A simple hybrid linear and nonlinear interpolation finite element for the adaptive Cracking Elements Method
The Cracking Elements Method (CEM) is a numerical tool for simulation of quasi-brittle fracture. It neither needs remeshing, nor nodal enrichment, or a complicated crack-tracking strategy. The cracking elements used in the CEM can be considered as a special type of Galerkin finite elements. A disadv...
Uložené v:
| Vydané v: | Finite elements in analysis and design Ročník 244; s. 104295 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.02.2025
|
| Predmet: | |
| ISSN: | 0168-874X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Cracking Elements Method (CEM) is a numerical tool for simulation of quasi-brittle fracture. It neither needs remeshing, nor nodal enrichment, or a complicated crack-tracking strategy. The cracking elements used in the CEM can be considered as a special type of Galerkin finite elements. A disadvantage of the CEM is that it uses nonlinear interpolation of the displacement field (e.g. Q8 and T6 elements for 2D problems), introducing more nodes and consequently requiring greater computing efforts than in case of elements based on linear interpolation of the displacement field. With the aim to solve this problem we propose a hybrid linear and nonlinear interpolation finite element for the adaptive CEM presented in this work. A simple strategy is proposed for treating elements with p edge nodes, where p∈0,n, with n as the edge number of the considered element. Only a few program codes are needed. Then, by just adding edge and center nodes to the elements experiencing cracking, while keeping linear interpolation of the displacement field for the elements outside the cracking domain, the number of total nodes is reduced to almost one half of the number in case of using the conventional CEM. Numerical investigations have shown that the new approach not only preserves all of the advantages of the CEM, but also results in a significantly enhanced computing efficiency.
•A hybrid linear and nonlinear interpolation finite element is designed for the CEM.•A strategy (codes given) is proposed for treating elements with some edge nodes.•The number of total nodes and computing time are greatly reduced (around 50%). |
|---|---|
| AbstractList | The Cracking Elements Method (CEM) is a numerical tool for simulation of quasi-brittle fracture. It neither needs remeshing, nor nodal enrichment, or a complicated crack-tracking strategy. The cracking elements used in the CEM can be considered as a special type of Galerkin finite elements. A disadvantage of the CEM is that it uses nonlinear interpolation of the displacement field (e.g. Q8 and T6 elements for 2D problems), introducing more nodes and consequently requiring greater computing efforts than in case of elements based on linear interpolation of the displacement field. With the aim to solve this problem we propose a hybrid linear and nonlinear interpolation finite element for the adaptive CEM presented in this work. A simple strategy is proposed for treating elements with p edge nodes, where p∈0,n, with n as the edge number of the considered element. Only a few program codes are needed. Then, by just adding edge and center nodes to the elements experiencing cracking, while keeping linear interpolation of the displacement field for the elements outside the cracking domain, the number of total nodes is reduced to almost one half of the number in case of using the conventional CEM. Numerical investigations have shown that the new approach not only preserves all of the advantages of the CEM, but also results in a significantly enhanced computing efficiency.
•A hybrid linear and nonlinear interpolation finite element is designed for the CEM.•A strategy (codes given) is proposed for treating elements with some edge nodes.•The number of total nodes and computing time are greatly reduced (around 50%). |
| ArticleNumber | 104295 |
| Author | Wang, Xueya Zhang, Yiming Wen, Minjie Mang, Herbert A. |
| Author_xml | – sequence: 1 givenname: Xueya surname: Wang fullname: Wang, Xueya organization: Faculty of Mechanical Engineering & Mechanics, Ningbo University, Fenghua Road 818, 315211 Ningbo, Zhejiang Province, PR China – sequence: 2 givenname: Yiming orcidid: 0000-0002-3693-8039 surname: Zhang fullname: Zhang, Yiming email: yiming.zhang@zstu.edu.cn organization: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, No. 2 Street, 310018 Hangzhou, Zhejiang Province, PR China – sequence: 3 givenname: Minjie surname: Wen fullname: Wen, Minjie organization: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, No. 2 Street, 310018 Hangzhou, Zhejiang Province, PR China – sequence: 4 givenname: Herbert A. surname: Mang fullname: Mang, Herbert A. email: herbert.mang@tuwien.ac.at organization: Department of Geotechnical Engineering, Tongji University, Siping Road 1239, 200092 Shanghai, PR China |
| BookMark | eNqFkL9uwjAQhz1QqUD7BF38AqF2HId46IAQbZGourRSN-viXIohOJFtIfH2DYSpQzud7s_3k-6bkJFrHRLywNmMM54_7ma1ddjMUpZm_SRLlRyRcb8pkmKefd2SSQg7xphM82xM9gsa7KFrkG5PpbcVbXoYPAVX0T742lkX0XdtA9G2jvb5NiLFBg_oIq1bT-MWKVTQRXtEuvRg9tZ909VwEegbxm1b3ZGbGpqA99c6JZ_Pq4_la7J5f1kvF5vECCZiIgxLZVnIElSJqYA8kzI3BkAxXhalqIUUqTGqYgVKrLmRipsakMMc5ipTYkrEkGt8G4LHWnfeHsCfNGf67Ejv9MWRPjvSg6OeUr8oY-Pl4ejBNv-wTwOL_VtHi14HY9EZrKxHE3XV2j_5H_jDijg |
| CitedBy_id | crossref_primary_10_1007_s11804_025_00725_1 crossref_primary_10_1007_s00707_024_04216_2 crossref_primary_10_1016_j_jorganchem_2025_123572 crossref_primary_10_1016_j_ijmecsci_2025_110349 crossref_primary_10_1038_s41598_025_01209_6 crossref_primary_10_1155_jom_5570638 crossref_primary_10_1016_j_enggeo_2025_108160 crossref_primary_10_1038_s41598_025_93302_z crossref_primary_10_3390_inorganics13030067 crossref_primary_10_1016_j_surfin_2025_105908 crossref_primary_10_1016_j_engfracmech_2025_111438 crossref_primary_10_1016_j_apacoust_2025_110621 crossref_primary_10_1016_j_vacuum_2025_114078 crossref_primary_10_1016_j_enggeo_2025_108019 crossref_primary_10_1155_admp_3089008 crossref_primary_10_1080_15397734_2025_2491027 crossref_primary_10_1016_j_lwt_2025_117586 crossref_primary_10_1007_s42417_024_01737_x crossref_primary_10_1002_pat_70099 crossref_primary_10_1007_s42417_024_01719_z crossref_primary_10_1016_j_inoche_2025_114067 crossref_primary_10_1007_s43452_024_01109_y crossref_primary_10_1016_j_mtsust_2025_101167 crossref_primary_10_1088_1361_651X_add552 crossref_primary_10_1007_s42417_024_01745_x crossref_primary_10_1108_EC_10_2024_0981 crossref_primary_10_1007_s00707_025_04329_2 crossref_primary_10_1007_s10854_025_14411_z crossref_primary_10_1080_15397734_2025_2556240 |
| Cites_doi | 10.1002/nme.6315 10.1016/j.tafmec.2021.102930 10.1016/j.tafmec.2018.09.015 10.1016/j.finel.2019.103333 10.1002/nme.941 10.1016/j.cma.2008.01.019 10.1016/j.finel.2021.103573 10.1007/s10704-023-00723-w 10.1016/j.ijsolstr.2017.04.024 10.1016/j.cma.2003.12.041 10.1016/S0045-7825(00)80002-X 10.1002/nag.518 10.1016/j.camwa.2017.02.029 10.1016/j.cma.2016.11.034 10.1016/j.cma.2007.05.017 10.1016/j.cma.2006.11.016 10.1016/j.finel.2017.09.003 10.1016/j.cma.2018.06.012 10.1007/s11831-018-9274-3 10.1016/j.engfracmech.2013.06.006 10.1016/j.cma.2003.09.022 10.1016/j.enganabound.2023.07.024 10.1002/nme.1151 10.1016/j.engfracmech.2011.06.007 10.1016/j.cma.2014.01.008 10.1002/nme.4393 10.1016/j.cma.2015.07.001 10.1002/nme.3063 10.1007/s00466-016-1351-6 10.1002/nme.1652 10.1007/s00466-009-0418-z 10.1016/j.ijrmms.2016.09.010 10.1016/j.compstruc.2008.08.010 10.1016/j.ijimpeng.2015.10.016 10.1016/j.cma.2006.06.020 10.1007/s11440-018-0701-2 10.1007/s00466-019-01782-4 10.1016/j.cma.2015.06.018 10.1016/j.enganabound.2018.08.005 10.1016/j.compstruc.2017.04.002 10.1016/j.ijsolstr.2015.05.016 10.1002/nme.1620330705 10.1007/s00466-006-0122-1 10.1016/j.enganabound.2017.01.002 10.1002/nme.731 10.1002/nme.4620 10.1016/j.engfracmech.2010.06.013 10.1002/nag.560 10.1016/j.tafmec.2020.102527 10.1016/j.engfracmech.2006.06.018 10.1111/ffe.12898 10.1007/s10013-021-00474-y 10.1002/nme.1620280214 10.1016/j.cma.2020.113405 10.1016/j.finel.2020.103421 10.1007/s00466-020-01891-5 10.1016/j.cma.2015.02.001 10.1016/j.ijrmms.2014.01.008 10.1016/j.cma.2016.12.031 10.1016/j.compgeo.2011.08.011 10.1016/j.finel.2017.10.007 10.1016/j.cma.2010.03.031 10.1016/j.engfracmech.2017.12.018 10.1002/nag.374 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.finel.2024.104295 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_finel_2024_104295 S0168874X24001896 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABAOU ABBOA ABEFU ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LX9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PKN PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c303t-3c025b85ba9be23a64556ccaa901b8b3f3532cc9d08e5ef1c591cfae1a7a79493 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001391043500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-874X |
| IngestDate | Tue Nov 18 21:45:51 EST 2025 Sat Nov 29 04:56:35 EST 2025 Sat Feb 22 15:40:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Quasi-brittle fracture Hanging node Cracking Elements Method Localization Strong Discontinuity embedded Approach (SDA) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-3c025b85ba9be23a64556ccaa901b8b3f3532cc9d08e5ef1c591cfae1a7a79493 |
| ORCID | 0000-0002-3693-8039 |
| ParticipantIDs | crossref_primary_10_1016_j_finel_2024_104295 crossref_citationtrail_10_1016_j_finel_2024_104295 elsevier_sciencedirect_doi_10_1016_j_finel_2024_104295 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Finite elements in analysis and design |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Oliver, Dias, Huespe (b25) 2014; 274 Cervera, Wu (b10) 2015; 71 Rabczuk, Bordas, Zi (b1) 2010; 88 Yu, Chen, Sun (b7) 2020; 372 Song, Areias, Belytschko (b18) 2006; 67 Cervera, Chiumenti (b14) 2006; 30 Badnava, Msekh, Etemadi, Rabczuk (b64) 2018; 138 Cervera, Wu, Chiumenti, Kim (b23) 2020; 65 Wu, Li (b15) 2015; 295 Ooi, Natarajan, Song, Ooi (b61) 2016; 90 Zheng, Xu (b20) 2014; 97 Rabczuk, Bordas, Zi (b2) 2007; 40 Mosler, Meschke (b24) 2003; 57 Dias-da-Costa, Alfaiate, Sluys, Areias, Júlio (b27) 2012; 93 Meschke, Dumstorff (b48) 2007; 196 Saloustros, Cervera, Pelà (b37) 2019; 26 Hansbo, Hansbo (b17) 2004; 193 Zhang, Zhuang (b33) 2019; 102 Byfut, Schröder (b55) 2017; 73 Mu, Zhang (b41) 2020; 177 Tabiei, Meng (b50) 2023; 244 Radulovic, Bruhns, Mosler (b45) 2011; 78 Zheng, Liu, Du (b21) 2015; 295 Marasca, Bittencourt, Bessa (b29) 2018; 11 Rots (b70) 1988 Zhuang, Augarde, Bordas (b4) 2011; 86 Zhang, Mang (b40) 2020; 121 Nikolić, Do, Ibrahimbegovic, Nikolić (b28) 2018; 340 Mosler, Meschke (b54) 2004; 193 Wu, Xu, Liu, Yang (b22) 2018; 96 Saloustros, Pelà, Cervera, Roca (b26) 2017; 59 Zhang, Gao, Li, Zhuang (b34) 2020; 170 Oliver (b44) 1989; 28 Zhang, Huang, Yuan, Mang (b42) 2021; 195 Haeri, Shahriar, Marji, Moarefvand (b66) 2014; 67 Zhang, Yang, Wang, Zhuang (b8) 2021; 113 Yang, Deeks, Hao (b60) 2007; 74 (b52) 2024 Nguyen-Xuan (b57) 2017; 188 Wriggers, Hudobivnik, Aldakheel (b58) 2020; 66 Červenka, Červenka (b11) 2010 (b51) 2024 Goswami, Anitescu, Rabczuk (b63) 2020; 107 Areias, Dias-da Costa, Alfaiate, Júlio (b12) 2009; 45 Zhang, Zhuang (b32) 2018; 144 Zhou, Xia (b67) 2019; 14 Dumstorff, Meschke (b39) 2007; 31 Winkler (b65) 2001 Chen, Dai (b62) 2017; 77 Wu, Wu, Niu, Jiang, Liu (b56) 2023; 155 Zhao (b6) 2017; 315 Oliver, Linero, Huespe, Manzoli (b46) 2008; 197 de Borst, Remmers, Needleman, Abellan (b9) 2004; 28 Simo, Armero (b53) 1992; 33 Brezzi, Marini (b59) 2021; 49 Zhang, Lackner, Zeiml, Mang (b31) 2015; 287 Rabczuk, Zi, Bordas, Nguyen-Xuan (b3) 2010; 199 Borja (b30) 2008; 197 Ren, Zhuang, Rabczuk (b5) 2017; 318 Areias, Rabczuk, Dias-da-Costa (b13) 2013; 110 Wu, Ngai, Wong (b19) 2012; 39 Rabczuk, Belytschko (b35) 2004; 61 Zhou, Wang (b68) 2016; 89 Zhang, Zhuang (b43) 2018; 192 Belytschko, Organ, Gerlach (b49) 2000; 187 Jiang, Zhao, Khalili (b69) 2017; 118–119 Suárez, Gálvez, Cendón (b47) 2019; 42 Belytschko, Chen, Xu, Zi (b16) 2003; 58 Rabczuk, Belytschko (b36) 2007; 196 Cervera, Pela, Clemente, Roca (b38) 2010; 77 Wu (10.1016/j.finel.2024.104295_b19) 2012; 39 Haeri (10.1016/j.finel.2024.104295_b66) 2014; 67 Rabczuk (10.1016/j.finel.2024.104295_b3) 2010; 199 Ren (10.1016/j.finel.2024.104295_b5) 2017; 318 Areias (10.1016/j.finel.2024.104295_b13) 2013; 110 Badnava (10.1016/j.finel.2024.104295_b64) 2018; 138 Dumstorff (10.1016/j.finel.2024.104295_b39) 2007; 31 Mosler (10.1016/j.finel.2024.104295_b54) 2004; 193 Zhang (10.1016/j.finel.2024.104295_b34) 2020; 170 Zhou (10.1016/j.finel.2024.104295_b67) 2019; 14 Červenka (10.1016/j.finel.2024.104295_b11) 2010 Zheng (10.1016/j.finel.2024.104295_b20) 2014; 97 Mu (10.1016/j.finel.2024.104295_b41) 2020; 177 Belytschko (10.1016/j.finel.2024.104295_b16) 2003; 58 Suárez (10.1016/j.finel.2024.104295_b47) 2019; 42 Yu (10.1016/j.finel.2024.104295_b7) 2020; 372 Zhang (10.1016/j.finel.2024.104295_b43) 2018; 192 Zhang (10.1016/j.finel.2024.104295_b31) 2015; 287 Jiang (10.1016/j.finel.2024.104295_b69) 2017; 118–119 Wu (10.1016/j.finel.2024.104295_b56) 2023; 155 Cervera (10.1016/j.finel.2024.104295_b38) 2010; 77 Winkler (10.1016/j.finel.2024.104295_b65) 2001 Zhao (10.1016/j.finel.2024.104295_b6) 2017; 315 Rabczuk (10.1016/j.finel.2024.104295_b2) 2007; 40 Yang (10.1016/j.finel.2024.104295_b60) 2007; 74 Marasca (10.1016/j.finel.2024.104295_b29) 2018; 11 Oliver (10.1016/j.finel.2024.104295_b46) 2008; 197 Dias-da-Costa (10.1016/j.finel.2024.104295_b27) 2012; 93 Cervera (10.1016/j.finel.2024.104295_b10) 2015; 71 Zhang (10.1016/j.finel.2024.104295_b32) 2018; 144 Goswami (10.1016/j.finel.2024.104295_b63) 2020; 107 Byfut (10.1016/j.finel.2024.104295_b55) 2017; 73 Mosler (10.1016/j.finel.2024.104295_b24) 2003; 57 Nikolić (10.1016/j.finel.2024.104295_b28) 2018; 340 Wriggers (10.1016/j.finel.2024.104295_b58) 2020; 66 Simo (10.1016/j.finel.2024.104295_b53) 1992; 33 Tabiei (10.1016/j.finel.2024.104295_b50) 2023; 244 Cervera (10.1016/j.finel.2024.104295_b23) 2020; 65 Zheng (10.1016/j.finel.2024.104295_b21) 2015; 295 Zhang (10.1016/j.finel.2024.104295_b42) 2021; 195 (10.1016/j.finel.2024.104295_b52) 2024 Areias (10.1016/j.finel.2024.104295_b12) 2009; 45 Zhang (10.1016/j.finel.2024.104295_b40) 2020; 121 Zhang (10.1016/j.finel.2024.104295_b8) 2021; 113 Song (10.1016/j.finel.2024.104295_b18) 2006; 67 Chen (10.1016/j.finel.2024.104295_b62) 2017; 77 Rabczuk (10.1016/j.finel.2024.104295_b36) 2007; 196 Rabczuk (10.1016/j.finel.2024.104295_b35) 2004; 61 Cervera (10.1016/j.finel.2024.104295_b14) 2006; 30 Zhou (10.1016/j.finel.2024.104295_b68) 2016; 89 Hansbo (10.1016/j.finel.2024.104295_b17) 2004; 193 Rabczuk (10.1016/j.finel.2024.104295_b1) 2010; 88 Meschke (10.1016/j.finel.2024.104295_b48) 2007; 196 Zhang (10.1016/j.finel.2024.104295_b33) 2019; 102 Borja (10.1016/j.finel.2024.104295_b30) 2008; 197 Wu (10.1016/j.finel.2024.104295_b22) 2018; 96 Saloustros (10.1016/j.finel.2024.104295_b26) 2017; 59 Ooi (10.1016/j.finel.2024.104295_b61) 2016; 90 Radulovic (10.1016/j.finel.2024.104295_b45) 2011; 78 Brezzi (10.1016/j.finel.2024.104295_b59) 2021; 49 Rots (10.1016/j.finel.2024.104295_b70) 1988 Zhuang (10.1016/j.finel.2024.104295_b4) 2011; 86 Belytschko (10.1016/j.finel.2024.104295_b49) 2000; 187 (10.1016/j.finel.2024.104295_b51) 2024 Nguyen-Xuan (10.1016/j.finel.2024.104295_b57) 2017; 188 Wu (10.1016/j.finel.2024.104295_b15) 2015; 295 Oliver (10.1016/j.finel.2024.104295_b44) 1989; 28 de Borst (10.1016/j.finel.2024.104295_b9) 2004; 28 Oliver (10.1016/j.finel.2024.104295_b25) 2014; 274 Saloustros (10.1016/j.finel.2024.104295_b37) 2019; 26 |
| References_xml | – volume: 102 start-page: 1 year: 2019 end-page: 9 ident: b33 article-title: Cracking elements method for dynamic brittle fracture publication-title: Theor. Appl. Fract. Mech. – volume: 31 start-page: 239 year: 2007 end-page: 259 ident: b39 article-title: Crack propagation criteria in the framework of X-FEM-based structural analyses publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 30 start-page: 1173 year: 2006 end-page: 1199 ident: b14 article-title: Smeared crack approach: back to the original track publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 39 start-page: 38 year: 2012 end-page: 53 ident: b19 article-title: Frictional crack initiation and propagation analysis using the numerical manifold method publication-title: Comput. Geotech. – volume: 89 start-page: 235 year: 2016 end-page: 249 ident: b68 article-title: Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics publication-title: Int. J. Rock Mech. Min. Sci. – volume: 78 start-page: 2470 year: 2011 end-page: 2485 ident: b45 article-title: Effective 3D failure simulations by combining the advantages of embedded strong discontinuity approaches and classical interface elements publication-title: Eng. Fract. Mech. – volume: 155 start-page: 935 year: 2023 end-page: 947 ident: b56 article-title: The polygonal finite element method for solving heat conduction problems publication-title: Eng. Anal. Bound. Elem. – volume: 177 year: 2020 ident: b41 article-title: Cracking elements method with 6-node triangular element publication-title: Finite Elem. Anal. Des. – volume: 287 start-page: 335 year: 2015 end-page: 366 ident: b31 article-title: Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 61 start-page: 2316 year: 2004 end-page: 2343 ident: b35 article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks publication-title: Internat. J. Numer. Methods Engrg. – volume: 11 start-page: 244 year: 2018 end-page: 254 ident: b29 article-title: Modelling of fracture problems in quasi-brittle materials by the E-FEM publication-title: Ibracon Struct. Mater. J. – volume: 58 start-page: 1873 year: 2003 end-page: 1905 ident: b16 article-title: Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment publication-title: Internat. J. Numer. Methods Engrg. – volume: 86 start-page: 249 year: 2011 end-page: 268 ident: b4 article-title: Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2D modelling publication-title: Internat. J. Numer. Methods Engrg. – volume: 77 start-page: 2431 year: 2010 end-page: 2450 ident: b38 article-title: A crack-tracking technique for localized damage in quasi-brittle materials publication-title: Eng. Fract. Mech. – volume: 196 start-page: 2777 year: 2007 end-page: 2799 ident: b36 article-title: A three-dimensional large deformation meshfree method for arbitrary evolving cracks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 244 start-page: 125 year: 2023 end-page: 148 ident: b50 article-title: Improved cohesive zone model: integrating strain rate, plastic strain, variable damping, and enhanced constitutive law for fracture propagation publication-title: Int. J. Fract. – volume: 144 start-page: 84 year: 2018 end-page: 100 ident: b32 article-title: Cracking elements: a self-propagating strong discontinuity embedded approach for quasi-brittle fracture publication-title: Finite Elem. Anal. Des. – volume: 197 start-page: 2789 year: 2008 end-page: 2803 ident: b30 article-title: Assumed enhanced strain and the extended finite element methods: A unification of concepts publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 193 start-page: 3351 year: 2004 end-page: 3375 ident: b54 article-title: Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 14 start-page: 1195 year: 2019 end-page: 1214 ident: b67 article-title: Propagation and coalescence of quasi-static cracks in Brazilian disks: an insight from a phase field model publication-title: Acta Geotech. – start-page: 281 year: 2010 end-page: 290 ident: b11 article-title: On the uniqueness of numerical solutions of shear failure of deep concrete beams: Comparison of smeared and discrete crack approaches publication-title: Computational Modelling of Concrete Structures (EURO-C 2010) – volume: 33 start-page: 1413 year: 1992 end-page: 1449 ident: b53 article-title: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes publication-title: Internat. J. Numer. Methods Engrg. – volume: 188 start-page: 45 year: 2017 end-page: 62 ident: b57 article-title: A polygonal finite element method for plate analysis publication-title: Comput. Struct. – volume: 197 start-page: 332 year: 2008 end-page: 348 ident: b46 article-title: Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 93 start-page: 224 year: 2012 end-page: 244 ident: b27 article-title: An embedded formulation with conforming finite elements to capture strong discontinuities publication-title: Internat. J. Numer. Methods Engrg. – volume: 192 start-page: 290 year: 2018 end-page: 306 ident: b43 article-title: A softening-healing law for self-healing quasi-brittle materials: analyzing with strong discontinuity embedded approach publication-title: Eng. Fract. Mech. – year: 2024 ident: b52 article-title: Adaptive Cracking Elements 2024, Fortran code (element stiffness matrix and residual), triangular element-elmtTri01 publication-title: webpage – volume: 118–119 start-page: 41 year: 2017 end-page: 57 ident: b69 article-title: On crack propagation in brittle material using the distinct lattice spring model publication-title: Int. J. Solids Struct. – volume: 318 start-page: 762 year: 2017 end-page: 782 ident: b5 article-title: Dual-horizon peridynamics: A stable solution to varying horizons publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 138 start-page: 31 year: 2018 end-page: 47 ident: b64 article-title: An h-adaptive thermo-mechanical phase field model for fracture publication-title: Finite Elem. Anal. Des. – volume: 45 start-page: 61 year: 2009 end-page: 75 ident: b12 article-title: Arbitrary bi-dimensional finite strain cohesive crack propagation publication-title: Comput. Mech. – volume: 199 start-page: 2437 year: 2010 end-page: 2455 ident: b3 article-title: A simple and robust three-dimensional cracking-particle method without enrichment publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 26 start-page: 961 year: 2019 end-page: 1005 ident: b37 article-title: Challenges, tools and applications of tracking algorithms in the numerical modelling of cracks in concrete and masonry structures publication-title: Arch. Comput. Methods Eng. – volume: 42 start-page: 223 year: 2019 end-page: 238 ident: b47 article-title: A material model to reproduce mixed-mode fracture in concrete publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 67 start-page: 868 year: 2006 end-page: 893 ident: b18 article-title: A method for dynamic crack and shear band propagation with phantom nodes publication-title: Internat. J. Numer. Methods Engrg. – volume: 40 start-page: 473 year: 2007 end-page: 495 ident: b2 article-title: A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics publication-title: Comput. Mech. – year: 2024 ident: b51 article-title: Adaptive Cracking Elements 2024, Fortran code (element stiffness matrix and residual), quadrilateral element-elmtQuad01 publication-title: webpage – volume: 107 year: 2020 ident: b63 article-title: Adaptive fourth-order phase field analysis using deep energy minimization publication-title: Theor. Appl. Fract. Mech. – volume: 274 start-page: 289 year: 2014 end-page: 348 ident: b25 article-title: Crack-path field and strain-injection techniques in computational modeling of propagating material failure publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1988 ident: b70 article-title: Computational Modeling of Concrete Fracture – volume: 295 start-page: 150 year: 2015 end-page: 171 ident: b21 article-title: Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 67 start-page: 20 year: 2014 end-page: 28 ident: b66 article-title: Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks publication-title: Int. J. Rock Mech. Min. Sci. – volume: 195 year: 2021 ident: b42 article-title: Cracking elements method with a dissipation-based arc-length approach publication-title: Finite Elem. Anal. Des. – volume: 57 start-page: 1553 year: 2003 end-page: 1576 ident: b24 article-title: 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations publication-title: Internat. J. Numer. Methods Engrg. – volume: 90 start-page: 154 year: 2016 end-page: 164 ident: b61 article-title: Dynamic fracture simulations using the scaled boundary finite element method on hybrid polygon-quadtree meshes publication-title: Int. J. Impact Eng. – volume: 74 start-page: 669 year: 2007 end-page: 687 ident: b60 article-title: Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach publication-title: Eng. Fract. Mech. – volume: 28 start-page: 461 year: 1989 end-page: 474 ident: b44 article-title: A consistent characteristic length for smeared cracking models publication-title: Internat. J. Numer. Methods Engrg. – volume: 170 year: 2020 ident: b34 article-title: On the crack opening and energy dissipation in a continuum based disconnected crack model publication-title: Finite Elem. Anal. Des. – volume: 65 start-page: 533 year: 2020 end-page: 554 ident: b23 article-title: Strain localization analysis of hill’s orthotropic elastoplasticity: analytical results and numerical verification publication-title: Comput. Mech. – volume: 193 start-page: 3523 year: 2004 end-page: 3540 ident: b17 article-title: A finite element method for the simulation of strong and weak discontinuities in solid mechanics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 113 year: 2021 ident: b8 article-title: A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements publication-title: Theor. Appl. Fract. Mech. – volume: 88 start-page: 1391 year: 2010 end-page: 1411 ident: b1 article-title: On three-dimensional modelling of crack growth using partition of unity methods publication-title: Comput. Struct. – volume: 315 start-page: 881 year: 2017 end-page: 895 ident: b6 article-title: Developing a four-dimensional lattice spring model for mechanical responses of solids publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 372 year: 2020 ident: b7 article-title: A generalized bond-based peridynamic model for quasi-brittle materials enriched with bond tension-rotation-shear coupling effects publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 77 start-page: 26 year: 2017 end-page: 35 ident: b62 article-title: Dynamic fracture analysis of the soil-structure interaction system using the scaled boundary finite element method publication-title: Eng. Anal. Bound. Elem. – volume: 187 start-page: 385 year: 2000 end-page: 399 ident: b49 article-title: Element-free Galerkin methods for dynamic fracture in concrete publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 196 start-page: 2338 year: 2007 end-page: 2357 ident: b48 article-title: Energy-based modeling of cohesive and cohesionless cracks via X-FEM publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 59 start-page: 299 year: 2017 end-page: 316 ident: b26 article-title: Finite element modelling of internal and multiple localized cracks publication-title: Comput. Mech. – volume: 66 start-page: 963 year: 2020 end-page: 977 ident: b58 article-title: A virtual element formulation for general element shapes publication-title: Comput. Mech. – volume: 110 start-page: 113 year: 2013 end-page: 137 ident: b13 article-title: Element-wise fracture algorithm based on rotation of edges publication-title: Eng. Fract. Mech. – year: 2001 ident: b65 article-title: Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton (Ultimate load analysis of plain and reinforced concrete structures based on an objective material law of concrete) – volume: 49 start-page: 871 year: 2021 end-page: 899 ident: b59 article-title: Finite elements and virtual elements on classical meshes publication-title: Vietnam J. Math. – volume: 28 start-page: 583 year: 2004 end-page: 607 ident: b9 article-title: Discrete vs smeared crack models for concrete fracture: bridging the gap publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 73 start-page: 2092 year: 2017 end-page: 2150 ident: b55 article-title: Unsymmetric multi-level hanging nodes and anisotropic polynomial degrees in H1-conforming higher-order finite element methods publication-title: Comput. Math. Appl. – volume: 71 start-page: 19 year: 2015 end-page: 38 ident: b10 article-title: On the conformity of strong, regularized, embedded and smeared discontinuity approaches for the modeling of localized failure in solids publication-title: Int. J. Solids Struct. – volume: 340 start-page: 480 year: 2018 end-page: 499 ident: b28 article-title: Crack propagation in dynamics by embedded strong discontinuity approach: Enhanced solid versus discrete lattice model publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 121 start-page: 2462 year: 2020 end-page: 2480 ident: b40 article-title: Global cracking elements: a novel tool for Galerkin-based approaches simulating quasi-brittle fracture publication-title: Internat. J. Numer. Methods Engrg. – volume: 295 start-page: 77 year: 2015 end-page: 107 ident: b15 article-title: An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 97 start-page: 986 year: 2014 end-page: 1010 ident: b20 article-title: New strategies for some issues of numerical manifold method in simulation of crack propagation publication-title: Internat. J. Numer. Methods Engrg. – volume: 96 start-page: 94 year: 2018 end-page: 108 ident: b22 article-title: A zero-thickness cohesive element-based numerical manifold method for rock mechanical behavior with micro-voronoi grains publication-title: Eng. Anal. Bound. Elem. – volume: 121 start-page: 2462 year: 2020 ident: 10.1016/j.finel.2024.104295_b40 article-title: Global cracking elements: a novel tool for Galerkin-based approaches simulating quasi-brittle fracture publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6315 – volume: 113 year: 2021 ident: 10.1016/j.finel.2024.104295_b8 article-title: A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2021.102930 – volume: 102 start-page: 1 year: 2019 ident: 10.1016/j.finel.2024.104295_b33 article-title: Cracking elements method for dynamic brittle fracture publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2018.09.015 – volume: 170 year: 2020 ident: 10.1016/j.finel.2024.104295_b34 article-title: On the crack opening and energy dissipation in a continuum based disconnected crack model publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2019.103333 – volume: 58 start-page: 1873 year: 2003 ident: 10.1016/j.finel.2024.104295_b16 article-title: Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.941 – volume: 197 start-page: 2789 year: 2008 ident: 10.1016/j.finel.2024.104295_b30 article-title: Assumed enhanced strain and the extended finite element methods: A unification of concepts publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2008.01.019 – volume: 195 year: 2021 ident: 10.1016/j.finel.2024.104295_b42 article-title: Cracking elements method with a dissipation-based arc-length approach publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2021.103573 – volume: 244 start-page: 125 issue: 1 year: 2023 ident: 10.1016/j.finel.2024.104295_b50 article-title: Improved cohesive zone model: integrating strain rate, plastic strain, variable damping, and enhanced constitutive law for fracture propagation publication-title: Int. J. Fract. doi: 10.1007/s10704-023-00723-w – year: 2024 ident: 10.1016/j.finel.2024.104295_b52 article-title: Adaptive Cracking Elements 2024, Fortran code (element stiffness matrix and residual), triangular element-elmtTri01 publication-title: webpage – volume: 118–119 start-page: 41 year: 2017 ident: 10.1016/j.finel.2024.104295_b69 article-title: On crack propagation in brittle material using the distinct lattice spring model publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.04.024 – volume: 193 start-page: 3523 year: 2004 ident: 10.1016/j.finel.2024.104295_b17 article-title: A finite element method for the simulation of strong and weak discontinuities in solid mechanics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.12.041 – volume: 187 start-page: 385 year: 2000 ident: 10.1016/j.finel.2024.104295_b49 article-title: Element-free Galerkin methods for dynamic fracture in concrete publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(00)80002-X – volume: 30 start-page: 1173 year: 2006 ident: 10.1016/j.finel.2024.104295_b14 article-title: Smeared crack approach: back to the original track publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.518 – year: 2024 ident: 10.1016/j.finel.2024.104295_b51 article-title: Adaptive Cracking Elements 2024, Fortran code (element stiffness matrix and residual), quadrilateral element-elmtQuad01 publication-title: webpage – volume: 73 start-page: 2092 issue: 9 year: 2017 ident: 10.1016/j.finel.2024.104295_b55 article-title: Unsymmetric multi-level hanging nodes and anisotropic polynomial degrees in H1-conforming higher-order finite element methods publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.02.029 – volume: 315 start-page: 881 year: 2017 ident: 10.1016/j.finel.2024.104295_b6 article-title: Developing a four-dimensional lattice spring model for mechanical responses of solids publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.11.034 – volume: 197 start-page: 332 issue: 5 year: 2008 ident: 10.1016/j.finel.2024.104295_b46 article-title: Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2007.05.017 – volume: 196 start-page: 2338 year: 2007 ident: 10.1016/j.finel.2024.104295_b48 article-title: Energy-based modeling of cohesive and cohesionless cracks via X-FEM publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2006.11.016 – volume: 138 start-page: 31 year: 2018 ident: 10.1016/j.finel.2024.104295_b64 article-title: An h-adaptive thermo-mechanical phase field model for fracture publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.09.003 – volume: 340 start-page: 480 year: 2018 ident: 10.1016/j.finel.2024.104295_b28 article-title: Crack propagation in dynamics by embedded strong discontinuity approach: Enhanced solid versus discrete lattice model publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.06.012 – volume: 26 start-page: 961 year: 2019 ident: 10.1016/j.finel.2024.104295_b37 article-title: Challenges, tools and applications of tracking algorithms in the numerical modelling of cracks in concrete and masonry structures publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-018-9274-3 – year: 1988 ident: 10.1016/j.finel.2024.104295_b70 – volume: 110 start-page: 113 year: 2013 ident: 10.1016/j.finel.2024.104295_b13 article-title: Element-wise fracture algorithm based on rotation of edges publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2013.06.006 – volume: 193 start-page: 3351 year: 2004 ident: 10.1016/j.finel.2024.104295_b54 article-title: Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.09.022 – volume: 155 start-page: 935 year: 2023 ident: 10.1016/j.finel.2024.104295_b56 article-title: The polygonal finite element method for solving heat conduction problems publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2023.07.024 – volume: 61 start-page: 2316 year: 2004 ident: 10.1016/j.finel.2024.104295_b35 article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1151 – volume: 78 start-page: 2470 year: 2011 ident: 10.1016/j.finel.2024.104295_b45 article-title: Effective 3D failure simulations by combining the advantages of embedded strong discontinuity approaches and classical interface elements publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2011.06.007 – volume: 274 start-page: 289 year: 2014 ident: 10.1016/j.finel.2024.104295_b25 article-title: Crack-path field and strain-injection techniques in computational modeling of propagating material failure publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.01.008 – volume: 93 start-page: 224 year: 2012 ident: 10.1016/j.finel.2024.104295_b27 article-title: An embedded formulation with conforming finite elements to capture strong discontinuities publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4393 – volume: 295 start-page: 150 year: 2015 ident: 10.1016/j.finel.2024.104295_b21 article-title: Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2015.07.001 – volume: 86 start-page: 249 year: 2011 ident: 10.1016/j.finel.2024.104295_b4 article-title: Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2D modelling publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.3063 – volume: 59 start-page: 299 year: 2017 ident: 10.1016/j.finel.2024.104295_b26 article-title: Finite element modelling of internal and multiple localized cracks publication-title: Comput. Mech. doi: 10.1007/s00466-016-1351-6 – volume: 11 start-page: 244 year: 2018 ident: 10.1016/j.finel.2024.104295_b29 article-title: Modelling of fracture problems in quasi-brittle materials by the E-FEM publication-title: Ibracon Struct. Mater. J. – volume: 67 start-page: 868 year: 2006 ident: 10.1016/j.finel.2024.104295_b18 article-title: A method for dynamic crack and shear band propagation with phantom nodes publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1652 – volume: 45 start-page: 61 issue: 1 year: 2009 ident: 10.1016/j.finel.2024.104295_b12 article-title: Arbitrary bi-dimensional finite strain cohesive crack propagation publication-title: Comput. Mech. doi: 10.1007/s00466-009-0418-z – volume: 89 start-page: 235 year: 2016 ident: 10.1016/j.finel.2024.104295_b68 article-title: Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2016.09.010 – volume: 88 start-page: 1391 year: 2010 ident: 10.1016/j.finel.2024.104295_b1 article-title: On three-dimensional modelling of crack growth using partition of unity methods publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2008.08.010 – volume: 90 start-page: 154 year: 2016 ident: 10.1016/j.finel.2024.104295_b61 article-title: Dynamic fracture simulations using the scaled boundary finite element method on hybrid polygon-quadtree meshes publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2015.10.016 – volume: 196 start-page: 2777 year: 2007 ident: 10.1016/j.finel.2024.104295_b36 article-title: A three-dimensional large deformation meshfree method for arbitrary evolving cracks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2006.06.020 – volume: 14 start-page: 1195 issue: 4 year: 2019 ident: 10.1016/j.finel.2024.104295_b67 article-title: Propagation and coalescence of quasi-static cracks in Brazilian disks: an insight from a phase field model publication-title: Acta Geotech. doi: 10.1007/s11440-018-0701-2 – volume: 65 start-page: 533 year: 2020 ident: 10.1016/j.finel.2024.104295_b23 article-title: Strain localization analysis of hill’s orthotropic elastoplasticity: analytical results and numerical verification publication-title: Comput. Mech. doi: 10.1007/s00466-019-01782-4 – volume: 295 start-page: 77 year: 2015 ident: 10.1016/j.finel.2024.104295_b15 article-title: An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2015.06.018 – volume: 96 start-page: 94 year: 2018 ident: 10.1016/j.finel.2024.104295_b22 article-title: A zero-thickness cohesive element-based numerical manifold method for rock mechanical behavior with micro-voronoi grains publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2018.08.005 – volume: 188 start-page: 45 year: 2017 ident: 10.1016/j.finel.2024.104295_b57 article-title: A polygonal finite element method for plate analysis publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2017.04.002 – volume: 71 start-page: 19 year: 2015 ident: 10.1016/j.finel.2024.104295_b10 article-title: On the conformity of strong, regularized, embedded and smeared discontinuity approaches for the modeling of localized failure in solids publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.05.016 – volume: 33 start-page: 1413 year: 1992 ident: 10.1016/j.finel.2024.104295_b53 article-title: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620330705 – volume: 40 start-page: 473 year: 2007 ident: 10.1016/j.finel.2024.104295_b2 article-title: A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics publication-title: Comput. Mech. doi: 10.1007/s00466-006-0122-1 – volume: 77 start-page: 26 year: 2017 ident: 10.1016/j.finel.2024.104295_b62 article-title: Dynamic fracture analysis of the soil-structure interaction system using the scaled boundary finite element method publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2017.01.002 – volume: 57 start-page: 1553 year: 2003 ident: 10.1016/j.finel.2024.104295_b24 article-title: 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.731 – volume: 97 start-page: 986 year: 2014 ident: 10.1016/j.finel.2024.104295_b20 article-title: New strategies for some issues of numerical manifold method in simulation of crack propagation publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4620 – volume: 77 start-page: 2431 year: 2010 ident: 10.1016/j.finel.2024.104295_b38 article-title: A crack-tracking technique for localized damage in quasi-brittle materials publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2010.06.013 – volume: 31 start-page: 239 year: 2007 ident: 10.1016/j.finel.2024.104295_b39 article-title: Crack propagation criteria in the framework of X-FEM-based structural analyses publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.560 – volume: 107 year: 2020 ident: 10.1016/j.finel.2024.104295_b63 article-title: Adaptive fourth-order phase field analysis using deep energy minimization publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2020.102527 – start-page: 281 year: 2010 ident: 10.1016/j.finel.2024.104295_b11 article-title: On the uniqueness of numerical solutions of shear failure of deep concrete beams: Comparison of smeared and discrete crack approaches – volume: 74 start-page: 669 issue: 5 year: 2007 ident: 10.1016/j.finel.2024.104295_b60 article-title: Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2006.06.018 – volume: 42 start-page: 223 issue: 1 year: 2019 ident: 10.1016/j.finel.2024.104295_b47 article-title: A material model to reproduce mixed-mode fracture in concrete publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.12898 – volume: 49 start-page: 871 issue: 3 year: 2021 ident: 10.1016/j.finel.2024.104295_b59 article-title: Finite elements and virtual elements on classical meshes publication-title: Vietnam J. Math. doi: 10.1007/s10013-021-00474-y – year: 2001 ident: 10.1016/j.finel.2024.104295_b65 – volume: 28 start-page: 461 year: 1989 ident: 10.1016/j.finel.2024.104295_b44 article-title: A consistent characteristic length for smeared cracking models publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620280214 – volume: 372 year: 2020 ident: 10.1016/j.finel.2024.104295_b7 article-title: A generalized bond-based peridynamic model for quasi-brittle materials enriched with bond tension-rotation-shear coupling effects publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113405 – volume: 177 year: 2020 ident: 10.1016/j.finel.2024.104295_b41 article-title: Cracking elements method with 6-node triangular element publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2020.103421 – volume: 66 start-page: 963 issue: 4 year: 2020 ident: 10.1016/j.finel.2024.104295_b58 article-title: A virtual element formulation for general element shapes publication-title: Comput. Mech. doi: 10.1007/s00466-020-01891-5 – volume: 287 start-page: 335 year: 2015 ident: 10.1016/j.finel.2024.104295_b31 article-title: Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2015.02.001 – volume: 67 start-page: 20 year: 2014 ident: 10.1016/j.finel.2024.104295_b66 article-title: Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2014.01.008 – volume: 318 start-page: 762 year: 2017 ident: 10.1016/j.finel.2024.104295_b5 article-title: Dual-horizon peridynamics: A stable solution to varying horizons publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.12.031 – volume: 39 start-page: 38 year: 2012 ident: 10.1016/j.finel.2024.104295_b19 article-title: Frictional crack initiation and propagation analysis using the numerical manifold method publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2011.08.011 – volume: 144 start-page: 84 year: 2018 ident: 10.1016/j.finel.2024.104295_b32 article-title: Cracking elements: a self-propagating strong discontinuity embedded approach for quasi-brittle fracture publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.10.007 – volume: 199 start-page: 2437 year: 2010 ident: 10.1016/j.finel.2024.104295_b3 article-title: A simple and robust three-dimensional cracking-particle method without enrichment publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2010.03.031 – volume: 192 start-page: 290 year: 2018 ident: 10.1016/j.finel.2024.104295_b43 article-title: A softening-healing law for self-healing quasi-brittle materials: analyzing with strong discontinuity embedded approach publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.12.018 – volume: 28 start-page: 583 year: 2004 ident: 10.1016/j.finel.2024.104295_b9 article-title: Discrete vs smeared crack models for concrete fracture: bridging the gap publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.374 |
| SSID | ssj0005264 |
| Score | 2.54419 |
| Snippet | The Cracking Elements Method (CEM) is a numerical tool for simulation of quasi-brittle fracture. It neither needs remeshing, nor nodal enrichment, or a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104295 |
| SubjectTerms | Cracking Elements Method Hanging node Localization Quasi-brittle fracture Strong Discontinuity embedded Approach (SDA) |
| Title | A simple hybrid linear and nonlinear interpolation finite element for the adaptive Cracking Elements Method |
| URI | https://dx.doi.org/10.1016/j.finel.2024.104295 |
| Volume | 244 |
| WOSCitedRecordID | wos001391043500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0168-874X databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005264 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEO_Bggxi_5wC1kapzEtY_R1GkgMSExRDlFtuOwliqq2m5a_3ue8-wspWgCJC5RFNlO5O_Ly8vz5_cIeWstV5mu89i4GFMmVBrrIa9jIfVID6tqKCrTFpsYnZ2JyUR-Ggw2YS_M1XzUNOL6Wi7-K9RwDcB2W2f_Au5uULgA5wA6HAF2OP4R8EW0mrqUv9HFxu3GipwfqVAp2WBeDKc7xfJacy81nDrPM7IoJe-Uh6pSi1ZZdLxUxoXUozG2WEUf28LTfc_2ZGuMVmWrQsITd-9qSyry1YepJ5d2030YuuD1N1dq7PvNopEX-DezaU-pi01PgRZ2uY6Ko378guVB8hyCajsbazDOyQUYahRvBkPNMFPkjtHH-MPsCCbLutUklrmVa4bFO3_Jpv3ZjewGdtrZREh-h-yzUS7BIO4X78eTDz19EPeJ4fFJQsqqVhy4c6vfuzU9V-X8EXng_zFogdx4TAa2OSAP_f8G9dZ8dUDu95JRPiE_CorEoUgcilShAB7tiEO3iEORONSDToE4FIhDA3FoIA4NxKFInKfky8n4_Pg09qU4YgM-zjpODSCnRa6V1Jalimd5zuHlV-BOaqHTOs1TZoyEd9vmtk5MLhNTK5uokQKLL9NnZA8e1T4nVCS1yVhWC5vITHAj0mqo4ZQlJkl0xg8JCzNZGp-n3pVLmZdBkDgr2-kv3fSXOP2H5F3XaYFpWm5vzgNEpfc00YMsgVO3dXzxrx1fkns35H9F9tbLS_ua3DVX6-lq-cZz7yfGRqfm |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+hybrid+linear+and+nonlinear+interpolation+finite+element+for+the+adaptive+Cracking+Elements+Method&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Wang%2C+Xueya&rft.au=Zhang%2C+Yiming&rft.au=Wen%2C+Minjie&rft.au=Mang%2C+Herbert+A.&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0168-874X&rft.volume=244&rft_id=info:doi/10.1016%2Fj.finel.2024.104295&rft.externalDocID=S0168874X24001896 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon |