Multi-objective optimal power flow problem using constrained dynamic multitasking multi-objective optimization algorithm

The multi-objective optimal power flow (MOOPF) problem involves conflicting objectives and complex constraints, presenting a significant challenge for existing optimization methods. To address constrained multi-objective optimization problems (CMOPs), a recent evolutionary multi-tasking (EMT) framew...

Full description

Saved in:
Bibliographic Details
Published in:Swarm and evolutionary computation Vol. 93; p. 101850
Main Authors: Zhu, Junhua, Yu, Xiaobing, Wang, Feng, Mao, Yaqi
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2025
Subjects:
ISSN:2210-6502
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The multi-objective optimal power flow (MOOPF) problem involves conflicting objectives and complex constraints, presenting a significant challenge for existing optimization methods. To address constrained multi-objective optimization problems (CMOPs), a recent evolutionary multi-tasking (EMT) framework has been proposed, involving a primary task and several auxiliary tasks running in parallel. The design of these auxiliary tasks is critical for supporting the solution of the primary task. This paper introduces a novel constrained dynamic multitasking multi-objective optimization algorithm (CDMTMO) to solve CMOPs. The proposed algorithm comprises three populations, each assigned a specific task: the first population focuses on solving the primary CMOP, the second population tackles a constraint-relaxed problem, and the third population gradually transitions from solving an unconstrained problem to the CMOP. To ensure effective collaboration among auxiliary tasks and the main task, CDMTMO incorporates an improved ε-constrained method and an enhanced dual ranking method. Furthermore, a pre-selection strategy for solution sets is integrated to discern promising individuals and facilitate knowledge transfer. CDMTMO has been evaluated using two IEEE standard systems, to demonstrate its capability and suitability in efficiently tackling the MOOPF problem. A thorough analysis of CDMTMO's results was performed, comparing it with seven state-of-the-art algorithms: AGEMOEA, CCMO, DSPCMDE, CMOEMT, ToP, EMCMO and DEST. After evaluating across eight test cases, CDMTMO achieved the best inverted generational distance plus (IGD+) and hypervolume (HV) values in seven cases. Furthermore, CDMTMO achieves a feasible rate (FR) of 1 in all cases, demonstrating its consistent ability to find feasible solutions.
AbstractList The multi-objective optimal power flow (MOOPF) problem involves conflicting objectives and complex constraints, presenting a significant challenge for existing optimization methods. To address constrained multi-objective optimization problems (CMOPs), a recent evolutionary multi-tasking (EMT) framework has been proposed, involving a primary task and several auxiliary tasks running in parallel. The design of these auxiliary tasks is critical for supporting the solution of the primary task. This paper introduces a novel constrained dynamic multitasking multi-objective optimization algorithm (CDMTMO) to solve CMOPs. The proposed algorithm comprises three populations, each assigned a specific task: the first population focuses on solving the primary CMOP, the second population tackles a constraint-relaxed problem, and the third population gradually transitions from solving an unconstrained problem to the CMOP. To ensure effective collaboration among auxiliary tasks and the main task, CDMTMO incorporates an improved ε-constrained method and an enhanced dual ranking method. Furthermore, a pre-selection strategy for solution sets is integrated to discern promising individuals and facilitate knowledge transfer. CDMTMO has been evaluated using two IEEE standard systems, to demonstrate its capability and suitability in efficiently tackling the MOOPF problem. A thorough analysis of CDMTMO's results was performed, comparing it with seven state-of-the-art algorithms: AGEMOEA, CCMO, DSPCMDE, CMOEMT, ToP, EMCMO and DEST. After evaluating across eight test cases, CDMTMO achieved the best inverted generational distance plus (IGD+) and hypervolume (HV) values in seven cases. Furthermore, CDMTMO achieves a feasible rate (FR) of 1 in all cases, demonstrating its consistent ability to find feasible solutions.
ArticleNumber 101850
Author Mao, Yaqi
Yu, Xiaobing
Zhu, Junhua
Wang, Feng
Author_xml – sequence: 1
  givenname: Junhua
  orcidid: 0009-0002-4571-0498
  surname: Zhu
  fullname: Zhu, Junhua
  organization: The Research Institute for Risk Governance and Emergency Decision-Making, School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
– sequence: 2
  givenname: Xiaobing
  surname: Yu
  fullname: Yu, Xiaobing
  email: yuxb111@163.com
  organization: The Research Institute for Risk Governance and Emergency Decision-Making, School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
– sequence: 3
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  organization: The Research Institute for Risk Governance and Emergency Decision-Making, School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
– sequence: 4
  givenname: Yaqi
  surname: Mao
  fullname: Mao, Yaqi
  organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, China
BookMark eNqFkE9PwyAYhznMxDn3CbzwBTqBFtoePJjFf8mMFz0TCnRSW1iAbc5PL3WejFEuJG_e55f395yBiXVWA3CB0QIjzC67RdjrnVsQROg4qSiagCkhGGWMInIK5iF0KD2WFmg9Be-P2z6azDWdltHsNHSbaAbRw43baw_b3u3hxrum1wPcBmPXUDobohfGagXVwYrBSDiMIVGEt3Fh-C3RfIhonIWiXztv4utwDk5a0Qc9__5n4OX25nl5n62e7h6W16tM5iiPWVFJJbEuG1nRqmF1jkUhS9ZWipA0oqVArGWkbmtaKiwFk7JStUqFK1VoWuQzUB9zpXcheN1ymS4dbxlL9BwjPprjHf8yx0dz_GgusfkPduOTHH_4h7o6UjrV2hnteZBGW6mV8UkJV878yX8CyDWRnA
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128810
crossref_primary_10_1016_j_eswa_2025_129213
crossref_primary_10_1016_j_swevo_2025_102115
Cites_doi 10.1016/j.swevo.2021.100961
10.1016/j.asoc.2020.106321
10.1016/j.energy.2022.126290
10.1109/TEVC.2019.2894743
10.1016/j.swevo.2024.101525
10.1016/j.asoc.2023.110977
10.1109/TEVC.2009.2033582
10.1016/j.asoc.2021.108045
10.1109/TEVC.2022.3230822
10.1016/j.knosys.2021.107149
10.1007/978-3-540-88908-3_14
10.1016/j.eswa.2023.120298
10.1109/MCI.2017.2742868
10.1016/j.eswa.2023.121212
10.1016/j.apenergy.2024.123499
10.1016/j.enconman.2018.04.054
10.1016/j.swevo.2018.08.017
10.1109/TPWRS.2005.861978
10.1109/TPAS.1981.316791
10.1007/s10489-024-05714-5
10.1007/s00500-019-04077-1
10.1007/s10489-022-03796-7
10.1109/TPWRS.2021.3097066
10.1016/j.energy.2021.121478
10.1016/j.energy.2021.121362
10.1109/TCYB.2020.3031642
10.1109/TSMC.2021.3061698
10.1109/TEVC.2020.3004012
10.1016/j.asoc.2024.112155
10.1109/4235.996017
10.1016/j.swevo.2022.101196
10.1016/j.eswa.2023.122460
10.1016/j.asoc.2021.107421
10.1016/j.engappai.2017.10.019
10.1109/TEVC.2022.3155533
10.1016/j.ijepes.2014.02.017
10.1016/j.energy.2014.10.007
10.1109/TEVC.2022.3145582
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2025.101850
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2025_101850
S2210650225000082
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-48cdc1e7bc858b6931a4c76f8d22c8557a06f629f957d1ca6cc8d9d2108d4e543
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001399180100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Tue Nov 18 22:38:27 EST 2025
Sat Nov 29 08:07:56 EST 2025
Sat Feb 15 15:51:57 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Auxiliary task
MOOPF
OPF
IGD
UPF
FR
EMT
Knowledge transfer
CHT
CDP
HV
CV
Optimal power flow
CMOP
CMOEA
Constrained multi-objective optimization
CPF
MOEA
LVD
Constraint handling technique
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-48cdc1e7bc858b6931a4c76f8d22c8557a06f629f957d1ca6cc8d9d2108d4e543
ORCID 0009-0002-4571-0498
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2025_101850
crossref_primary_10_1016_j_swevo_2025_101850
elsevier_sciencedirect_doi_10_1016_j_swevo_2025_101850
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jing (bib0012) 2018; 166
Kumar (bib0047) 2021; 67
Houssein (bib0010) 2023; 53
Deb (bib0024) 2002; 6
Li (bib0017) 2022; 114
Tian (bib0041) 2017; 12
Kahraman (bib0035) 2022; 75
Ahmadipour (bib0001) 2024; 235
Ozkaya (bib0007) 2024; 368
Mallipeddi, Suganthan (bib0022) 2010; 14
Biswas (bib0036) 2018; 68
Akbel (bib0033) 2024; 54
Liang (bib0021) 2022; 27
Wang (bib0027) 2024
Liu, Wang (bib0026) 2019; 23
Chen, Bo, Zhu (bib0014) 2014; 60
Qiao (bib0020) 2022; 26
IEEE 30-bus test system data
Ming (bib0028) 2022; 28
Zheng (bib0004) 2023; 265
Zitzler, Knowles, Thiele (bib0044) 2008
IEEE 57-bus test system data
Ghasemi (bib0046) 2014; 78
Wu (bib0002) 2024
Yan (bib0003) 2006; 21
Chen (bib0031) 2020; 92
Huy (bib0015) 2023; 149
Yu (bib0038) 2021; 52
Fan (bib0019) 2019; 44
Lv, Xiong, Fu (bib0030) 2023; 227
Shaheen (bib0032) 2021; 237
.
Jiao (bib0016) 2020; 51
Ishibuchi (bib0043) 2015
Qian (bib0029) 2021; 226
Biswas (bib0045) 2020; 24
Zimmerman R.D., Murillo-Sa´nchez C.E., Thomas R.J. Matpower.
Takahama, Sakai (bib0025) 2006; 1
Panichella (bib0037) 2019
Guvenc (bib0011) 2021; 108
Bakır (bib0034) 2024; 166
Happ (bib0005) 1981; 1
Tian (bib0018) 2020; 25
Yeniay (bib0023) 2005; 10
Zhang (bib0013) 2024; 87
Li (bib0009) 2021; 235
Mhanna, Mancarella (bib0006) 2021; 37
Bakır (bib0008) 2024; 240
Jiao (10.1016/j.swevo.2025.101850_bib0016) 2020; 51
Yan (10.1016/j.swevo.2025.101850_bib0003) 2006; 21
Tian (10.1016/j.swevo.2025.101850_bib0041) 2017; 12
Houssein (10.1016/j.swevo.2025.101850_bib0010) 2023; 53
Ming (10.1016/j.swevo.2025.101850_bib0028) 2022; 28
Jing (10.1016/j.swevo.2025.101850_bib0012) 2018; 166
Kumar (10.1016/j.swevo.2025.101850_bib0047) 2021; 67
Bakır (10.1016/j.swevo.2025.101850_bib0034) 2024; 166
Liu (10.1016/j.swevo.2025.101850_bib0026) 2019; 23
Shaheen (10.1016/j.swevo.2025.101850_bib0032) 2021; 237
Biswas (10.1016/j.swevo.2025.101850_bib0045) 2020; 24
Bakır (10.1016/j.swevo.2025.101850_bib0008) 2024; 240
Zheng (10.1016/j.swevo.2025.101850_bib0004) 2023; 265
Wang (10.1016/j.swevo.2025.101850_bib0027) 2024
Qian (10.1016/j.swevo.2025.101850_bib0029) 2021; 226
10.1016/j.swevo.2025.101850_bib0039
Fan (10.1016/j.swevo.2025.101850_bib0019) 2019; 44
Biswas (10.1016/j.swevo.2025.101850_bib0036) 2018; 68
Ishibuchi (10.1016/j.swevo.2025.101850_bib0043) 2015
Takahama (10.1016/j.swevo.2025.101850_bib0025) 2006; 1
Mhanna (10.1016/j.swevo.2025.101850_bib0006) 2021; 37
Chen (10.1016/j.swevo.2025.101850_bib0014) 2014; 60
Chen (10.1016/j.swevo.2025.101850_bib0031) 2020; 92
Ahmadipour (10.1016/j.swevo.2025.101850_bib0001) 2024; 235
Happ (10.1016/j.swevo.2025.101850_bib0005) 1981; 1
Panichella (10.1016/j.swevo.2025.101850_bib0037) 2019
Tian (10.1016/j.swevo.2025.101850_bib0018) 2020; 25
Guvenc (10.1016/j.swevo.2025.101850_bib0011) 2021; 108
Deb (10.1016/j.swevo.2025.101850_bib0024) 2002; 6
Zhang (10.1016/j.swevo.2025.101850_bib0013) 2024; 87
10.1016/j.swevo.2025.101850_bib0042
Yu (10.1016/j.swevo.2025.101850_bib0038) 2021; 52
Ghasemi (10.1016/j.swevo.2025.101850_bib0046) 2014; 78
Li (10.1016/j.swevo.2025.101850_bib0017) 2022; 114
Akbel (10.1016/j.swevo.2025.101850_bib0033) 2024; 54
Kahraman (10.1016/j.swevo.2025.101850_bib0035) 2022; 75
Wu (10.1016/j.swevo.2025.101850_bib0002) 2024
Lv (10.1016/j.swevo.2025.101850_bib0030) 2023; 227
10.1016/j.swevo.2025.101850_bib0040
Mallipeddi (10.1016/j.swevo.2025.101850_bib0022) 2010; 14
Zitzler (10.1016/j.swevo.2025.101850_bib0044) 2008
Ozkaya (10.1016/j.swevo.2025.101850_bib0007) 2024; 368
Li (10.1016/j.swevo.2025.101850_bib0009) 2021; 235
Huy (10.1016/j.swevo.2025.101850_bib0015) 2023; 149
Qiao (10.1016/j.swevo.2025.101850_bib0020) 2022; 26
Liang (10.1016/j.swevo.2025.101850_bib0021) 2022; 27
Yeniay (10.1016/j.swevo.2025.101850_bib0023) 2005; 10
References_xml – volume: 28
  start-page: 77
  year: 2022
  end-page: 89
  ident: bib0028
  article-title: Constrained multiobjective optimization via multitasking and knowledge transfer
  publication-title: IEEE Trans. Evol. Comput.
– volume: 67
  year: 2021
  ident: bib0047
  article-title: A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results
  publication-title: Swarm. Evol. Comput.
– volume: 1
  start-page: 215
  year: 1981
  end-page: 223
  ident: bib0005
  article-title: Description and bibliography of major economy-security functions part II-bibliography (1959-1972)
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 368
  year: 2024
  ident: bib0007
  article-title: Enhanced growth optimizer algorithm with dynamic fitness-distance balance method for solution of security-constrained optimal power flow problem in the presence of stochastic wind and solar energy
  publication-title: Appl. Energy
– volume: 78
  start-page: 276
  year: 2014
  end-page: 289
  ident: bib0046
  article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm
  publication-title: Energy
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: bib0019
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm. Evol. Comput.
– volume: 23
  start-page: 870
  year: 2019
  end-page: 884
  ident: bib0026
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 373
  year: 2008
  end-page: 404
  ident: bib0044
  article-title: Quality assessment of pareto set approximations
  publication-title: Multiobjective Optimiz.: Interact. Evol. Approaches
– volume: 52
  start-page: 2954
  year: 2021
  end-page: 2965
  ident: bib0038
  article-title: Dynamic selection preference-assisted constrained multiobjective differential evolution
  publication-title: IEEE Trans. Syst., Man, Cybernet.: Syst.
– volume: 235
  year: 2021
  ident: bib0009
  article-title: Adaptive constraint differential evolution for optimal power flow
  publication-title: Energy
– volume: 108
  year: 2021
  ident: bib0011
  article-title: Fitness–Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources
  publication-title: Appl. Soft. Comput.
– volume: 25
  start-page: 102
  year: 2020
  end-page: 116
  ident: bib0018
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 92
  year: 2020
  ident: bib0031
  article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem
  publication-title: Appl. Soft. Comput.
– volume: 166
  year: 2024
  ident: bib0034
  article-title: Dynamic switched crowding-based multi-objective particle swarm optimization algorithm for solving multi-objective AC-DC optimal power flow problem
  publication-title: Appl. Soft. Comput.
– volume: 265
  year: 2023
  ident: bib0004
  article-title: A gradient descent direction based-cumulants method for probabilistic energy flow analysis of individual-based integrated energy systems
  publication-title: Energy
– volume: 166
  start-page: 445
  year: 2018
  end-page: 462
  ident: bib0012
  article-title: A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning
  publication-title: Energy Convers. Manage
– volume: 87
  year: 2024
  ident: bib0013
  article-title: Cooperative constrained multi-objective dual-population evolutionary algorithm for optimal dispatching of wind-power integrated power system
  publication-title: Swarm. Evol. Comput.
– volume: 26
  start-page: 263
  year: 2022
  end-page: 277
  ident: bib0020
  article-title: An evolutionary multitasking optimization framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 237
  year: 2021
  ident: bib0032
  article-title: Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework
  publication-title: Energy
– volume: 10
  start-page: 45
  year: 2005
  end-page: 56
  ident: bib0023
  article-title: Penalty function methods for constrained optimization with genetic algorithms
  publication-title: Math. Comput. Appl.
– volume: 149
  year: 2023
  ident: bib0015
  article-title: Multi-objective optimal power flow of thermal-wind-solar power system using an adaptive geometry estimation based multi-objective differential evolution
  publication-title: Appl. Soft. Comput.
– volume: 240
  year: 2024
  ident: bib0008
  article-title: Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem
  publication-title: Expert. Syst. Appl.
– year: 2024
  ident: bib0027
  article-title: A diversity-enhanced tri-stage framework for constrained multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 226
  year: 2021
  ident: bib0029
  article-title: Joint application of multi-object beetle antennae search algorithm and BAS-BP fuel cost forecast network on optimal active power dispatch problems
  publication-title: Knowl. Based. Syst.
– volume: 14
  start-page: 561
  year: 2010
  end-page: 579
  ident: bib0022
  article-title: Ensemble of constraint handling techniques
  publication-title: IEEE Trans. Evol. Comput.
– reference: IEEE 57-bus test system data,
– volume: 75
  year: 2022
  ident: bib0035
  article-title: Unified space approach-based Dynamic Switched Crowding (DSC): a new method for designing Pareto-based multi/many-objective algorithms
  publication-title: Swarm. Evol. Comput.
– reference: IEEE 30-bus test system data,
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: bib0041
  article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEe Comput. Intell. Mag.
– volume: 227
  year: 2023
  ident: bib0030
  article-title: Economic emission dispatch of power systems considering solar uncertainty with extended multi-objective differential evolution
  publication-title: Expert. Syst. Appl.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0024
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– reference: .
– volume: 114
  year: 2022
  ident: bib0017
  article-title: Multi-objective optimal power flow with stochastic wind and solar power
  publication-title: Appl. Soft. Comput.
– volume: 24
  start-page: 2999
  year: 2020
  end-page: 3023
  ident: bib0045
  article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft. comput.
– year: 2024
  ident: bib0002
  article-title: Real-time optimal power flow method via safe deep reinforcement learning based on primal-dual and prior knowledge guidance
  publication-title: IEEE Trans. Power Syst.
– volume: 54
  start-page: 11603
  year: 2024
  end-page: 11648
  ident: bib0033
  article-title: A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem
  publication-title: Appl. Intell.
– volume: 37
  start-page: 666
  year: 2021
  end-page: 679
  ident: bib0006
  article-title: An exact sequential linear programming algorithm for the optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
– volume: 60
  start-page: 203
  year: 2014
  end-page: 220
  ident: bib0014
  article-title: Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 27
  start-page: 201
  year: 2022
  end-page: 221
  ident: bib0021
  article-title: A survey on evolutionary constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2015
  ident: bib0043
  article-title: Modified distance calculation in generational distance and inverted generational distance
  publication-title: Evolutionary Multi-Criterion Optimization: 8th International Conference, EMO 2015, Guimarães, Portugal, March 29–April 1, 2015
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  ident: bib0036
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell.
– volume: 53
  start-page: 7232
  year: 2023
  end-page: 7253
  ident: bib0010
  article-title: Development and application of equilibrium optimizer for optimal power flow calculation of power system
  publication-title: Appl. Intell.
– volume: 1
  year: 2006
  ident: bib0025
  article-title: Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites
  publication-title: Proc. IEEE Congress on Evolutionary Computation
– year: 2019
  ident: bib0037
  article-title: An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization
  publication-title: Proceedings of the genetic and evolutionary computation conference
– reference: Zimmerman R.D., Murillo-Sa´nchez C.E., Thomas R.J. Matpower.
– volume: 21
  start-page: 61
  year: 2006
  end-page: 67
  ident: bib0003
  article-title: A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method
  publication-title: IEEE Trans. Power Syst.
– volume: 51
  start-page: 4834
  year: 2020
  end-page: 4847
  ident: bib0016
  article-title: Handling constrained many-objective optimization problems via problem transformation
  publication-title: IEEe Trans. Cybern.
– volume: 235
  year: 2024
  ident: bib0001
  article-title: Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer
  publication-title: Expert. Syst. Appl.
– volume: 10
  start-page: 45
  year: 2005
  ident: 10.1016/j.swevo.2025.101850_bib0023
  article-title: Penalty function methods for constrained optimization with genetic algorithms
  publication-title: Math. Comput. Appl.
– volume: 67
  year: 2021
  ident: 10.1016/j.swevo.2025.101850_bib0047
  article-title: A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2021.100961
– volume: 92
  year: 2020
  ident: 10.1016/j.swevo.2025.101850_bib0031
  article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.106321
– volume: 265
  year: 2023
  ident: 10.1016/j.swevo.2025.101850_bib0004
  article-title: A gradient descent direction based-cumulants method for probabilistic energy flow analysis of individual-based integrated energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126290
– volume: 23
  start-page: 870
  year: 2019
  ident: 10.1016/j.swevo.2025.101850_bib0026
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2894743
– volume: 87
  year: 2024
  ident: 10.1016/j.swevo.2025.101850_bib0013
  article-title: Cooperative constrained multi-objective dual-population evolutionary algorithm for optimal dispatching of wind-power integrated power system
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2024.101525
– volume: 149
  year: 2023
  ident: 10.1016/j.swevo.2025.101850_bib0015
  article-title: Multi-objective optimal power flow of thermal-wind-solar power system using an adaptive geometry estimation based multi-objective differential evolution
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110977
– volume: 14
  start-page: 561
  year: 2010
  ident: 10.1016/j.swevo.2025.101850_bib0022
  article-title: Ensemble of constraint handling techniques
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033582
– volume: 114
  year: 2022
  ident: 10.1016/j.swevo.2025.101850_bib0017
  article-title: Multi-objective optimal power flow with stochastic wind and solar power
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.108045
– volume: 28
  start-page: 77
  year: 2022
  ident: 10.1016/j.swevo.2025.101850_bib0028
  article-title: Constrained multiobjective optimization via multitasking and knowledge transfer
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3230822
– volume: 226
  year: 2021
  ident: 10.1016/j.swevo.2025.101850_bib0029
  article-title: Joint application of multi-object beetle antennae search algorithm and BAS-BP fuel cost forecast network on optimal active power dispatch problems
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2021.107149
– start-page: 373
  year: 2008
  ident: 10.1016/j.swevo.2025.101850_bib0044
  article-title: Quality assessment of pareto set approximations
  publication-title: Multiobjective Optimiz.: Interact. Evol. Approaches
  doi: 10.1007/978-3-540-88908-3_14
– volume: 1
  year: 2006
  ident: 10.1016/j.swevo.2025.101850_bib0025
  article-title: Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites
– volume: 227
  year: 2023
  ident: 10.1016/j.swevo.2025.101850_bib0030
  article-title: Economic emission dispatch of power systems considering solar uncertainty with extended multi-objective differential evolution
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.120298
– volume: 12
  start-page: 73
  year: 2017
  ident: 10.1016/j.swevo.2025.101850_bib0041
  article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEe Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 235
  year: 2024
  ident: 10.1016/j.swevo.2025.101850_bib0001
  article-title: Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.121212
– volume: 368
  year: 2024
  ident: 10.1016/j.swevo.2025.101850_bib0007
  article-title: Enhanced growth optimizer algorithm with dynamic fitness-distance balance method for solution of security-constrained optimal power flow problem in the presence of stochastic wind and solar energy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123499
– volume: 166
  start-page: 445
  year: 2018
  ident: 10.1016/j.swevo.2025.101850_bib0012
  article-title: A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2018.04.054
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.swevo.2025.101850_bib0019
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– ident: 10.1016/j.swevo.2025.101850_bib0039
– ident: 10.1016/j.swevo.2025.101850_bib0040
– ident: 10.1016/j.swevo.2025.101850_bib0042
– volume: 21
  start-page: 61
  year: 2006
  ident: 10.1016/j.swevo.2025.101850_bib0003
  article-title: A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.861978
– volume: 1
  start-page: 215
  year: 1981
  ident: 10.1016/j.swevo.2025.101850_bib0005
  article-title: Description and bibliography of major economy-security functions part II-bibliography (1959-1972)
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1981.316791
– volume: 54
  start-page: 11603
  year: 2024
  ident: 10.1016/j.swevo.2025.101850_bib0033
  article-title: A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-024-05714-5
– volume: 24
  start-page: 2999
  year: 2020
  ident: 10.1016/j.swevo.2025.101850_bib0045
  article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft. comput.
  doi: 10.1007/s00500-019-04077-1
– volume: 53
  start-page: 7232
  year: 2023
  ident: 10.1016/j.swevo.2025.101850_bib0010
  article-title: Development and application of equilibrium optimizer for optimal power flow calculation of power system
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03796-7
– volume: 37
  start-page: 666
  year: 2021
  ident: 10.1016/j.swevo.2025.101850_bib0006
  article-title: An exact sequential linear programming algorithm for the optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3097066
– volume: 237
  year: 2021
  ident: 10.1016/j.swevo.2025.101850_bib0032
  article-title: Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121478
– volume: 235
  year: 2021
  ident: 10.1016/j.swevo.2025.101850_bib0009
  article-title: Adaptive constraint differential evolution for optimal power flow
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121362
– volume: 51
  start-page: 4834
  year: 2020
  ident: 10.1016/j.swevo.2025.101850_bib0016
  article-title: Handling constrained many-objective optimization problems via problem transformation
  publication-title: IEEe Trans. Cybern.
  doi: 10.1109/TCYB.2020.3031642
– volume: 52
  start-page: 2954
  year: 2021
  ident: 10.1016/j.swevo.2025.101850_bib0038
  article-title: Dynamic selection preference-assisted constrained multiobjective differential evolution
  publication-title: IEEE Trans. Syst., Man, Cybernet.: Syst.
  doi: 10.1109/TSMC.2021.3061698
– volume: 25
  start-page: 102
  year: 2020
  ident: 10.1016/j.swevo.2025.101850_bib0018
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3004012
– volume: 166
  year: 2024
  ident: 10.1016/j.swevo.2025.101850_bib0034
  article-title: Dynamic switched crowding-based multi-objective particle swarm optimization algorithm for solving multi-objective AC-DC optimal power flow problem
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2024.112155
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.swevo.2025.101850_bib0024
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 75
  year: 2022
  ident: 10.1016/j.swevo.2025.101850_bib0035
  article-title: Unified space approach-based Dynamic Switched Crowding (DSC): a new method for designing Pareto-based multi/many-objective algorithms
  publication-title: Swarm. Evol. Comput.
  doi: 10.1016/j.swevo.2022.101196
– volume: 240
  year: 2024
  ident: 10.1016/j.swevo.2025.101850_bib0008
  article-title: Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.122460
– volume: 108
  year: 2021
  ident: 10.1016/j.swevo.2025.101850_bib0011
  article-title: Fitness–Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2021.107421
– year: 2019
  ident: 10.1016/j.swevo.2025.101850_bib0037
  article-title: An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization
– volume: 68
  start-page: 81
  year: 2018
  ident: 10.1016/j.swevo.2025.101850_bib0036
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.019
– volume: 27
  start-page: 201
  year: 2022
  ident: 10.1016/j.swevo.2025.101850_bib0021
  article-title: A survey on evolutionary constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3155533
– volume: 60
  start-page: 203
  year: 2014
  ident: 10.1016/j.swevo.2025.101850_bib0014
  article-title: Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.02.017
– year: 2024
  ident: 10.1016/j.swevo.2025.101850_bib0027
  article-title: A diversity-enhanced tri-stage framework for constrained multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2024
  ident: 10.1016/j.swevo.2025.101850_bib0002
  article-title: Real-time optimal power flow method via safe deep reinforcement learning based on primal-dual and prior knowledge guidance
  publication-title: IEEE Trans. Power Syst.
– volume: 78
  start-page: 276
  year: 2014
  ident: 10.1016/j.swevo.2025.101850_bib0046
  article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.007
– volume: 26
  start-page: 263
  year: 2022
  ident: 10.1016/j.swevo.2025.101850_bib0020
  article-title: An evolutionary multitasking optimization framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3145582
– year: 2015
  ident: 10.1016/j.swevo.2025.101850_bib0043
  article-title: Modified distance calculation in generational distance and inverted generational distance
SSID ssj0000602559
Score 2.3866937
Snippet The multi-objective optimal power flow (MOOPF) problem involves conflicting objectives and complex constraints, presenting a significant challenge for existing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101850
SubjectTerms Auxiliary task
Constrained multi-objective optimization
Constraint handling technique
Knowledge transfer
Optimal power flow
Title Multi-objective optimal power flow problem using constrained dynamic multitasking multi-objective optimization algorithm
URI https://dx.doi.org/10.1016/j.swevo.2025.101850
Volume 93
WOSCitedRecordID wos001399180100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBch3cNe9j3WrRt62JvnEiuWLD2W0rENVgbtIN2LUSS7SUjsNnE-_vydPuy4SSnbYC_GPiI5uvtxOp3vA6GPKqFG6bEw1_1eGJM4D83Xl1D2tbF3I9aTsW02kZyf88FA_Oh0NnUuzGqaFAXfbMTNfxU10EDYJnX2L8TdTAoEuAehwxXEDtc_ErxNqQ3L4cSpsqAEpTAz-VamH1qQT8t14LvIBEufcmuqyEowN3WgXYN6F2dYyYVxpLuH3Rl9_mYgp9flfFyNZm0z92It5673RrbyizXRecq2kLjz7f_XaOmSQ4rRstkhrixtMJYmOe166_N3egm43dC-S-vqvZK347b_gtBtAJdzqu0l1hjdR-AkGoLxeEdRu1aKezrfuR8mx4s1LOnYvMLQuKtnu1NM-8JMbOYl1FrLsHkfkIQK3kUHJ1_PBt8a_1yP2dOW6U1Y_5e6aJUND9x72_2GTctYuXyGnvhTBj5x6HiOOlnxAj2tO3hgr9Bfos0OWLAHC7ZgwQYs2IMFW7DgFliwBwtugwXP7pvRgwU3YHmFfn4-uzz9EvpeHKECI6cKY660irJkqDjlQyb6kYxVwnKuCQESTWSP5YyIXNBER0oypbgWGljHdZzRuP8adYuyyN4gLGBLEHBM0IomMZN8qIcyygVRIqMqEvQQkZqRqfKF6s3CpmkdkThJLfdTw_3Ucf8QfWoG3bg6LQ__nNUSSr2p6UzIFFD10MC3_zrwHXq8Rf8R6lbzZfYePVKraryYf_Do-w1oXawt
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimal+power+flow+problem+using+constrained+dynamic+multitasking+multi-objective+optimization+algorithm&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Zhu%2C+Junhua&rft.au=Yu%2C+Xiaobing&rft.au=Wang%2C+Feng&rft.au=Mao%2C+Yaqi&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=93&rft_id=info:doi/10.1016%2Fj.swevo.2025.101850&rft.externalDocID=S2210650225000082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon