Multi-objective optimal power flow problem using constrained dynamic multitasking multi-objective optimization algorithm
The multi-objective optimal power flow (MOOPF) problem involves conflicting objectives and complex constraints, presenting a significant challenge for existing optimization methods. To address constrained multi-objective optimization problems (CMOPs), a recent evolutionary multi-tasking (EMT) framew...
Saved in:
| Published in: | Swarm and evolutionary computation Vol. 93; p. 101850 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.03.2025
|
| Subjects: | |
| ISSN: | 2210-6502 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The multi-objective optimal power flow (MOOPF) problem involves conflicting objectives and complex constraints, presenting a significant challenge for existing optimization methods. To address constrained multi-objective optimization problems (CMOPs), a recent evolutionary multi-tasking (EMT) framework has been proposed, involving a primary task and several auxiliary tasks running in parallel. The design of these auxiliary tasks is critical for supporting the solution of the primary task. This paper introduces a novel constrained dynamic multitasking multi-objective optimization algorithm (CDMTMO) to solve CMOPs. The proposed algorithm comprises three populations, each assigned a specific task: the first population focuses on solving the primary CMOP, the second population tackles a constraint-relaxed problem, and the third population gradually transitions from solving an unconstrained problem to the CMOP. To ensure effective collaboration among auxiliary tasks and the main task, CDMTMO incorporates an improved ε-constrained method and an enhanced dual ranking method. Furthermore, a pre-selection strategy for solution sets is integrated to discern promising individuals and facilitate knowledge transfer. CDMTMO has been evaluated using two IEEE standard systems, to demonstrate its capability and suitability in efficiently tackling the MOOPF problem. A thorough analysis of CDMTMO's results was performed, comparing it with seven state-of-the-art algorithms: AGEMOEA, CCMO, DSPCMDE, CMOEMT, ToP, EMCMO and DEST. After evaluating across eight test cases, CDMTMO achieved the best inverted generational distance plus (IGD+) and hypervolume (HV) values in seven cases. Furthermore, CDMTMO achieves a feasible rate (FR) of 1 in all cases, demonstrating its consistent ability to find feasible solutions. |
|---|---|
| AbstractList | The multi-objective optimal power flow (MOOPF) problem involves conflicting objectives and complex constraints, presenting a significant challenge for existing optimization methods. To address constrained multi-objective optimization problems (CMOPs), a recent evolutionary multi-tasking (EMT) framework has been proposed, involving a primary task and several auxiliary tasks running in parallel. The design of these auxiliary tasks is critical for supporting the solution of the primary task. This paper introduces a novel constrained dynamic multitasking multi-objective optimization algorithm (CDMTMO) to solve CMOPs. The proposed algorithm comprises three populations, each assigned a specific task: the first population focuses on solving the primary CMOP, the second population tackles a constraint-relaxed problem, and the third population gradually transitions from solving an unconstrained problem to the CMOP. To ensure effective collaboration among auxiliary tasks and the main task, CDMTMO incorporates an improved ε-constrained method and an enhanced dual ranking method. Furthermore, a pre-selection strategy for solution sets is integrated to discern promising individuals and facilitate knowledge transfer. CDMTMO has been evaluated using two IEEE standard systems, to demonstrate its capability and suitability in efficiently tackling the MOOPF problem. A thorough analysis of CDMTMO's results was performed, comparing it with seven state-of-the-art algorithms: AGEMOEA, CCMO, DSPCMDE, CMOEMT, ToP, EMCMO and DEST. After evaluating across eight test cases, CDMTMO achieved the best inverted generational distance plus (IGD+) and hypervolume (HV) values in seven cases. Furthermore, CDMTMO achieves a feasible rate (FR) of 1 in all cases, demonstrating its consistent ability to find feasible solutions. |
| ArticleNumber | 101850 |
| Author | Mao, Yaqi Yu, Xiaobing Zhu, Junhua Wang, Feng |
| Author_xml | – sequence: 1 givenname: Junhua orcidid: 0009-0002-4571-0498 surname: Zhu fullname: Zhu, Junhua organization: The Research Institute for Risk Governance and Emergency Decision-Making, School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China – sequence: 2 givenname: Xiaobing surname: Yu fullname: Yu, Xiaobing email: yuxb111@163.com organization: The Research Institute for Risk Governance and Emergency Decision-Making, School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China – sequence: 3 givenname: Feng surname: Wang fullname: Wang, Feng organization: The Research Institute for Risk Governance and Emergency Decision-Making, School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China – sequence: 4 givenname: Yaqi surname: Mao fullname: Mao, Yaqi organization: Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, China |
| BookMark | eNqFkE9PwyAYhznMxDn3CbzwBTqBFtoePJjFf8mMFz0TCnRSW1iAbc5PL3WejFEuJG_e55f395yBiXVWA3CB0QIjzC67RdjrnVsQROg4qSiagCkhGGWMInIK5iF0KD2WFmg9Be-P2z6azDWdltHsNHSbaAbRw43baw_b3u3hxrum1wPcBmPXUDobohfGagXVwYrBSDiMIVGEt3Fh-C3RfIhonIWiXztv4utwDk5a0Qc9__5n4OX25nl5n62e7h6W16tM5iiPWVFJJbEuG1nRqmF1jkUhS9ZWipA0oqVArGWkbmtaKiwFk7JStUqFK1VoWuQzUB9zpXcheN1ymS4dbxlL9BwjPprjHf8yx0dz_GgusfkPduOTHH_4h7o6UjrV2hnteZBGW6mV8UkJV878yX8CyDWRnA |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128810 crossref_primary_10_1016_j_eswa_2025_129213 crossref_primary_10_1016_j_swevo_2025_102115 |
| Cites_doi | 10.1016/j.swevo.2021.100961 10.1016/j.asoc.2020.106321 10.1016/j.energy.2022.126290 10.1109/TEVC.2019.2894743 10.1016/j.swevo.2024.101525 10.1016/j.asoc.2023.110977 10.1109/TEVC.2009.2033582 10.1016/j.asoc.2021.108045 10.1109/TEVC.2022.3230822 10.1016/j.knosys.2021.107149 10.1007/978-3-540-88908-3_14 10.1016/j.eswa.2023.120298 10.1109/MCI.2017.2742868 10.1016/j.eswa.2023.121212 10.1016/j.apenergy.2024.123499 10.1016/j.enconman.2018.04.054 10.1016/j.swevo.2018.08.017 10.1109/TPWRS.2005.861978 10.1109/TPAS.1981.316791 10.1007/s10489-024-05714-5 10.1007/s00500-019-04077-1 10.1007/s10489-022-03796-7 10.1109/TPWRS.2021.3097066 10.1016/j.energy.2021.121478 10.1016/j.energy.2021.121362 10.1109/TCYB.2020.3031642 10.1109/TSMC.2021.3061698 10.1109/TEVC.2020.3004012 10.1016/j.asoc.2024.112155 10.1109/4235.996017 10.1016/j.swevo.2022.101196 10.1016/j.eswa.2023.122460 10.1016/j.asoc.2021.107421 10.1016/j.engappai.2017.10.019 10.1109/TEVC.2022.3155533 10.1016/j.ijepes.2014.02.017 10.1016/j.energy.2014.10.007 10.1109/TEVC.2022.3145582 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2025.101850 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2025_101850 S2210650225000082 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXKI AAXUO AAYFN ABAOU ABBOA ABGRD ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADQTV ADTZH AEBSH AECPX AEIPS AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c303t-48cdc1e7bc858b6931a4c76f8d22c8557a06f629f957d1ca6cc8d9d2108d4e543 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001399180100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Tue Nov 18 22:38:27 EST 2025 Sat Nov 29 08:07:56 EST 2025 Sat Feb 15 15:51:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Auxiliary task MOOPF OPF IGD UPF FR EMT Knowledge transfer CHT CDP HV CV Optimal power flow CMOP CMOEA Constrained multi-objective optimization CPF MOEA LVD Constraint handling technique |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-48cdc1e7bc858b6931a4c76f8d22c8557a06f629f957d1ca6cc8d9d2108d4e543 |
| ORCID | 0009-0002-4571-0498 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_swevo_2025_101850 crossref_primary_10_1016_j_swevo_2025_101850 elsevier_sciencedirect_doi_10_1016_j_swevo_2025_101850 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jing (bib0012) 2018; 166 Kumar (bib0047) 2021; 67 Houssein (bib0010) 2023; 53 Deb (bib0024) 2002; 6 Li (bib0017) 2022; 114 Tian (bib0041) 2017; 12 Kahraman (bib0035) 2022; 75 Ahmadipour (bib0001) 2024; 235 Ozkaya (bib0007) 2024; 368 Mallipeddi, Suganthan (bib0022) 2010; 14 Biswas (bib0036) 2018; 68 Akbel (bib0033) 2024; 54 Liang (bib0021) 2022; 27 Wang (bib0027) 2024 Liu, Wang (bib0026) 2019; 23 Chen, Bo, Zhu (bib0014) 2014; 60 Qiao (bib0020) 2022; 26 IEEE 30-bus test system data Ming (bib0028) 2022; 28 Zheng (bib0004) 2023; 265 Zitzler, Knowles, Thiele (bib0044) 2008 IEEE 57-bus test system data Ghasemi (bib0046) 2014; 78 Wu (bib0002) 2024 Yan (bib0003) 2006; 21 Chen (bib0031) 2020; 92 Huy (bib0015) 2023; 149 Yu (bib0038) 2021; 52 Fan (bib0019) 2019; 44 Lv, Xiong, Fu (bib0030) 2023; 227 Shaheen (bib0032) 2021; 237 . Jiao (bib0016) 2020; 51 Ishibuchi (bib0043) 2015 Qian (bib0029) 2021; 226 Biswas (bib0045) 2020; 24 Zimmerman R.D., Murillo-Sa´nchez C.E., Thomas R.J. Matpower. Takahama, Sakai (bib0025) 2006; 1 Panichella (bib0037) 2019 Guvenc (bib0011) 2021; 108 Bakır (bib0034) 2024; 166 Happ (bib0005) 1981; 1 Tian (bib0018) 2020; 25 Yeniay (bib0023) 2005; 10 Zhang (bib0013) 2024; 87 Li (bib0009) 2021; 235 Mhanna, Mancarella (bib0006) 2021; 37 Bakır (bib0008) 2024; 240 Jiao (10.1016/j.swevo.2025.101850_bib0016) 2020; 51 Yan (10.1016/j.swevo.2025.101850_bib0003) 2006; 21 Tian (10.1016/j.swevo.2025.101850_bib0041) 2017; 12 Houssein (10.1016/j.swevo.2025.101850_bib0010) 2023; 53 Ming (10.1016/j.swevo.2025.101850_bib0028) 2022; 28 Jing (10.1016/j.swevo.2025.101850_bib0012) 2018; 166 Kumar (10.1016/j.swevo.2025.101850_bib0047) 2021; 67 Bakır (10.1016/j.swevo.2025.101850_bib0034) 2024; 166 Liu (10.1016/j.swevo.2025.101850_bib0026) 2019; 23 Shaheen (10.1016/j.swevo.2025.101850_bib0032) 2021; 237 Biswas (10.1016/j.swevo.2025.101850_bib0045) 2020; 24 Bakır (10.1016/j.swevo.2025.101850_bib0008) 2024; 240 Zheng (10.1016/j.swevo.2025.101850_bib0004) 2023; 265 Wang (10.1016/j.swevo.2025.101850_bib0027) 2024 Qian (10.1016/j.swevo.2025.101850_bib0029) 2021; 226 10.1016/j.swevo.2025.101850_bib0039 Fan (10.1016/j.swevo.2025.101850_bib0019) 2019; 44 Biswas (10.1016/j.swevo.2025.101850_bib0036) 2018; 68 Ishibuchi (10.1016/j.swevo.2025.101850_bib0043) 2015 Takahama (10.1016/j.swevo.2025.101850_bib0025) 2006; 1 Mhanna (10.1016/j.swevo.2025.101850_bib0006) 2021; 37 Chen (10.1016/j.swevo.2025.101850_bib0014) 2014; 60 Chen (10.1016/j.swevo.2025.101850_bib0031) 2020; 92 Ahmadipour (10.1016/j.swevo.2025.101850_bib0001) 2024; 235 Happ (10.1016/j.swevo.2025.101850_bib0005) 1981; 1 Panichella (10.1016/j.swevo.2025.101850_bib0037) 2019 Tian (10.1016/j.swevo.2025.101850_bib0018) 2020; 25 Guvenc (10.1016/j.swevo.2025.101850_bib0011) 2021; 108 Deb (10.1016/j.swevo.2025.101850_bib0024) 2002; 6 Zhang (10.1016/j.swevo.2025.101850_bib0013) 2024; 87 10.1016/j.swevo.2025.101850_bib0042 Yu (10.1016/j.swevo.2025.101850_bib0038) 2021; 52 Ghasemi (10.1016/j.swevo.2025.101850_bib0046) 2014; 78 Li (10.1016/j.swevo.2025.101850_bib0017) 2022; 114 Akbel (10.1016/j.swevo.2025.101850_bib0033) 2024; 54 Kahraman (10.1016/j.swevo.2025.101850_bib0035) 2022; 75 Wu (10.1016/j.swevo.2025.101850_bib0002) 2024 Lv (10.1016/j.swevo.2025.101850_bib0030) 2023; 227 10.1016/j.swevo.2025.101850_bib0040 Mallipeddi (10.1016/j.swevo.2025.101850_bib0022) 2010; 14 Zitzler (10.1016/j.swevo.2025.101850_bib0044) 2008 Ozkaya (10.1016/j.swevo.2025.101850_bib0007) 2024; 368 Li (10.1016/j.swevo.2025.101850_bib0009) 2021; 235 Huy (10.1016/j.swevo.2025.101850_bib0015) 2023; 149 Qiao (10.1016/j.swevo.2025.101850_bib0020) 2022; 26 Liang (10.1016/j.swevo.2025.101850_bib0021) 2022; 27 Yeniay (10.1016/j.swevo.2025.101850_bib0023) 2005; 10 |
| References_xml | – volume: 28 start-page: 77 year: 2022 end-page: 89 ident: bib0028 article-title: Constrained multiobjective optimization via multitasking and knowledge transfer publication-title: IEEE Trans. Evol. Comput. – volume: 67 year: 2021 ident: bib0047 article-title: A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results publication-title: Swarm. Evol. Comput. – volume: 1 start-page: 215 year: 1981 end-page: 223 ident: bib0005 article-title: Description and bibliography of major economy-security functions part II-bibliography (1959-1972) publication-title: IEEE Trans. Power Appar. Syst. – volume: 368 year: 2024 ident: bib0007 article-title: Enhanced growth optimizer algorithm with dynamic fitness-distance balance method for solution of security-constrained optimal power flow problem in the presence of stochastic wind and solar energy publication-title: Appl. Energy – volume: 78 start-page: 276 year: 2014 end-page: 289 ident: bib0046 article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm publication-title: Energy – volume: 44 start-page: 665 year: 2019 end-page: 679 ident: bib0019 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm. Evol. Comput. – volume: 23 start-page: 870 year: 2019 end-page: 884 ident: bib0026 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. – start-page: 373 year: 2008 end-page: 404 ident: bib0044 article-title: Quality assessment of pareto set approximations publication-title: Multiobjective Optimiz.: Interact. Evol. Approaches – volume: 52 start-page: 2954 year: 2021 end-page: 2965 ident: bib0038 article-title: Dynamic selection preference-assisted constrained multiobjective differential evolution publication-title: IEEE Trans. Syst., Man, Cybernet.: Syst. – volume: 235 year: 2021 ident: bib0009 article-title: Adaptive constraint differential evolution for optimal power flow publication-title: Energy – volume: 108 year: 2021 ident: bib0011 article-title: Fitness–Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources publication-title: Appl. Soft. Comput. – volume: 25 start-page: 102 year: 2020 end-page: 116 ident: bib0018 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 92 year: 2020 ident: bib0031 article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem publication-title: Appl. Soft. Comput. – volume: 166 year: 2024 ident: bib0034 article-title: Dynamic switched crowding-based multi-objective particle swarm optimization algorithm for solving multi-objective AC-DC optimal power flow problem publication-title: Appl. Soft. Comput. – volume: 265 year: 2023 ident: bib0004 article-title: A gradient descent direction based-cumulants method for probabilistic energy flow analysis of individual-based integrated energy systems publication-title: Energy – volume: 166 start-page: 445 year: 2018 end-page: 462 ident: bib0012 article-title: A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning publication-title: Energy Convers. Manage – volume: 87 year: 2024 ident: bib0013 article-title: Cooperative constrained multi-objective dual-population evolutionary algorithm for optimal dispatching of wind-power integrated power system publication-title: Swarm. Evol. Comput. – volume: 26 start-page: 263 year: 2022 end-page: 277 ident: bib0020 article-title: An evolutionary multitasking optimization framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 237 year: 2021 ident: bib0032 article-title: Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework publication-title: Energy – volume: 10 start-page: 45 year: 2005 end-page: 56 ident: bib0023 article-title: Penalty function methods for constrained optimization with genetic algorithms publication-title: Math. Comput. Appl. – volume: 149 year: 2023 ident: bib0015 article-title: Multi-objective optimal power flow of thermal-wind-solar power system using an adaptive geometry estimation based multi-objective differential evolution publication-title: Appl. Soft. Comput. – volume: 240 year: 2024 ident: bib0008 article-title: Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem publication-title: Expert. Syst. Appl. – year: 2024 ident: bib0027 article-title: A diversity-enhanced tri-stage framework for constrained multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 226 year: 2021 ident: bib0029 article-title: Joint application of multi-object beetle antennae search algorithm and BAS-BP fuel cost forecast network on optimal active power dispatch problems publication-title: Knowl. Based. Syst. – volume: 14 start-page: 561 year: 2010 end-page: 579 ident: bib0022 article-title: Ensemble of constraint handling techniques publication-title: IEEE Trans. Evol. Comput. – reference: IEEE 57-bus test system data, – volume: 75 year: 2022 ident: bib0035 article-title: Unified space approach-based Dynamic Switched Crowding (DSC): a new method for designing Pareto-based multi/many-objective algorithms publication-title: Swarm. Evol. Comput. – reference: IEEE 30-bus test system data, – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: bib0041 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEe Comput. Intell. Mag. – volume: 227 year: 2023 ident: bib0030 article-title: Economic emission dispatch of power systems considering solar uncertainty with extended multi-objective differential evolution publication-title: Expert. Syst. Appl. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0024 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – reference: . – volume: 114 year: 2022 ident: bib0017 article-title: Multi-objective optimal power flow with stochastic wind and solar power publication-title: Appl. Soft. Comput. – volume: 24 start-page: 2999 year: 2020 end-page: 3023 ident: bib0045 article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms publication-title: Soft. comput. – year: 2024 ident: bib0002 article-title: Real-time optimal power flow method via safe deep reinforcement learning based on primal-dual and prior knowledge guidance publication-title: IEEE Trans. Power Syst. – volume: 54 start-page: 11603 year: 2024 end-page: 11648 ident: bib0033 article-title: A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem publication-title: Appl. Intell. – volume: 37 start-page: 666 year: 2021 end-page: 679 ident: bib0006 article-title: An exact sequential linear programming algorithm for the optimal power flow problem publication-title: IEEE Trans. Power Syst. – volume: 60 start-page: 203 year: 2014 end-page: 220 ident: bib0014 article-title: Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission publication-title: Int. J. Electr. Power Energy Syst. – volume: 27 start-page: 201 year: 2022 end-page: 221 ident: bib0021 article-title: A survey on evolutionary constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – year: 2015 ident: bib0043 article-title: Modified distance calculation in generational distance and inverted generational distance publication-title: Evolutionary Multi-Criterion Optimization: 8th International Conference, EMO 2015, Guimarães, Portugal, March 29–April 1, 2015 – volume: 68 start-page: 81 year: 2018 end-page: 100 ident: bib0036 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Eng. Appl. Artif. Intell. – volume: 53 start-page: 7232 year: 2023 end-page: 7253 ident: bib0010 article-title: Development and application of equilibrium optimizer for optimal power flow calculation of power system publication-title: Appl. Intell. – volume: 1 year: 2006 ident: bib0025 article-title: Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites publication-title: Proc. IEEE Congress on Evolutionary Computation – year: 2019 ident: bib0037 article-title: An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization publication-title: Proceedings of the genetic and evolutionary computation conference – reference: Zimmerman R.D., Murillo-Sa´nchez C.E., Thomas R.J. Matpower. – volume: 21 start-page: 61 year: 2006 end-page: 67 ident: bib0003 article-title: A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method publication-title: IEEE Trans. Power Syst. – volume: 51 start-page: 4834 year: 2020 end-page: 4847 ident: bib0016 article-title: Handling constrained many-objective optimization problems via problem transformation publication-title: IEEe Trans. Cybern. – volume: 235 year: 2024 ident: bib0001 article-title: Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer publication-title: Expert. Syst. Appl. – volume: 10 start-page: 45 year: 2005 ident: 10.1016/j.swevo.2025.101850_bib0023 article-title: Penalty function methods for constrained optimization with genetic algorithms publication-title: Math. Comput. Appl. – volume: 67 year: 2021 ident: 10.1016/j.swevo.2025.101850_bib0047 article-title: A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results publication-title: Swarm. Evol. Comput. doi: 10.1016/j.swevo.2021.100961 – volume: 92 year: 2020 ident: 10.1016/j.swevo.2025.101850_bib0031 article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2020.106321 – volume: 265 year: 2023 ident: 10.1016/j.swevo.2025.101850_bib0004 article-title: A gradient descent direction based-cumulants method for probabilistic energy flow analysis of individual-based integrated energy systems publication-title: Energy doi: 10.1016/j.energy.2022.126290 – volume: 23 start-page: 870 year: 2019 ident: 10.1016/j.swevo.2025.101850_bib0026 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2894743 – volume: 87 year: 2024 ident: 10.1016/j.swevo.2025.101850_bib0013 article-title: Cooperative constrained multi-objective dual-population evolutionary algorithm for optimal dispatching of wind-power integrated power system publication-title: Swarm. Evol. Comput. doi: 10.1016/j.swevo.2024.101525 – volume: 149 year: 2023 ident: 10.1016/j.swevo.2025.101850_bib0015 article-title: Multi-objective optimal power flow of thermal-wind-solar power system using an adaptive geometry estimation based multi-objective differential evolution publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2023.110977 – volume: 14 start-page: 561 year: 2010 ident: 10.1016/j.swevo.2025.101850_bib0022 article-title: Ensemble of constraint handling techniques publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033582 – volume: 114 year: 2022 ident: 10.1016/j.swevo.2025.101850_bib0017 article-title: Multi-objective optimal power flow with stochastic wind and solar power publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2021.108045 – volume: 28 start-page: 77 year: 2022 ident: 10.1016/j.swevo.2025.101850_bib0028 article-title: Constrained multiobjective optimization via multitasking and knowledge transfer publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3230822 – volume: 226 year: 2021 ident: 10.1016/j.swevo.2025.101850_bib0029 article-title: Joint application of multi-object beetle antennae search algorithm and BAS-BP fuel cost forecast network on optimal active power dispatch problems publication-title: Knowl. Based. Syst. doi: 10.1016/j.knosys.2021.107149 – start-page: 373 year: 2008 ident: 10.1016/j.swevo.2025.101850_bib0044 article-title: Quality assessment of pareto set approximations publication-title: Multiobjective Optimiz.: Interact. Evol. Approaches doi: 10.1007/978-3-540-88908-3_14 – volume: 1 year: 2006 ident: 10.1016/j.swevo.2025.101850_bib0025 article-title: Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites – volume: 227 year: 2023 ident: 10.1016/j.swevo.2025.101850_bib0030 article-title: Economic emission dispatch of power systems considering solar uncertainty with extended multi-objective differential evolution publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2023.120298 – volume: 12 start-page: 73 year: 2017 ident: 10.1016/j.swevo.2025.101850_bib0041 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEe Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 235 year: 2024 ident: 10.1016/j.swevo.2025.101850_bib0001 article-title: Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2023.121212 – volume: 368 year: 2024 ident: 10.1016/j.swevo.2025.101850_bib0007 article-title: Enhanced growth optimizer algorithm with dynamic fitness-distance balance method for solution of security-constrained optimal power flow problem in the presence of stochastic wind and solar energy publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123499 – volume: 166 start-page: 445 year: 2018 ident: 10.1016/j.swevo.2025.101850_bib0012 article-title: A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning publication-title: Energy Convers. Manage doi: 10.1016/j.enconman.2018.04.054 – volume: 44 start-page: 665 year: 2019 ident: 10.1016/j.swevo.2025.101850_bib0019 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm. Evol. Comput. doi: 10.1016/j.swevo.2018.08.017 – ident: 10.1016/j.swevo.2025.101850_bib0039 – ident: 10.1016/j.swevo.2025.101850_bib0040 – ident: 10.1016/j.swevo.2025.101850_bib0042 – volume: 21 start-page: 61 year: 2006 ident: 10.1016/j.swevo.2025.101850_bib0003 article-title: A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.861978 – volume: 1 start-page: 215 year: 1981 ident: 10.1016/j.swevo.2025.101850_bib0005 article-title: Description and bibliography of major economy-security functions part II-bibliography (1959-1972) publication-title: IEEE Trans. Power Appar. Syst. doi: 10.1109/TPAS.1981.316791 – volume: 54 start-page: 11603 year: 2024 ident: 10.1016/j.swevo.2025.101850_bib0033 article-title: A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem publication-title: Appl. Intell. doi: 10.1007/s10489-024-05714-5 – volume: 24 start-page: 2999 year: 2020 ident: 10.1016/j.swevo.2025.101850_bib0045 article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms publication-title: Soft. comput. doi: 10.1007/s00500-019-04077-1 – volume: 53 start-page: 7232 year: 2023 ident: 10.1016/j.swevo.2025.101850_bib0010 article-title: Development and application of equilibrium optimizer for optimal power flow calculation of power system publication-title: Appl. Intell. doi: 10.1007/s10489-022-03796-7 – volume: 37 start-page: 666 year: 2021 ident: 10.1016/j.swevo.2025.101850_bib0006 article-title: An exact sequential linear programming algorithm for the optimal power flow problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3097066 – volume: 237 year: 2021 ident: 10.1016/j.swevo.2025.101850_bib0032 article-title: Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework publication-title: Energy doi: 10.1016/j.energy.2021.121478 – volume: 235 year: 2021 ident: 10.1016/j.swevo.2025.101850_bib0009 article-title: Adaptive constraint differential evolution for optimal power flow publication-title: Energy doi: 10.1016/j.energy.2021.121362 – volume: 51 start-page: 4834 year: 2020 ident: 10.1016/j.swevo.2025.101850_bib0016 article-title: Handling constrained many-objective optimization problems via problem transformation publication-title: IEEe Trans. Cybern. doi: 10.1109/TCYB.2020.3031642 – volume: 52 start-page: 2954 year: 2021 ident: 10.1016/j.swevo.2025.101850_bib0038 article-title: Dynamic selection preference-assisted constrained multiobjective differential evolution publication-title: IEEE Trans. Syst., Man, Cybernet.: Syst. doi: 10.1109/TSMC.2021.3061698 – volume: 25 start-page: 102 year: 2020 ident: 10.1016/j.swevo.2025.101850_bib0018 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3004012 – volume: 166 year: 2024 ident: 10.1016/j.swevo.2025.101850_bib0034 article-title: Dynamic switched crowding-based multi-objective particle swarm optimization algorithm for solving multi-objective AC-DC optimal power flow problem publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2024.112155 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.swevo.2025.101850_bib0024 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 75 year: 2022 ident: 10.1016/j.swevo.2025.101850_bib0035 article-title: Unified space approach-based Dynamic Switched Crowding (DSC): a new method for designing Pareto-based multi/many-objective algorithms publication-title: Swarm. Evol. Comput. doi: 10.1016/j.swevo.2022.101196 – volume: 240 year: 2024 ident: 10.1016/j.swevo.2025.101850_bib0008 article-title: Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2023.122460 – volume: 108 year: 2021 ident: 10.1016/j.swevo.2025.101850_bib0011 article-title: Fitness–Distance Balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2021.107421 – year: 2019 ident: 10.1016/j.swevo.2025.101850_bib0037 article-title: An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization – volume: 68 start-page: 81 year: 2018 ident: 10.1016/j.swevo.2025.101850_bib0036 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.019 – volume: 27 start-page: 201 year: 2022 ident: 10.1016/j.swevo.2025.101850_bib0021 article-title: A survey on evolutionary constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3155533 – volume: 60 start-page: 203 year: 2014 ident: 10.1016/j.swevo.2025.101850_bib0014 article-title: Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.02.017 – year: 2024 ident: 10.1016/j.swevo.2025.101850_bib0027 article-title: A diversity-enhanced tri-stage framework for constrained multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – year: 2024 ident: 10.1016/j.swevo.2025.101850_bib0002 article-title: Real-time optimal power flow method via safe deep reinforcement learning based on primal-dual and prior knowledge guidance publication-title: IEEE Trans. Power Syst. – volume: 78 start-page: 276 year: 2014 ident: 10.1016/j.swevo.2025.101850_bib0046 article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm publication-title: Energy doi: 10.1016/j.energy.2014.10.007 – volume: 26 start-page: 263 year: 2022 ident: 10.1016/j.swevo.2025.101850_bib0020 article-title: An evolutionary multitasking optimization framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3145582 – year: 2015 ident: 10.1016/j.swevo.2025.101850_bib0043 article-title: Modified distance calculation in generational distance and inverted generational distance |
| SSID | ssj0000602559 |
| Score | 2.3866937 |
| Snippet | The multi-objective optimal power flow (MOOPF) problem involves conflicting objectives and complex constraints, presenting a significant challenge for existing... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101850 |
| SubjectTerms | Auxiliary task Constrained multi-objective optimization Constraint handling technique Knowledge transfer Optimal power flow |
| Title | Multi-objective optimal power flow problem using constrained dynamic multitasking multi-objective optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.swevo.2025.101850 |
| Volume | 93 |
| WOSCitedRecordID | wos001399180100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBch3cNe9j3WrRt62JvnEiuWLD2W0rENVgbtIN2LUSS7SUjsNnE-_vydPuy4SSnbYC_GPiI5uvtxOp3vA6GPKqFG6bEw1_1eGJM4D83Xl1D2tbF3I9aTsW02kZyf88FA_Oh0NnUuzGqaFAXfbMTNfxU10EDYJnX2L8TdTAoEuAehwxXEDtc_ErxNqQ3L4cSpsqAEpTAz-VamH1qQT8t14LvIBEufcmuqyEowN3WgXYN6F2dYyYVxpLuH3Rl9_mYgp9flfFyNZm0z92It5673RrbyizXRecq2kLjz7f_XaOmSQ4rRstkhrixtMJYmOe166_N3egm43dC-S-vqvZK347b_gtBtAJdzqu0l1hjdR-AkGoLxeEdRu1aKezrfuR8mx4s1LOnYvMLQuKtnu1NM-8JMbOYl1FrLsHkfkIQK3kUHJ1_PBt8a_1yP2dOW6U1Y_5e6aJUND9x72_2GTctYuXyGnvhTBj5x6HiOOlnxAj2tO3hgr9Bfos0OWLAHC7ZgwQYs2IMFW7DgFliwBwtugwXP7pvRgwU3YHmFfn4-uzz9EvpeHKECI6cKY660irJkqDjlQyb6kYxVwnKuCQESTWSP5YyIXNBER0oypbgWGljHdZzRuP8adYuyyN4gLGBLEHBM0IomMZN8qIcyygVRIqMqEvQQkZqRqfKF6s3CpmkdkThJLfdTw_3Ucf8QfWoG3bg6LQ__nNUSSr2p6UzIFFD10MC3_zrwHXq8Rf8R6lbzZfYePVKraryYf_Do-w1oXawt |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimal+power+flow+problem+using+constrained+dynamic+multitasking+multi-objective+optimization+algorithm&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Zhu%2C+Junhua&rft.au=Yu%2C+Xiaobing&rft.au=Wang%2C+Feng&rft.au=Mao%2C+Yaqi&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=93&rft_id=info:doi/10.1016%2Fj.swevo.2025.101850&rft.externalDocID=S2210650225000082 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |