Compliant Navigation Mechanisms Utilizing Probabilistic Motion Patterns of Humans in a Camera Network

Motion trajectories provide rich spatio-temporal information about a person's activities. In this paper we first employ an algorithm for learning collections of these trajectories that characterize representative motion patterns of persons. Data recorded with a non-overlapping camera network is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced robotics Ročník 22; číslo 9; s. 929 - 948
Hlavní autori: Liang, Zhiwei, Ma, Xudong, Dai, Xianzhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.09.2008
Predmet:
ISSN:0169-1864, 1568-5535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Motion trajectories provide rich spatio-temporal information about a person's activities. In this paper we first employ an algorithm for learning collections of these trajectories that characterize representative motion patterns of persons. Data recorded with a non-overlapping camera network is clustered hierarchically using a fuzzy K-means algorithm based on spatial and temporal information, respectively, then each motion pattern is represented with a series of Gaussian distributions. Subsequently, a method is proposed to improve behaviors of a mobile robot according to moving intentions of people. In our approach, whenever the camera network detects a person it computes a probabilistic estimate about which motion pattern the person might be engaged in according to the learned models of people's motion behaviors. During path planning the robot then uses this prediction to adapt its navigation mechanisms. In practical experiments carried out on a real robot we demonstrate that our approach allows a robot to quickly adjust its navigation tactics according to the activities of people in an office environment.
AbstractList Motion trajectories provide rich spatio-temporal information about a person's activities. In this paper we first employ an algorithm for learning collections of these trajectories that characterize representative motion patterns of persons. Data recorded with a non-overlapping camera network is clustered hierarchically using a fuzzy K-means algorithm based on spatial and temporal information, respectively, then each motion pattern is represented with a series of Gaussian distributions. Subsequently, a method is proposed to improve behaviors of a mobile robot according to moving intentions of people. In our approach, whenever the camera network detects a person it computes a probabilistic estimate about which motion pattern the person might be engaged in according to the learned models of people's motion behaviors. During path planning the robot then uses this prediction to adapt its navigation mechanisms. In practical experiments carried out on a real robot we demonstrate that our approach allows a robot to quickly adjust its navigation tactics according to the activities of people in an office environment.
Author DAI Xianzhong
LIANG Zhiwei
MA Xudong
Author_xml – sequence: 1
  givenname: Zhiwei
  surname: Liang
  fullname: Liang, Zhiwei
– sequence: 2
  givenname: Xudong
  surname: Ma
  fullname: Ma, Xudong
– sequence: 3
  givenname: Xianzhong
  surname: Dai
  fullname: Dai, Xianzhong
BackLink https://cir.nii.ac.jp/crid/1573105975733067904$$DView record in CiNii
BookMark eNp9UD1PwzAQtRBIlI-d0QNiC9g920lGFAFFaoEBJLbo4jhgSOxiuyD49aSUiYHl3t3Te3e6t0e2nXeGkCPOTjlXcMalKqQEVjwCl5yVW2SyprKRk9tkwrgqM14osUv2YnxhjBUC8gkxlR-WvUWX6A2-2ydM1ju6MPoZnY1DpA_J9vbLuid6F3yDzTjFZDVd-B_lHaZkgovUd3S2GnDsrKNIKxxMQHpj0ocPrwdkp8M-msNf3CcPlxf31Syb315dV-fzTAODlAloBQdlkCvMVVeIptRFI4ADCjBqKrlAyfISjGywbYHrVkCjRZsjiEZ2sE9ONnuXwb-tTEz1YKM2fY_O-FWsYZoXU8XKUag2Qh18jMF0tbbp5_cU0PY1Z_U61fpvqqOR_TEugx0wfP5nOd5YnLXjmXXlMgfOZJmPCEzlJRPwDcy4ha4
CitedBy_id crossref_primary_10_1163_016918610X527176
crossref_primary_10_1016_S1672_6529_09_60199_2
ContentType Journal Article
DBID RYH
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1163/156855308X315109
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1568-5535
EndPage 948
ExternalDocumentID 10_1163_156855308X315109
10025776577
GroupedDBID -~X
.QJ
0BK
0R~
23M
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADUMR
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEVUW
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMFWP
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
COF
CS3
DGEBU
DKSSO
EAP
EBS
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
I-F
IL9
IPNFZ
J.P
KYCEM
M4Z
NX~
O9-
P2P
RIG
RNANH
RNS
ROL
ROSJB
RTWRZ
RYH
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TUS
UT5
ZGOLN
~S~
AAYXX
AGBKS
CITATION
TASJS
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c303t-43d4136ea16a76f84b9c8b4313a43e62514a50793e5badd31cd43bc4d7a34b5f3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258222600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-1864
IngestDate Thu Oct 02 12:00:02 EDT 2025
Sat Nov 29 02:28:35 EST 2025
Tue Nov 18 22:44:30 EST 2025
Thu Jun 26 22:05:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-43d4136ea16a76f84b9c8b4313a43e62514a50793e5badd31cd43bc4d7a34b5f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 32782609
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_32782609
crossref_citationtrail_10_1163_156855308X315109
crossref_primary_10_1163_156855308X315109
nii_cinii_1573105975733067904
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationTitle Advanced robotics
PublicationTitleAlternate Adv. Robotics
PublicationTitle_FL Adv. Robotics
PublicationYear 2008
SSID ssj0008437
Score 1.8009886
Snippet Motion trajectories provide rich spatio-temporal information about a person's activities. In this paper we first employ an algorithm for learning collections...
SourceID proquest
crossref
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 929
SubjectTerms camera network
compliant navigation mechanisms
Fuzzy K-means algorithm
multi-camera tracking
probabilistic motion patterns
Title Compliant Navigation Mechanisms Utilizing Probabilistic Motion Patterns of Humans in a Camera Network
URI https://cir.nii.ac.jp/crid/1573105975733067904
https://www.proquest.com/docview/32782609
Volume 22
WOSCitedRecordID wos000258222600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1568-5535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008437
  issn: 0169-1864
  databaseCode: TFW
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZN2kN7KH3SbZtWh1IowcS2ZNk6hiVLD8t2D15qejGyLRNDam_X3jTk13dGfiaBPg69iEVIWqP5pHlo9ImQDy7XQnu5Bt-EQcFd35J25lkCbA3GE-a7qWHXX_qrVRBFct0lZNbmOQG_LIOrK7n9r6KGOhA2Xp39B3EPg0IF_AahQwlih_KvBD83SeIwYbBzXhoCjQrPY_CGb1F_r483TXFRXGOEYL2DxYzJscjVDKvbtFwbws02Oc5E-E3CrDqeKwxf4QVhTOWa2rSnfRoBDFc1k-z5ZdEFo7-dFz91MQa_sS7aZ1WnNU2g3GQVRNDj-ryv74MRwZBtNcQnhbScoCUm7zdY150ASU52S9kFO1rFK1vKzbt7ukBuCfAzA3ziKIgYGCm2HPVXf2a_-hIvNstlHJ5F4cftDwtfFsMT-O6ZlQNy3_U9iWl_4eLroK0D3vKq9h_eH2ULdnL7L2-YLgdlUdzR38YoCZ-Qx503QU9bFDwl93T5jDyacEw-J3rAAx3xQEc80AEP9AYeaIsH2uOBVjlt8UCLkira4oF2eHhBNouzcP7Z6t7WsFIwWhqLswzMF6GVI5Qv8oAnMg0SsCaZ4kyDU-xw5SF5ovYSUIHMSTPOkpRnvoIl7OXsJTksq1K_IlQobqucBwp0A_aVIhUaPO8cXVmRqBk56actTjvieXz_5CI2Dqhg8e2JnpFPQ49tS7rym7ZHIAkYGEvH8xk6DD6yfGKI1OYz8r6XUQw7Jx6HqVJX-zpmLljHwpav_9jiDXk4gv0tOWx2e31EHqSXTVHv3hk8_QJwa4rC
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compliant+Navigation+Mechanisms+Utilizing+Probabilistic+Motion+Patterns+of+Humans+in+a+Camera+Network&rft.jtitle=Advanced+robotics&rft.au=Liang%2C+Zhiwei&rft.au=Ma%2C+Xudong&rft.au=Dai%2C+Xianzhong&rft.date=2008-09-01&rft.issn=0169-1864&rft.volume=22&rft.issue=9&rft.spage=929&rft.epage=948&rft_id=info:doi/10.1163%2F156855308X315109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1864&client=summon