08.007_b0225
Kim (10.1016/j.jvcir.2017.08.007_b0165) 2010
Sengar (10.1016/j.jvcir.2017.08.007_b0175) 2016; 127
Horn (10.1016/j.jvcir.2017.08.007_b0145) 1981; 17
Xu (10.1016/j.jvcir.2017.08.007_b0100) 2016; 1
Hu (10.1016/j.jvcir.2017.08.007_b0090) 2015; 30
Motlagh (10.1016/j.jvcir.2017.08.007_b0015) 2014; 24
Dougherty (10.1016/j.jvcir.2017.08.007_b0205) 2003; Vol. 71
Choi (10.1016/j.jvcir.2017.08.007_b0160) 2015; 75
Bouguet (10.1016/j.jvcir.2017.08.007_b0080) 2001; 5
Paul (10.1016/j.jvcir.2017.08.007_b0085) 2016
Maddalena (10.1016/j.jvcir.2017.08.007_b0105) 2012
Schwarz (10.1016/j.jvcir.2017.08.007_b0155) 2012; 30
10.1016/j.jvcir.2017.08.007_b0130
Foresti (10.1016/j.jvcir.2017.08.007_b0065) 2005; 26
Liu (10.1016/j.jvcir.2017.08.007_b0180) 2009
Garcia (10.1016/j.jvcir.2017.08.007_b0020) 2013; 60
Bouwmans (10.1016/j.jvcir.2017.08.007_b0095) 2012
Yan (10.1016/j.jvcir.2017.08.007_b0135) 2014; 24
Deng (10.1016/j.jvcir.2017.08.007_b0195) 1993; vol. 3
Oliver (10.1016/j.jvcir.2017.08.007_b0110) 2000; 22
10.1016/j.jvcir.2017.08.007_b0215
Haritaoglu (10.1016/j.jvcir.2017.08.007_b0120) 2000; 22
10.1016/j.jvcir.2017.08.007_b0055
Yan (10.1016/j.jvcir.2017.08.007_b0140) 2014; 21
Bouwmans (10.1016/j.jvcir.2017.08.007_b0060) 2016
Liao (10.1016/j.jvcir.2017.08.007_b0185) 2001; 17
10.1016/j.jvcir.2017.08.007_b0210
10.1016/j.jvcir.2017.08.007_b0035
Sengar (10.1016/j.jvcir.2017.08.007_b0040) 2016
Caballero (10.1016/j.jvcir.2017.08.007_b0075) 2010; 58
Candamo (10.1016/j.jvcir.2017.08.007_b0030) 2010; 11
Tagliasacchi (10.1016/j.jvcir.2017.08.007_b0170) 2007; 25
Foy (10.1016/j.jvcir.2017.08.007_b0200) 1976; 12
Sengar (10.1016/j.jvcir.2017.08.007_b0005) 2016
Sengar (10.1016/j.jvcir.2017.08.007_b0050) 2017
References_xml – volume: 21
  start-page: 573
  year: 2014
  end-page: 576
  ident: b0140
  article-title: A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors
  publication-title: IEEE Signal Process. Lett.
– start-page: 21
  year: 2012
  end-page: 26
  ident: b0105
  article-title: The SOBS algorithm: what are the limits?
  publication-title: Workshop on Computer Vision and Pattern Recognition
– reference: vidme, videodata, July, 2015. <
– start-page: 4669
  year: 2010
  end-page: 4672
  ident: b0165
  article-title: Moving object detection under free-moving camera
  publication-title: 17th IEEE International Conference on Image Processing
– volume: 41
  start-page: 375
  year: 2016
  end-page: 390
  ident: b0025
  article-title: Spatio-temporal action localization and detection for human action recognition in big dataset
  publication-title: J. Vis. Commun. Image Represent.
– volume: 11
  start-page: 206
  year: 2010
  end-page: 224
  ident: b0030
  article-title: Understanding transit scenes: a survey on human behavior-recognition algorithms
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: vol. 3
  start-page: 1615
  year: 1993
  end-page: 1619
  ident: b0195
  article-title: An adaptive gaussian filter for noise reduction and edge detection
  publication-title: Nuclear Science Symposium and Medical Imaging
– volume: 37
  start-page: 25
  year: 2016
  end-page: 31
  ident: b0010
  article-title: APPOS: an adaptive partial occlusion segmentation method for multiple vehicles tracking
  publication-title: J. Vis. Commun. Image Represent.
– volume: 58
  start-page: 1273
  year: 2010
  end-page: 1281
  ident: b0075
  article-title: Optical flow or image subtraction in human detection from infrared camera on mobile robot
  publication-title: J. Robot. Auton. Syst.
– start-page: 103
  year: 2012
  end-page: 138
  ident: b0095
  article-title: Background subtraction for visual surveillance: a fuzzy approach
  publication-title: Handbook on Soft Computing for Video Surveillance
– volume: 75
  start-page: 338
  year: 2015
  end-page: 353
  ident: b0160
  article-title: Arbitration algorithm of FIR filter and optical flow based on ANFIS for visual object tracking
  publication-title: J. Meas.
– reference: J.V.D. Vyver, Detection of Moving Objects in the HEVC Compressed Domain for Ultra-High Resolution Video, Master’s thesis, Ghent University, June 2016.
– volume: 12
  start-page: 187
  year: 1976
  end-page: 194
  ident: b0200
  article-title: Position-location solutions by Taylor-series estimation
  publication-title: IEEE Trans. Aerospace Electron. Syst.
– volume: 40
  start-page: 375
  year: 2014
  end-page: 389
  ident: b0070
  article-title: Fast pedestrian detection based on region of interest and multi-block local binary pattern descriptors
  publication-title: Comput. Electr. Eng.
– volume: 23
  start-page: 118
  year: 2013
  end-page: 125
  ident: b0150
  article-title: Quaternion based optical flow estimation for robust object tracking
  publication-title: J. Digit. Signal Process.
– volume: 127
  start-page: 6258
  year: 2016
  end-page: 6267
  ident: b0175
  article-title: Moving object area detection using normalized self adaptive optical flow
  publication-title: Optik-Int. J. Light Electron Opt.
– volume: 25
  start-page: 141
  year: 2007
  end-page: 147
  ident: b0170
  article-title: A genetic algorithm for optical flow estimation
  publication-title: J. Image Vis. Comput.
– volume: Vol. 71
  year: 2003
  ident: b0205
  publication-title: Hands-on Morphological Image Processing
– reference: Caviar Test Case Scenarios, dataset, Dec, 2011. <
– volume: 125
  start-page: 5690
  year: 2014
  end-page: 5694
  ident: b0190
  article-title: A self-adaptive optical flow method for the moving object detection in the video sequences
  publication-title: Int. J. Light Electron Opt.
– volume: 17
  start-page: 713
  year: 2001
  end-page: 727
  ident: b0185
  article-title: A fast algorithm for multilevel thresholding
  publication-title: J. Inform. Sci. Eng.
– start-page: 1
  year: 2017
  end-page: 8
  ident: b0220
  article-title: Moving object detection based on frame difference and w4
  publication-title: Signal Image Video Process.
– volume: 26
  start-page: 2232
  year: 2005
  end-page: 2243
  ident: b0065
  article-title: Detecting moving people in video streams
  publication-title: Pattern Recogn. Lett.
– volume: 22
  start-page: 831
  year: 2000
  end-page: 843
  ident: b0110
  article-title: Bayesian computer vision system for modeling human interactions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 60
  start-page: 3991
  year: 2013
  end-page: 4000
  ident: b0020
  article-title: Directional people counter based on head tracking
  publication-title: IEEE Trans. Ind. Electron.
– year: 2017
  ident: b0050
  article-title: Detection of moving objects based on enhancement of optical flow
  publication-title: Optik-Int. J. Light Electron Opt.
– reference: >.
– reference: D.K. Prasad, D. Rajan, L. Rachmawati, E. Rajabaly, C. Quek, Video processing from electro-optical sensors for object detection and tracking in maritime environment: a survey, 2016, pp. 1–23. Available from: arXiv:1611.05842.
– volume: 1
  start-page: 43
  year: 2016
  end-page: 60
  ident: b0100
  article-title: Background modeling methods in video analysis: a review and comparative evaluation
  publication-title: CAAI Trans. Intell. Technol.
– volume: 24
  start-page: 1569
  year: 2014
  end-page: 1581
  ident: b0015
  article-title: Automatic navigation of mobile robots in unknown environments
  publication-title: J. Neural Comput. Appl.
– volume: 17
  start-page: 185
  year: 1981
  end-page: 203
  ident: b0145
  article-title: Determining optical flow
  publication-title: J. Artif. Intell.
– volume: 42
  start-page: 3621
  year: 2017
  end-page: 3633
  ident: b0125
  article-title: Foreground detection via background subtraction and improved three-frame differencing
  publication-title: Arab. J. Sci. Eng.
– volume: 11
  start-page: 31
  year: 2014
  end-page: 66
  ident: b0045
  article-title: Traditional and recent approaches in background modeling for foreground detection: An overview
  publication-title: Comput. Sci. Rev.
– start-page: 1
  year: 2016
  end-page: 20
  ident: b0085
  article-title: Moving object detection using modified temporal differencing and local fuzzy thresholding
  publication-title: J. Supercomput.
– volume: 24
  start-page: 2077
  year: 2014
  end-page: 2089
  ident: b0135
  article-title: Efficient parallel framework for HEVC motion estimation on many-core processors
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 30
  start-page: 217
  year: 2012
  end-page: 226
  ident: b0155
  article-title: Human skeleton tracking from depth data using geodesic distances and optical flow
  publication-title: J. Image Vis. Comput.
– reference: R.T. Collins, A.J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt, L. Wixson, A system for video surveillance and monitoring, Tech. Rep. CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May 2000.
– volume: 22
  start-page: 809
  year: 2000
  end-page: 830
  ident: b0120
  article-title: : real-time surveillance of people and their activities
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 344
  year: 2009
  end-page: 349
  ident: b0180
  article-title: Otsu method and k-means
  publication-title: 9th International Conference on Hybrid Intelligent Systems
– year: 2016
  ident: b0060
  article-title: Decomposition into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset
  publication-title: Comput. Sci. Rev.
– start-page: 2345
  year: 2016
  end-page: 2349
  ident: b0005
  article-title: Moving object tracking using Laplacian-DCT based perceptual hash
  publication-title: International Conference on Wireless Communications, Signal Processing and Networking
– volume: 30
  start-page: 164
  year: 2015
  end-page: 180
  ident: b0090
  article-title: Moving object detection and tracking from video captured by moving camera
  publication-title: J. Vis. Commun. Image Represent.
– start-page: 467
  year: 2016
  end-page: 472
  ident: b0040
  article-title: A novel method for moving object detection based on block based frame differencing
  publication-title: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT)
– volume: 5
  start-page: 1
  year: 2001
  end-page: 10
  ident: b0080
  article-title: Pyramidal implementation of the affine Lucas kanade feature tracker description of the algorithm
  publication-title: Intel Corpor.
– year: 1999
  ident: b0115
  article-title: Adaptive background mixture models for real-time tracking
  publication-title: International Conference On Computer Vision and Pattern Recognition
– reference: Database: Images & Video Clips (2), Collected by The HDTV Group, July, 2006. <
– volume: 11
  start-page: 206
  year: 2010
  ident: 10.1016/j.jvcir.2017.08.007_b0030
  article-title: Understanding transit scenes: a survey on human behavior-recognition algorithms
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2009.2030963
– start-page: 21
  year: 2012
  ident: 10.1016/j.jvcir.2017.08.007_b0105
  article-title: The SOBS algorithm: what are the limits?
– volume: 30
  start-page: 217
  year: 2012
  ident: 10.1016/j.jvcir.2017.08.007_b0155
  article-title: Human skeleton tracking from depth data using geodesic distances and optical flow
  publication-title: J. Image Vis. Comput.
  doi: 10.1016/j.imavis.2011.12.001
– start-page: 2345
  year: 2016
  ident: 10.1016/j.jvcir.2017.08.007_b0005
  article-title: Moving object tracking using Laplacian-DCT based perceptual hash
– volume: 17
  start-page: 185
  year: 1981
  ident: 10.1016/j.jvcir.2017.08.007_b0145
  article-title: Determining optical flow
  publication-title: J. Artif. Intell.
  doi: 10.1016/0004-3702(81)90024-2
– volume: 58
  start-page: 1273
  year: 2010
  ident: 10.1016/j.jvcir.2017.08.007_b0075
  article-title: Optical flow or image subtraction in human detection from infrared camera on mobile robot
  publication-title: J. Robot. Auton. Syst.
  doi: 10.1016/j.robot.2010.06.002
– volume: 12
  start-page: 187
  year: 1976
  ident: 10.1016/j.jvcir.2017.08.007_b0200
  article-title: Position-location solutions by Taylor-series estimation
  publication-title: IEEE Trans. Aerospace Electron. Syst.
  doi: 10.1109/TAES.1976.308294
– start-page: 1
  year: 2017
  ident: 10.1016/j.jvcir.2017.08.007_b0220
  article-title: Moving object detection based on frame difference and w4
  publication-title: Signal Image Video Process.
– volume: 24
  start-page: 1569
  year: 2014
  ident: 10.1016/j.jvcir.2017.08.007_b0015
  article-title: Automatic navigation of mobile robots in unknown environments
  publication-title: J. Neural Comput. Appl.
  doi: 10.1007/s00521-013-1393-z
– year: 2016
  ident: 10.1016/j.jvcir.2017.08.007_b0060
  article-title: Decomposition into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset
  publication-title: Comput. Sci. Rev.
– volume: 30
  start-page: 164
  year: 2015
  ident: 10.1016/j.jvcir.2017.08.007_b0090
  article-title: Moving object detection and tracking from video captured by moving camera
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.03.003
– volume: 23
  start-page: 118
  year: 2013
  ident: 10.1016/j.jvcir.2017.08.007_b0150
  article-title: Quaternion based optical flow estimation for robust object tracking
  publication-title: J. Digit. Signal Process.
  doi: 10.1016/j.dsp.2012.07.017
– volume: 17
  start-page: 713
  year: 2001
  ident: 10.1016/j.jvcir.2017.08.007_b0185
  article-title: A fast algorithm for multilevel thresholding
  publication-title: J. Inform. Sci. Eng.
– volume: 1
  start-page: 43
  issue: 1
  year: 2016
  ident: 10.1016/j.jvcir.2017.08.007_b0100
  article-title: Background modeling methods in video analysis: a review and comparative evaluation
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1016/j.trit.2016.03.005
– start-page: 1
  year: 2016
  ident: 10.1016/j.jvcir.2017.08.007_b0085
  article-title: Moving object detection using modified temporal differencing and local fuzzy thresholding
  publication-title: J. Supercomput.
– start-page: 344
  year: 2009
  ident: 10.1016/j.jvcir.2017.08.007_b0180
  article-title: Otsu method and k-means
– ident: 10.1016/j.jvcir.2017.08.007_b0225
– start-page: 103
  year: 2012
  ident: 10.1016/j.jvcir.2017.08.007_b0095
  article-title: Background subtraction for visual surveillance: a fuzzy approach
– year: 1999
  ident: 10.1016/j.jvcir.2017.08.007_b0115
  article-title: Adaptive background mixture models for real-time tracking
– volume: 41
  start-page: 375
  year: 2016
  ident: 10.1016/j.jvcir.2017.08.007_b0025
  article-title: Spatio-temporal action localization and detection for human action recognition in big dataset
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2016.10.016
– volume: 125
  start-page: 5690
  issue: 19
  year: 2014
  ident: 10.1016/j.jvcir.2017.08.007_b0190
  article-title: A self-adaptive optical flow method for the moving object detection in the video sequences
  publication-title: Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2014.06.092
– volume: 5
  start-page: 1
  year: 2001
  ident: 10.1016/j.jvcir.2017.08.007_b0080
  article-title: Pyramidal implementation of the affine Lucas kanade feature tracker description of the algorithm
  publication-title: Intel Corpor.
– ident: 10.1016/j.jvcir.2017.08.007_b0055
– volume: vol. 3
  start-page: 1615
  year: 1993
  ident: 10.1016/j.jvcir.2017.08.007_b0195
  article-title: An adaptive gaussian filter for noise reduction and edge detection
– volume: 24
  start-page: 2077
  year: 2014
  ident: 10.1016/j.jvcir.2017.08.007_b0135
  article-title: Efficient parallel framework for HEVC motion estimation on many-core processors
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2014.2335852
– volume: 26
  start-page: 2232
  issue: 14
  year: 2005
  ident: 10.1016/j.jvcir.2017.08.007_b0065
  article-title: Detecting moving people in video streams
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.03.031
– start-page: 4669
  year: 2010
  ident: 10.1016/j.jvcir.2017.08.007_b0165
  article-title: Moving object detection under free-moving camera
– volume: 22
  start-page: 831
  year: 2000
  ident: 10.1016/j.jvcir.2017.08.007_b0110
  article-title: Bayesian computer vision system for modeling human interactions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868684
– volume: 22
  start-page: 809
  issue: 8
  year: 2000
  ident: 10.1016/j.jvcir.2017.08.007_b0120
  article-title: W4: real-time surveillance of people and their activities
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868683
– volume: 25
  start-page: 141
  year: 2007
  ident: 10.1016/j.jvcir.2017.08.007_b0170
  article-title: A genetic algorithm for optical flow estimation
  publication-title: J. Image Vis. Comput.
  doi: 10.1016/j.imavis.2006.01.021
– volume: 40
  start-page: 375
  issue: 8
  year: 2014
  ident: 10.1016/j.jvcir.2017.08.007_b0070
  article-title: Fast pedestrian detection based on region of interest and multi-block local binary pattern descriptors
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2014.10.003
– ident: 10.1016/j.jvcir.2017.08.007_b0210
– start-page: 467
  year: 2016
  ident: 10.1016/j.jvcir.2017.08.007_b0040
  article-title: A novel method for moving object detection based on block based frame differencing
– volume: 60
  start-page: 3991
  year: 2013
  ident: 10.1016/j.jvcir.2017.08.007_b0020
  article-title: Directional people counter based on head tracking
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2206330
– ident: 10.1016/j.jvcir.2017.08.007_b0215
– ident: 10.1016/j.jvcir.2017.08.007_b0130
– volume: 127
  start-page: 6258
  issue: 16
  year: 2016
  ident: 10.1016/j.jvcir.2017.08.007_b0175
  article-title: Moving object area detection using normalized self adaptive optical flow
  publication-title: Optik-Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2016.03.061
– volume: Vol. 71
  year: 2003
  ident: 10.1016/j.jvcir.2017.08.007_b0205
– volume: 37
  start-page: 25
  year: 2016
  ident: 10.1016/j.jvcir.2017.08.007_b0010
  article-title: APPOS: an adaptive partial occlusion segmentation method for multiple vehicles tracking
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.04.011
– volume: 11
  start-page: 31
  year: 2014
  ident: 10.1016/j.jvcir.2017.08.007_b0045
  article-title: Traditional and recent approaches in background modeling for foreground detection: An overview
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2014.04.001
– volume: 21
  start-page: 573
  year: 2014
  ident: 10.1016/j.jvcir.2017.08.007_b0140
  article-title: A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2310494
– ident: 10.1016/j.jvcir.2017.08.007_b0035
– volume: 42
  start-page: 3621
  issue: 8
  year: 2017
  ident: 10.1016/j.jvcir.2017.08.007_b0125
  article-title: Foreground detection via background subtraction and improved three-frame differencing
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-017-2672-2
– year: 2017
  ident: 10.1016/j.jvcir.2017.08.007_b0050
  article-title: Detection of moving objects based on enhancement of optical flow
  publication-title: Optik-Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2017.07.040
– volume: 75
  start-page: 338
  year: 2015
  ident: 10.1016/j.jvcir.2017.08.007_b0160
  article-title: Arbitration algorithm of FIR filter and optical flow based on ANFIS for visual object tracking
  publication-title: J. Meas.
  doi: 10.1016/j.measurement.2015.07.020
SSID ssj0003934
Score 2.2660353
Snippet [Display omitted] •Optical flow based moving object detection algorithm is proposed.•Bi-directional optical flow field is used for motion estimation and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Block
Morphology
Motion detection
Normalization
Optical flow
Title Motion detection using block based bi-directional optical flow method
URI https://dx.doi.org/10.1016/j.jvcir.2017.08.007
Volume 49
WOSCitedRecordID wos000416613800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywEOqBQQpQX5gLgsQeu8bB8rtIhWpULaIu0tchybzbbNrprs0v57xo-k2RZW9MAliiLHcTJfZiaTmW8Qei90DH5qmgRCahXELI8DQZQOhlRGIWM6ZdKSuJ7Q01M2mfDv_o9pbdsJ0Kpi19d88V9FDcdA2KZ09gHi7iaFA7APQoctiB22_yT4b7Yvz6BQjXJtwJc2HJCD1TofGKMFLmcZOFPm4oDzhS9kvJj_8i2l_-Kzrsp6aQlFelUl7vfDpcn9sQyZbTVTh7qxqn66NO6xiVirxWAMC5reivp8Cl_uxfRG3HR5Qo3ohyPAxJEuHOE0qKF-iMJh1FexjpXU60jXMshbW-IG3lPkLqYw-zRbydLQthJqmVZdh9x12uw75qxLMmzz12aZnSQzk2Sm56YhH9gOacJBC24fHo0mx53tjrjLQ2hvouWpshmB99byZ1-m55-c7aBnXkj40AHiOXqkql30tEc3uYv2_aCyvsQf8FppUP0CjRxwcAccbIGDLXCwBQ5eBw72wMEGONgB5yX68WV09vlr4JtsBBK8lyaIC8UTAU5fxFIl4NXVQoSKMJ3zmOeSDTUrBOcq1GlMpaKkoODOpLmJqxAtougV2qrmlXqNYH0hKeBzOpExiRU4rqnOKbzzYHAFLRK5h8L2cWXSM9CbRigX2QZR7aGP3UkLR8CyeXjayiHzPqR7Lhkga9OJbx52nX305Bb9B2iruVqqt-ixXDVlffXOw-o3xc-Yrg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+detection+using+block+based+bi-directional+optical+flow+method&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Sengar%2C+Sandeep+Singh&rft.au=Mukhopadhyay%2C+Susanta&rft.date=2017-11-01&rft.issn=1047-3203&rft.volume=49&rft.spage=89&rft.epage=103&rft_id=info:doi/10.1016%2Fj.jvcir.2017.08.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvcir_2017_08_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon