Machine learning and finite element integration-driven surrogate model for fluid-structure interaction seismic response analysis of aqueduct structures

•Methodological Innovation: A synergistic TFSI modeling framework integrates multiphysics simulations and geometric parameterization, trained with 12,600 datasets.•Algorithm Advancement: The improved sand cat swarm optimization algorithm (ISCSOBP) achieves 78 % higher accuracy than traditional BP ne...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Results in engineering Ročník 27; s. 106176
Hlavní autori: Huang, Liang, Li, Ge, Guan, Yujian, Jiao, Weili, Gong, Shengjia, Xu, Shizhan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.09.2025
Predmet:
ISSN:2590-1230, 2590-1230
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Methodological Innovation: A synergistic TFSI modeling framework integrates multiphysics simulations and geometric parameterization, trained with 12,600 datasets.•Algorithm Advancement: The improved sand cat swarm optimization algorithm (ISCSOBP) achieves 78 % higher accuracy than traditional BP neural networks, reducing computation time to 1 % of conventional FEM.•Engineering Impact: The surrogate model demonstrates high precision (maximum absolute error: 0.2 mm, relative error <3 %). The constructed integrated surrogate model has a maximum absolute error of <0.2 mm. Based on the analysis and calculations from 20 seismic waves, when the water level height-to-width ratio is <0.26, 80 % of the conditions have a seismic mitigation effect, while when it is greater than 0.52, 90 % of the conditions experience increased vibration. These findings provide a reference for the seismic design of aqueducts. The fluid-structure interaction effects in aqueduct structures under seismic excitation constitute a critical challenge in hydraulic engineering seismic analysis. While conventional numerical approaches such as the TFSI model suffer from computational inefficiency, simplified theoretical frameworks such as the Housner model fail to accurately capture the dynamic coupling mechanisms between impulsive and sloshing masses in fluid-structure systems, resulting in a persistent efficiency-accuracy trade-off in dynamic response prediction. To address this, we propose a collaborative machine learning-finite element modeling framework: First, a geometric feature parameterization method converts Boundary Surface Equation-defined aqueduct geometries into machine-interpretable inputs. Second, multiphysics-coupled FEM simulations generate 12,600 training samples. Third, a parameter-optimized machine learning architecture establishes a surrogate model for FSI-governed seismic responses. Experimental results demonstrate the surrogate model achieves 1 % computational time of conventional FEM with below 3 % dynamic prediction errors, 78.7 % higher accuracy than baseline algorithms, and enhanced numerical stability. This breakthrough provides an innovative paradigm for efficient seismic assessment of complex hydraulic structures, substantially advancing the engineering practicality of aqueduct dynamic response prediction.
AbstractList •Methodological Innovation: A synergistic TFSI modeling framework integrates multiphysics simulations and geometric parameterization, trained with 12,600 datasets.•Algorithm Advancement: The improved sand cat swarm optimization algorithm (ISCSOBP) achieves 78 % higher accuracy than traditional BP neural networks, reducing computation time to 1 % of conventional FEM.•Engineering Impact: The surrogate model demonstrates high precision (maximum absolute error: 0.2 mm, relative error <3 %). The constructed integrated surrogate model has a maximum absolute error of <0.2 mm. Based on the analysis and calculations from 20 seismic waves, when the water level height-to-width ratio is <0.26, 80 % of the conditions have a seismic mitigation effect, while when it is greater than 0.52, 90 % of the conditions experience increased vibration. These findings provide a reference for the seismic design of aqueducts. The fluid-structure interaction effects in aqueduct structures under seismic excitation constitute a critical challenge in hydraulic engineering seismic analysis. While conventional numerical approaches such as the TFSI model suffer from computational inefficiency, simplified theoretical frameworks such as the Housner model fail to accurately capture the dynamic coupling mechanisms between impulsive and sloshing masses in fluid-structure systems, resulting in a persistent efficiency-accuracy trade-off in dynamic response prediction. To address this, we propose a collaborative machine learning-finite element modeling framework: First, a geometric feature parameterization method converts Boundary Surface Equation-defined aqueduct geometries into machine-interpretable inputs. Second, multiphysics-coupled FEM simulations generate 12,600 training samples. Third, a parameter-optimized machine learning architecture establishes a surrogate model for FSI-governed seismic responses. Experimental results demonstrate the surrogate model achieves 1 % computational time of conventional FEM with below 3 % dynamic prediction errors, 78.7 % higher accuracy than baseline algorithms, and enhanced numerical stability. This breakthrough provides an innovative paradigm for efficient seismic assessment of complex hydraulic structures, substantially advancing the engineering practicality of aqueduct dynamic response prediction.
ArticleNumber 106176
Author Huang, Liang
Xu, Shizhan
Li, Ge
Guan, Yujian
Gong, Shengjia
Jiao, Weili
Author_xml – sequence: 1
  givenname: Liang
  surname: Huang
  fullname: Huang, Liang
  organization: College of Civil Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Ge
  surname: Li
  fullname: Li, Ge
  email: lige2023@gs.zzu.edu.cn
  organization: College of Civil Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 3
  givenname: Yujian
  surname: Guan
  fullname: Guan, Yujian
  organization: Henan Province Pu Lu Expressway Co., Ltd, Zhengzhou, China
– sequence: 4
  givenname: Weili
  surname: Jiao
  fullname: Jiao, Weili
  organization: Henan Province Pu Lu Expressway Co., Ltd, Zhengzhou, China
– sequence: 5
  givenname: Shengjia
  surname: Gong
  fullname: Gong, Shengjia
  organization: College of Civil Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 6
  givenname: Shizhan
  surname: Xu
  fullname: Xu, Shizhan
  organization: College of Civil Engineering, Zhengzhou University, Zhengzhou, China
BookMark eNp9kM1KAzEQgIMoWLVv4CEvsHWyP-n2IkjxDxQveg5pMqkp26ROdgt9El_X1Ip48jTDMN_8fGfsOMSAjF0KmAgQ8mo1IR8wLCcllE0uSTGVR2xUNjMoRFnB8Z_8lI1TWgFA2Wa2mo7Y57M275nnHWoKPiy5DpY7H3yPHDtcY-i5Dz0uSfc-hsKS32LgaSCKS52b1tFix10k7rrB2yL1NJh-IPzGSJs9xhP6tPaGE6ZNDAnzGt3tkk88Oq4_BrQZ4r9sumAnTncJxz_xnL3d3b7OH4qnl_vH-c1TYSqo-qIupW7FrIV2Vi2mtgF0YNq2lrIGsxCly1_KhTQIQoAT1mmUM1ejxAaaRW2qc1Yf5hqKKRE6tSG_1rRTAtTer1qpg1-196sOfjN2fcAw37b1SCoZj8Gg9YSmVzb6_wd8ATwbjDU
Cites_doi 10.1016/j.compfluid.2009.12.010
10.1109/SACI51354.2021.9465625
10.1016/j.rineng.2025.105774
10.1016/j.rineng.2025.105921
10.1111/mice.13457
10.1016/S0168-874X(02)00195-6
10.1002/eqe.141
10.1177/14759217211072237
10.1016/j.rineng.2024.101750
10.1177/8755293020919419
10.1016/j.jfluidstructs.2014.06.023
10.1063/5.0170316
10.1016/j.eswa.2024.124897
10.1080/15583058.2021.1936288
10.1061/(ASCE)0733-9445(2000)126:1(127)
10.1111/mice.13164
10.1007/s11831-024-10143-1
10.1016/j.soildyn.2018.10.015
10.1007/s11831-023-10043-w
10.1615/InterJFluidMechRes.v41.i2.40
10.1016/j.rineng.2023.101274
10.1016/j.cma.2018.10.046
10.1016/j.rineng.2025.104363
10.1109/TMAG.2014.2364031
10.1111/j.1467-8667.1990.tb00377.x
10.1061/(ASCE)0887-3801(2004)18:4(360)
10.1016/j.engappai.2025.111234
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.rineng.2025.106176
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID 10_1016_j_rineng_2025_106176
S2590123025022480
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c303t-426a81980893b7d50ef0c8846640cb12f0136b6ce0110f1dfae69f4e6e505b4c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001541341600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-1230
IngestDate Thu Nov 27 01:03:33 EST 2025
Wed Dec 10 14:21:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aqueduct
Two-way fluid-structure interaction
Surrogate model
Seismic response
Machine learning
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-426a81980893b7d50ef0c8846640cb12f0136b6ce0110f1dfae69f4e6e505b4c3
OpenAccessLink http://dx.doi.org/10.1016/j.rineng.2025.106176
ParticipantIDs crossref_primary_10_1016_j_rineng_2025_106176
elsevier_sciencedirect_doi_10_1016_j_rineng_2025_106176
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Zhao, Chen (bib0020) 2009
Wang, Ma, Chen (bib0027) 2025
Capuano, Rimoli (bib0051) 2019; 345
(bib0057) 2018
Arnoux, Caillard, Gillon (bib0048) 2015; 51
Bayraktar, HÖKELEKLI, AKKÖSE (bib0006) 2023; 17
Kamarroudi, Hosseini, Hosseini (bib0015) 2021
Mamakli, Turan, Aktaş (bib0004) 2019
Shome (bib0056) 1999
Jiang, Zhao, Du (bib0043) 2022; 21
L. Shang, S. Zhang, J. Liu, Multi-objective sand cat swarm algorithm for reactive power optimization in distribution networks with wind, Solar, and energy storage, J. Nanjing Univ. Inf. Sci. Technol. 16(2) 204–211
Shafighfard, Kazemi, Bagherzadeh, Mieloszyk, Yoo (bib0033) 2024; 39
Dong, Hong, Deng (bib0053) 2023; 35
Harirchian, Hosseini, Novelli, Lahmer, Rasulzade (bib0025) 2024; 21
Sun, Liu, Zhang (bib0046) 2023; 46
Hejazi, Mohammadi (bib0014) 2019; 116
Jeng, Mo (bib0018) 2004; 18
Surana, Blackwell, Powell (bib0010) 2014; 50
Cheng, Jing, Li (bib0012) 2021; 174
Syama, Ramprabhakar, Anand, Guerrero (bib0047) 2023; 19
Wang, Liang, Chen, Wu (bib0026) 2025; 11
Kazemi, Asgarkhani, Ghanbari-Ghazijahani, Jankowski (bib0034) 2025; 156
Xie, Ebad, Padgett (bib0024) 2020; 36
.
Cajander, Viarouge, Viarouge (bib0050) 2022
Hui, Yu (bib0044) 2024; 39
Vamvatsikos, Cornell (bib0054) 2002; 31
Kazemi, Asgarkhani, Jankowski (bib0035) 2024; 255
Rebouillat, Liksonov (bib0008) 2010; 39
Wang, Li, Shafieezadeh (bib0022) 2021
Chen, Su (bib0007) 2009
Biczo Z., Felde I., Szenasi S., et al. Distorsion prediction of additive manufacturing process using machine learning methods; Proceedings of the IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, F 2021.
Campello (bib0002) 2017
Luco, Cornell (bib0055) 2000; 126
Kazemi, Asgarkhani, Shafighfard, Jankowski, Yoo (bib0032) 2025; 32
Xu, Hon, Zhang (bib0021) 2022
Wei, Liang, Bo (bib0052) 2013; 41
Abbasi, Kazemi, Badeenezhad, Moazamfard, Armand, Mohammadpour (bib0030) 2025; 25
Zhao, Wang, Ma (bib0039) 2022; 41
Wang, Wang, Zhao (bib0037) 2023; 34
Jiang, Zhao, Du (bib0036) 2020; 42
Sham, El-Shafie, Jaafar, S, Sherif, Ahmed (bib0028) 2025; 27
Liu (bib0023) 2021
Yanyu, Dahai (bib0038) 2011; 31
Mordanova, Felice (bib0005) 2018; 14
Huang (bib0042) 2010
Zhang, Wang, Liu (bib0011) 2022; 39
Blackwell (bib0009) 2013
Ganuga, Viswanathan, Sonar (bib0013) 2014; 41
Vanluchene, Sun (bib0017) 1990; 5
Kazemi, Shafighfard, Yoo (bib0031) 2024; 31
Gedik, Celik (bib0001) 2015
Wang, Li (bib0041) 2003; 39
Ravindra, Sankar, Rasappan, Majrafi, Rajan, Kumar (bib0029) 2025
Wang, Wang, Li (bib0019) 2009
Liang, Haotian, Andrew (bib0040) 2023; 18
Singh, Sadeghi, Peterson (bib0016) 2022
Sincraian, Drei, Milani (bib0003) 2017; 2
Abbasi (10.1016/j.rineng.2025.106176_bib0030) 2025; 25
Wang (10.1016/j.rineng.2025.106176_bib0027) 2025
Yanyu (10.1016/j.rineng.2025.106176_bib0038) 2011; 31
Mordanova (10.1016/j.rineng.2025.106176_bib0005) 2018; 14
Xie (10.1016/j.rineng.2025.106176_bib0024) 2020; 36
Wang (10.1016/j.rineng.2025.106176_bib0037) 2023; 34
Wang (10.1016/j.rineng.2025.106176_bib0019) 2009
Harirchian (10.1016/j.rineng.2025.106176_bib0025) 2024; 21
Arnoux (10.1016/j.rineng.2025.106176_bib0048) 2015; 51
Kazemi (10.1016/j.rineng.2025.106176_bib0031) 2024; 31
Cheng (10.1016/j.rineng.2025.106176_bib0012) 2021; 174
Sham (10.1016/j.rineng.2025.106176_bib0028) 2025; 27
Mamakli (10.1016/j.rineng.2025.106176_bib0004) 2019
Blackwell (10.1016/j.rineng.2025.106176_bib0009) 2013
(10.1016/j.rineng.2025.106176_bib0057) 2018
Hejazi (10.1016/j.rineng.2025.106176_bib0014) 2019; 116
Jiang (10.1016/j.rineng.2025.106176_bib0036) 2020; 42
Jiang (10.1016/j.rineng.2025.106176_bib0043) 2022; 21
Capuano (10.1016/j.rineng.2025.106176_bib0051) 2019; 345
Rebouillat (10.1016/j.rineng.2025.106176_bib0008) 2010; 39
Liang (10.1016/j.rineng.2025.106176_bib0040) 2023; 18
Bayraktar (10.1016/j.rineng.2025.106176_bib0006) 2023; 17
Xu (10.1016/j.rineng.2025.106176_bib0021) 2022
Singh (10.1016/j.rineng.2025.106176_bib0016) 2022
Shome (10.1016/j.rineng.2025.106176_bib0056) 1999
Gedik (10.1016/j.rineng.2025.106176_bib0001) 2015
Huang (10.1016/j.rineng.2025.106176_bib0042) 2010
Campello (10.1016/j.rineng.2025.106176_bib0002) 2017
Ravindra (10.1016/j.rineng.2025.106176_bib0029) 2025
Shafighfard (10.1016/j.rineng.2025.106176_bib0033) 2024; 39
Syama (10.1016/j.rineng.2025.106176_bib0047) 2023; 19
Sincraian (10.1016/j.rineng.2025.106176_bib0003) 2017; 2
Wei (10.1016/j.rineng.2025.106176_bib0052) 2013; 41
Hui (10.1016/j.rineng.2025.106176_bib0044) 2024; 39
Cajander (10.1016/j.rineng.2025.106176_bib0050) 2022
Vamvatsikos (10.1016/j.rineng.2025.106176_bib0054) 2002; 31
Liu (10.1016/j.rineng.2025.106176_bib0023) 2021
10.1016/j.rineng.2025.106176_bib0049
Kazemi (10.1016/j.rineng.2025.106176_bib0035) 2024; 255
Kazemi (10.1016/j.rineng.2025.106176_bib0034) 2025; 156
Sun (10.1016/j.rineng.2025.106176_bib0046) 2023; 46
Kazemi (10.1016/j.rineng.2025.106176_bib0032) 2025; 32
Zhang (10.1016/j.rineng.2025.106176_bib0011) 2022; 39
Zhao (10.1016/j.rineng.2025.106176_bib0039) 2022; 41
10.1016/j.rineng.2025.106176_bib0045
Wang (10.1016/j.rineng.2025.106176_bib0041) 2003; 39
Jeng (10.1016/j.rineng.2025.106176_bib0018) 2004; 18
Chen (10.1016/j.rineng.2025.106176_bib0007) 2009
Dong (10.1016/j.rineng.2025.106176_bib0053) 2023; 35
Wang (10.1016/j.rineng.2025.106176_bib0022) 2021
Luco (10.1016/j.rineng.2025.106176_bib0055) 2000; 126
Ganuga (10.1016/j.rineng.2025.106176_bib0013) 2014; 41
Surana (10.1016/j.rineng.2025.106176_bib0010) 2014; 50
Kamarroudi (10.1016/j.rineng.2025.106176_bib0015) 2021
Vanluchene (10.1016/j.rineng.2025.106176_bib0017) 1990; 5
Wang (10.1016/j.rineng.2025.106176_bib0026) 2025; 11
Wang (10.1016/j.rineng.2025.106176_bib0020) 2009
References_xml – volume: 39
  start-page: 739
  year: 2010
  end-page: 746
  ident: bib0008
  article-title: Fluid-structure interaction in partially filled liquid containers: a comparative review of numerical approaches
  publication-title: Comput. Fluids
– volume: 34
  start-page: 109
  year: 2023
  end-page: 115
  ident: bib0037
  article-title: Aqueduct safety evaluation method based on cloud model and information fusion
  publication-title: J. Water Resour. Water Eng.
– reference: Biczo Z., Felde I., Szenasi S., et al. Distorsion prediction of additive manufacturing process using machine learning methods; Proceedings of the IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, F 2021.
– volume: 39
  start-page: 1249
  year: 2003
  end-page: 1258
  ident: bib0041
  article-title: A beam segment element for dynamic analysis of large aqueducts
  publication-title: Finite Elem. Anal. De.
– volume: 46
  start-page: 308
  year: 2023
  end-page: 314
  ident: bib0046
  article-title: An adaptive t-distribution and Lévy flight-based sand cat swarm optimization algorithm
  publication-title: J. Liaoning Univ. Sci. Technol.
– volume: 41
  start-page: 102
  year: 2022
  end-page: 112
  ident: bib0039
  article-title: Prediction of aqueduct deformation based on time series decomposition and machine learning
  publication-title: J. Hydroel. Eng.
– start-page: 255
  year: 2022
  ident: bib0021
  article-title: Seismic performance assessment of corroded RC columns based on data-driven machine-learning approach
  publication-title: Eng. Struct.
– start-page: 25
  year: 2019
  ident: bib0004
  article-title: Conservation-aimed evaluation of a historical aqueduct in Izmir
  publication-title: J. Architect. Eng.
– start-page: 150
  year: 2018
  ident: bib0057
  article-title: Seismic Design Code for Hydraulic Structures
– volume: 51
  year: 2015
  ident: bib0048
  article-title: Modeling finite-element constraint to run an electrical machine design optimization using machine learning
  publication-title: IEEE Trans. Magn.
– volume: 31
  start-page: 16
  year: 2011
  end-page: 22
  ident: bib0038
  article-title: Techniques and development trends of temperature control and crack prevention of large-scale concrete aqueducts
  publication-title: Adv. Sci. Technol. Water Resour.
– volume: 27
  year: 2025
  ident: bib0028
  article-title: Advances in AI-based rainfall forecasting: a comprehensive review of past, present, and future directions with intelligent data fusion and climate change models
  publication-title: Results Eng.
– volume: 31
  start-page: 491
  year: 2002
  end-page: 514
  ident: bib0054
  article-title: Incremental dynamic analysis
  publication-title: Earthq. Eng. Struct. Dyn.
– year: 1999
  ident: bib0056
  article-title: Probabilistic Seismic Demand Analysis of Nonlinear Structures
– volume: 14
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0005
  article-title: Seismic assessment of archaeological heritage using discrete element method
  publication-title: Int. J. Architect. Herit.
– volume: 2
  year: 2017
  ident: bib0003
  article-title: DEM numerical approach for masonry aqueducts in seismic zone: two valuable Portuguese examples
  publication-title: Int. J. Masonry Res. Innov.n
– volume: 18
  start-page: 360
  year: 2004
  end-page: 372
  ident: bib0018
  article-title: Quick seismic response estimation of prestressed concrete bridges using artificial neural networks
  publication-title: J. Comput. Civil Eng.
– volume: 21
  year: 2024
  ident: bib0025
  article-title: Utilizing advanced machine learning approaches to assess the seismic fragility of non-engineered masonry structures
  publication-title: Results Eng.
– year: 2009
  ident: bib0019
  article-title: Artificial neural network prediction for seismic response of bridge structure
  publication-title: Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, Peoples R China
– volume: 39
  start-page: 3216
  year: 2024
  end-page: 3224
  ident: bib0044
  article-title: An improved sand cat swarm optimization algorithm with multi-strategies and its application
  publication-title: Control Decis.
– volume: 41
  start-page: 145
  year: 2014
  end-page: 168
  ident: bib0013
  article-title: Fluid-structure interaction modelling of internal structures in a sloshing tank subjected to resonancet
  publication-title: Int. Jo.Fluid Mech. Res.
– volume: 41
  start-page: 221
  year: 2013
  end-page: 228
  ident: bib0052
  article-title: Seismic isolation study of aqueduct structures based on the SIMULINK platform
  publication-title: J. Northwest A&F Univ.
– year: 2013
  ident: bib0009
  article-title: Mathematical Models for Fluid-Solid Interaction and their Numerical Solutions
– volume: 345
  start-page: 363
  year: 2019
  end-page: 381
  ident: bib0051
  article-title: Smart finite elements: a novel machine learning application
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2010
  ident: bib0042
  article-title: Research on Semi-active Control of Large Aqueduct Structures
– volume: 116
  start-page: 637
  year: 2019
  end-page: 653
  ident: bib0014
  article-title: Investigation on sloshing response of water rectangular tanks under horizontal and vertical near fault seismic excitations
  publication-title: Soil Dyn. Earthq. Eng.
– year: 2025
  ident: bib0029
  article-title: Double-diffusive magnetoconvection in a tilted porous parallelogrammic domain with discrete heated-cooled segments: leveraging machine learning and CFD approach
  publication-title: Results Eng.
– volume: 32
  start-page: 571
  year: 2025
  end-page: 603
  ident: bib0032
  article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers
  publication-title: Arch. Comput. Methods Eng.
– year: 2017
  ident: bib0002
  article-title: Structural Analysis of the Pegões Aqueduct using the Finite Element Method, F
– volume: 42
  start-page: 12
  year: 2020
  end-page: 17
  ident: bib0036
  article-title: Analysis of the prediction of MLR-based monitoring model for Aqueduct deformation
  publication-title: J. China Three Gorges Univ.
– start-page: 236
  year: 2021
  ident: bib0022
  article-title: Seismic response prediction and variable importance analysis of extended pile-shaft-supported bridges against lateral spreading: exploring optimized machine learning models
  publication-title: Eng. Struct.
– volume: 5
  start-page: 207
  year: 1990
  end-page: 215
  ident: bib0017
  article-title: Neural networks in structural engineering
  publication-title: Microcomput. Civil Eng.
– volume: 11
  year: 2025
  ident: bib0026
  article-title: Data-driven shear capacity prediction of reinforced concrete deep beams with an uncertainty-aware model
  publication-title: ASCE-ASME J. Risk Uncert. Eng. Syst. Part A
– volume: 35
  year: 2023
  ident: bib0053
  article-title: Surrogate model-based deep reinforcement learning for experimental study of active flow control of circular cylinder
  publication-title: Phys. Fluids
– year: 2022
  ident: bib0050
  article-title: Inductor Design Optimization Using FEA Supervised Machine Learning
– volume: 31
  start-page: 2049
  year: 2024
  end-page: 2078
  ident: bib0031
  article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review
  publication-title: Arch. Comput. Methods Eng.
– volume: 39
  start-page: 824
  year: 2022
  end-page: 831
  ident: bib0011
  article-title: Comparative study of fluid-filled structure impacted by high-speed spherical fragments based on ALE,CEL and SPH
  publication-title: Chinese J. Comput. Mech.
– volume: 255
  year: 2024
  ident: bib0035
  article-title: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
  publication-title: Expert. Syst. Appl.
– volume: 18
  year: 2023
  ident: bib0040
  article-title: Seismic response analysis of double-trough aqueduct considering fluid-structure interaction effect
  publication-title: PLoS One
– volume: 174
  start-page: 41
  year: 2021
  end-page: 54
  ident: bib0012
  article-title: Dynamic response of concrete tanks under far-field, long-period earthquakes
  publication-title: Proc. Inst. Civil Eng.
– year: 2025
  ident: bib0027
  article-title: Uncertainty-aware fuzzy knowledge embedding method for generalized structural performance prediction
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
– volume: 126
  start-page: 127
  year: 2000
  end-page: 136
  ident: bib0055
  article-title: Effects of connection fractures on SMRF seismic drift demands
  publication-title: J. Struct. Eng.
– volume: 19
  year: 2023
  ident: bib0047
  article-title: A hybrid extreme learning machine model with lévy flight chaotic whale optimization algorithm for wind speed forecasting
  publication-title: Results Eng.
– year: 2015
  ident: bib0001
  article-title: 3D Modeling and Structural Evaluation of Ancient Bozdogan (Valens) Aqueduct in Istanbul
– reference: .
– year: 2009
  ident: bib0007
  article-title: Application of ADINA to modeling of fluid-structure interaction in buried liquid-conveying pipeline
  publication-title: Proceedings of the 2nd International Conference on Information and Computing Science, Manchester, England
– start-page: 171
  year: 2022
  ident: bib0016
  article-title: A CFD-FEM based partitioned fluid structure interaction model to investigate surface cracks in elastohydrodynamic lubricated line contacts
  publication-title: Tribol. Int.
– year: 2021
  ident: bib0023
  article-title: Seismic Performance Assessment of Highway Bridges and Networks Based on Data-Driven Methods
– volume: 17
  start-page: 472
  year: 2023
  end-page: 485
  ident: bib0006
  article-title: Influence of fluid–Structure interaction on seismic performance improvement of historical masonry aqueducts
  publication-title: Int. J. Architect. Herit.
– volume: 36
  start-page: 1769
  year: 2020
  end-page: 1801
  ident: bib0024
  article-title: The promise of implementing machine learning in earthquake engineering: a state-of-the-art review
  publication-title: Earthq. Spectra
– start-page: 246
  year: 2021
  ident: bib0015
  article-title: Influence of earthquake vertical excitations on sloshing-created P-Δ effect in elevated water tanks: experimental validation, numerical simulation and proposing a modification for Housner model
  publication-title: Eng. Struct.
– volume: 39
  start-page: 3573
  year: 2024
  end-page: 3594
  ident: bib0033
  article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
– volume: 156
  year: 2025
  ident: bib0034
  article-title: Ensemble machine learning models for estimating mechanical curves of concrete-timber-filled steel tubes
  publication-title: Eng. Appl. Artif. Intell.
– year: 2009
  ident: bib0020
  article-title: Research on the prediction of seismic response for bridges based on neural network
  publication-title: proceedings of the International Conference on Earthquake Engineering - 1st Anniversary of Wenchuan Earthquake
– reference: L. Shang, S. Zhang, J. Liu, Multi-objective sand cat swarm algorithm for reactive power optimization in distribution networks with wind, Solar, and energy storage, J. Nanjing Univ. Inf. Sci. Technol. 16(2) 204–211,
– volume: 50
  start-page: 184
  year: 2014
  end-page: 216
  ident: bib0010
  article-title: Mathematical models for fluid-solid interaction and their numerical solutions
  publication-title: J. Fluids Struct.
– volume: 21
  start-page: 2786
  year: 2022
  end-page: 2803
  ident: bib0043
  article-title: Structural deformation prediction model based on extreme learning machine algorithm and particle swarm optimization
  publication-title: Struct. Health Monitor.
– volume: 25
  year: 2025
  ident: bib0030
  article-title: Assessing the impact of reverse osmosis plant operations on water quality index improvement through machine learning approaches and health risk assessment
  publication-title: Results Eng.
– year: 2021
  ident: 10.1016/j.rineng.2025.106176_bib0023
– volume: 42
  start-page: 12
  issue: 2
  year: 2020
  ident: 10.1016/j.rineng.2025.106176_bib0036
  article-title: Analysis of the prediction of MLR-based monitoring model for Aqueduct deformation
  publication-title: J. China Three Gorges Univ.
– volume: 39
  start-page: 739
  issue: 5
  year: 2010
  ident: 10.1016/j.rineng.2025.106176_bib0008
  article-title: Fluid-structure interaction in partially filled liquid containers: a comparative review of numerical approaches
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2009.12.010
– ident: 10.1016/j.rineng.2025.106176_bib0049
  doi: 10.1109/SACI51354.2021.9465625
– year: 1999
  ident: 10.1016/j.rineng.2025.106176_bib0056
– volume: 2
  issue: 1
  year: 2017
  ident: 10.1016/j.rineng.2025.106176_bib0003
  article-title: DEM numerical approach for masonry aqueducts in seismic zone: two valuable Portuguese examples
  publication-title: Int. J. Masonry Res. Innov.n
– volume: 27
  year: 2025
  ident: 10.1016/j.rineng.2025.106176_bib0028
  article-title: Advances in AI-based rainfall forecasting: a comprehensive review of past, present, and future directions with intelligent data fusion and climate change models
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2025.105774
– year: 2025
  ident: 10.1016/j.rineng.2025.106176_bib0029
  article-title: Double-diffusive magnetoconvection in a tilted porous parallelogrammic domain with discrete heated-cooled segments: leveraging machine learning and CFD approach
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2025.105921
– year: 2025
  ident: 10.1016/j.rineng.2025.106176_bib0027
  article-title: Uncertainty-aware fuzzy knowledge embedding method for generalized structural performance prediction
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.13457
– start-page: 150
  year: 2018
  ident: 10.1016/j.rineng.2025.106176_bib0057
– volume: 34
  start-page: 109
  issue: 3
  year: 2023
  ident: 10.1016/j.rineng.2025.106176_bib0037
  article-title: Aqueduct safety evaluation method based on cloud model and information fusion
  publication-title: J. Water Resour. Water Eng.
– volume: 39
  start-page: 1249
  issue: 13
  year: 2003
  ident: 10.1016/j.rineng.2025.106176_bib0041
  article-title: A beam segment element for dynamic analysis of large aqueducts
  publication-title: Finite Elem. Anal. De.
  doi: 10.1016/S0168-874X(02)00195-6
– volume: 31
  start-page: 491
  issue: 3
  year: 2002
  ident: 10.1016/j.rineng.2025.106176_bib0054
  article-title: Incremental dynamic analysis
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.141
– volume: 41
  start-page: 102
  issue: 2
  year: 2022
  ident: 10.1016/j.rineng.2025.106176_bib0039
  article-title: Prediction of aqueduct deformation based on time series decomposition and machine learning
  publication-title: J. Hydroel. Eng.
– volume: 21
  start-page: 2786
  issue: 6
  year: 2022
  ident: 10.1016/j.rineng.2025.106176_bib0043
  article-title: Structural deformation prediction model based on extreme learning machine algorithm and particle swarm optimization
  publication-title: Struct. Health Monitor.
  doi: 10.1177/14759217211072237
– volume: 21
  year: 2024
  ident: 10.1016/j.rineng.2025.106176_bib0025
  article-title: Utilizing advanced machine learning approaches to assess the seismic fragility of non-engineered masonry structures
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.101750
– start-page: 246
  year: 2021
  ident: 10.1016/j.rineng.2025.106176_bib0015
  article-title: Influence of earthquake vertical excitations on sloshing-created P-Δ effect in elevated water tanks: experimental validation, numerical simulation and proposing a modification for Housner model
  publication-title: Eng. Struct.
– volume: 14
  start-page: 1
  year: 2018
  ident: 10.1016/j.rineng.2025.106176_bib0005
  article-title: Seismic assessment of archaeological heritage using discrete element method
  publication-title: Int. J. Architect. Herit.
– volume: 36
  start-page: 1769
  issue: 4
  year: 2020
  ident: 10.1016/j.rineng.2025.106176_bib0024
  article-title: The promise of implementing machine learning in earthquake engineering: a state-of-the-art review
  publication-title: Earthq. Spectra
  doi: 10.1177/8755293020919419
– year: 2017
  ident: 10.1016/j.rineng.2025.106176_bib0002
– volume: 174
  start-page: 41
  issue: 1
  year: 2021
  ident: 10.1016/j.rineng.2025.106176_bib0012
  article-title: Dynamic response of concrete tanks under far-field, long-period earthquakes
  publication-title: Proc. Inst. Civil Eng.
– volume: 39
  start-page: 3216
  issue: 10
  year: 2024
  ident: 10.1016/j.rineng.2025.106176_bib0044
  article-title: An improved sand cat swarm optimization algorithm with multi-strategies and its application
  publication-title: Control Decis.
– year: 2009
  ident: 10.1016/j.rineng.2025.106176_bib0007
  article-title: Application of ADINA to modeling of fluid-structure interaction in buried liquid-conveying pipeline
– year: 2009
  ident: 10.1016/j.rineng.2025.106176_bib0019
  article-title: Artificial neural network prediction for seismic response of bridge structure
– volume: 50
  start-page: 184
  year: 2014
  ident: 10.1016/j.rineng.2025.106176_bib0010
  article-title: Mathematical models for fluid-solid interaction and their numerical solutions
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.06.023
– volume: 35
  issue: 10
  year: 2023
  ident: 10.1016/j.rineng.2025.106176_bib0053
  article-title: Surrogate model-based deep reinforcement learning for experimental study of active flow control of circular cylinder
  publication-title: Phys. Fluids
  doi: 10.1063/5.0170316
– volume: 255
  year: 2024
  ident: 10.1016/j.rineng.2025.106176_bib0035
  article-title: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2024.124897
– volume: 41
  start-page: 221
  issue: 01
  year: 2013
  ident: 10.1016/j.rineng.2025.106176_bib0052
  article-title: Seismic isolation study of aqueduct structures based on the SIMULINK platform
  publication-title: J. Northwest A&F Univ.
– year: 2013
  ident: 10.1016/j.rineng.2025.106176_bib0009
– volume: 17
  start-page: 472
  issue: 3
  year: 2023
  ident: 10.1016/j.rineng.2025.106176_bib0006
  article-title: Influence of fluid–Structure interaction on seismic performance improvement of historical masonry aqueducts
  publication-title: Int. J. Architect. Herit.
  doi: 10.1080/15583058.2021.1936288
– volume: 126
  start-page: 127
  issue: 1
  year: 2000
  ident: 10.1016/j.rineng.2025.106176_bib0055
  article-title: Effects of connection fractures on SMRF seismic drift demands
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(2000)126:1(127)
– year: 2009
  ident: 10.1016/j.rineng.2025.106176_bib0020
  article-title: Research on the prediction of seismic response for bridges based on neural network
– volume: 39
  start-page: 3573
  issue: 23
  year: 2024
  ident: 10.1016/j.rineng.2025.106176_bib0033
  article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.13164
– volume: 32
  start-page: 571
  issue: 1
  year: 2025
  ident: 10.1016/j.rineng.2025.106176_bib0032
  article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-024-10143-1
– volume: 39
  start-page: 824
  issue: 6
  year: 2022
  ident: 10.1016/j.rineng.2025.106176_bib0011
  article-title: Comparative study of fluid-filled structure impacted by high-speed spherical fragments based on ALE,CEL and SPH
  publication-title: Chinese J. Comput. Mech.
– volume: 116
  start-page: 637
  year: 2019
  ident: 10.1016/j.rineng.2025.106176_bib0014
  article-title: Investigation on sloshing response of water rectangular tanks under horizontal and vertical near fault seismic excitations
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2018.10.015
– start-page: 25
  year: 2019
  ident: 10.1016/j.rineng.2025.106176_bib0004
  article-title: Conservation-aimed evaluation of a historical aqueduct in Izmir
  publication-title: J. Architect. Eng.
– volume: 31
  start-page: 2049
  issue: 4
  year: 2024
  ident: 10.1016/j.rineng.2025.106176_bib0031
  article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-023-10043-w
– volume: 41
  start-page: 145
  issue: 2
  year: 2014
  ident: 10.1016/j.rineng.2025.106176_bib0013
  article-title: Fluid-structure interaction modelling of internal structures in a sloshing tank subjected to resonancet
  publication-title: Int. Jo.Fluid Mech. Res.
  doi: 10.1615/InterJFluidMechRes.v41.i2.40
– year: 2010
  ident: 10.1016/j.rineng.2025.106176_bib0042
– volume: 46
  start-page: 308
  issue: 04
  year: 2023
  ident: 10.1016/j.rineng.2025.106176_bib0046
  article-title: An adaptive t-distribution and Lévy flight-based sand cat swarm optimization algorithm
  publication-title: J. Liaoning Univ. Sci. Technol.
– year: 2022
  ident: 10.1016/j.rineng.2025.106176_bib0050
– year: 2015
  ident: 10.1016/j.rineng.2025.106176_bib0001
– volume: 19
  year: 2023
  ident: 10.1016/j.rineng.2025.106176_bib0047
  article-title: A hybrid extreme learning machine model with lévy flight chaotic whale optimization algorithm for wind speed forecasting
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101274
– start-page: 255
  year: 2022
  ident: 10.1016/j.rineng.2025.106176_bib0021
  article-title: Seismic performance assessment of corroded RC columns based on data-driven machine-learning approach
  publication-title: Eng. Struct.
– start-page: 236
  year: 2021
  ident: 10.1016/j.rineng.2025.106176_bib0022
  article-title: Seismic response prediction and variable importance analysis of extended pile-shaft-supported bridges against lateral spreading: exploring optimized machine learning models
  publication-title: Eng. Struct.
– volume: 345
  start-page: 363
  year: 2019
  ident: 10.1016/j.rineng.2025.106176_bib0051
  article-title: Smart finite elements: a novel machine learning application
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.046
– volume: 25
  year: 2025
  ident: 10.1016/j.rineng.2025.106176_bib0030
  article-title: Assessing the impact of reverse osmosis plant operations on water quality index improvement through machine learning approaches and health risk assessment
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2025.104363
– volume: 51
  issue: 3
  year: 2015
  ident: 10.1016/j.rineng.2025.106176_bib0048
  article-title: Modeling finite-element constraint to run an electrical machine design optimization using machine learning
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2014.2364031
– volume: 5
  start-page: 207
  issue: 3
  year: 1990
  ident: 10.1016/j.rineng.2025.106176_bib0017
  article-title: Neural networks in structural engineering
  publication-title: Microcomput. Civil Eng.
  doi: 10.1111/j.1467-8667.1990.tb00377.x
– volume: 31
  start-page: 16
  issue: 2
  year: 2011
  ident: 10.1016/j.rineng.2025.106176_bib0038
  article-title: Techniques and development trends of temperature control and crack prevention of large-scale concrete aqueducts
  publication-title: Adv. Sci. Technol. Water Resour.
– start-page: 171
  year: 2022
  ident: 10.1016/j.rineng.2025.106176_bib0016
  article-title: A CFD-FEM based partitioned fluid structure interaction model to investigate surface cracks in elastohydrodynamic lubricated line contacts
  publication-title: Tribol. Int.
– volume: 18
  start-page: 360
  issue: 4
  year: 2004
  ident: 10.1016/j.rineng.2025.106176_bib0018
  article-title: Quick seismic response estimation of prestressed concrete bridges using artificial neural networks
  publication-title: J. Comput. Civil Eng.
  doi: 10.1061/(ASCE)0887-3801(2004)18:4(360)
– volume: 156
  year: 2025
  ident: 10.1016/j.rineng.2025.106176_bib0034
  article-title: Ensemble machine learning models for estimating mechanical curves of concrete-timber-filled steel tubes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2025.111234
– volume: 18
  issue: 8
  year: 2023
  ident: 10.1016/j.rineng.2025.106176_bib0040
  article-title: Seismic response analysis of double-trough aqueduct considering fluid-structure interaction effect
  publication-title: PLoS One
– ident: 10.1016/j.rineng.2025.106176_bib0045
– volume: 11
  issue: 1
  year: 2025
  ident: 10.1016/j.rineng.2025.106176_bib0026
  article-title: Data-driven shear capacity prediction of reinforced concrete deep beams with an uncertainty-aware model
  publication-title: ASCE-ASME J. Risk Uncert. Eng. Syst. Part A
SSID ssj0002810137
Score 2.3089757
Snippet •Methodological Innovation: A synergistic TFSI modeling framework integrates multiphysics simulations and geometric parameterization, trained with 12,600...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106176
SubjectTerms Aqueduct
Machine learning
Seismic response
Surrogate model
Two-way fluid-structure interaction
Title Machine learning and finite element integration-driven surrogate model for fluid-structure interaction seismic response analysis of aqueduct structures
URI https://dx.doi.org/10.1016/j.rineng.2025.106176
Volume 27
WOSCitedRecordID wos001541341600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwgEOFU_RFqo9cIs2chK_9lghEEJphVAR5WR57V3kKDiVHVc98Tf6a_rfmNmXTVNV9MDFiVbxeuX5svvN7Ow3hLyTU1gTYRZkZVlyFibgsIqYzxkPRKimEghHrtX1F8nJSXp2xr-MRtfuLMzFKqnr9PKSn_9XU0MbGBuPzt7D3L5TaIDvYHS4gtnh-k-GP9bpkdLVgzBHEFWF3HIsTbK4F4mAQbCywQlv3HZNs8aYmimOo9MP1aqrSmYkZnGjAW9rbHHxVlbtL63_rJNscReilzfJYbVBIdmxv7cdsuCvsu1WG52JK3s9xB5hNoa9AOj61kVlQvg-Yagzodsf3XKA8M9VrmO_32W1qoYRjVnkU7bsxAceGWaM2P0aeUubnbmNqoCdetG3NaVktlYFE6BYTvA8Zf1zgs-c9D__W4T7xuLoUxZdNtwyM71k2EtmenlAHs6SiOO6cPy7D_HNUDxNq7b60bvDmzrDcHs4t5OjAeE5fUp2radCjwzCnpGRrJ-TJwP9yhfkymKNOqxRwBo1WKMWa3Qba9RjjWqsUcAavYE1OsAatVijDmvUYY2uFXVYoz3WXpJvHz-cvv_EbKUPVgCF2jCgiTlQ0zQA9iySMgqkCoo0xdIHQSGmM4XKgiIuJLJVNS1VLmOuQhlLIPAiLOavyE69ruVrQkWKXsycCx7yUIH7IeJIpfAJrncaR8UeYe4VZ-dG0CW7y7Z7JHF2yCwpNWQzA3Tdeef-PZ90QB73_4Y3ZAdemnxLHhUXm6ptDnWw6FAD7A_g9Ld-
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+finite+element+integration-driven+surrogate+model+for+fluid-structure+interaction+seismic+response+analysis+of+aqueduct+structures&rft.jtitle=Results+in+engineering&rft.au=Huang%2C+Liang&rft.au=Li%2C+Ge&rft.au=Guan%2C+Yujian&rft.au=Jiao%2C+Weili&rft.date=2025-09-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=27&rft.spage=106176&rft_id=info:doi/10.1016%2Fj.rineng.2025.106176&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rineng_2025_106176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon