Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data

LSTM networks are popular for predicting data with nonlinear and temporal properties. However, it is difficult to select optimal hyperparameters using empirical methods, which can significantly affect their performance and modeling time. To address this, we propose a novel hybrid model called CMAL-W...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chaos, solitons and fractals Ročník 178; s. 114394
Hlavní autoři: Che, Zhongyuan, Peng, Chong, Yue, Chenxiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2024
Témata:
ISSN:0960-0779
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract LSTM networks are popular for predicting data with nonlinear and temporal properties. However, it is difficult to select optimal hyperparameters using empirical methods, which can significantly affect their performance and modeling time. To address this, we propose a novel hybrid model called CMAL-WOA-LSTM (CWLM), which utilizes the multi-strategy improved whale optimization algorithm (WOA) to optimize three key hyperparameters of LSTM. Four modifications are introduced to improve the performance of WOA. Circle chaotic map is used for population initialization, and a modified dynamic backward learning strategy improves population diversity. A nonlinear function optimizes iterations to allow global exploration and faster convergence. Lévy Flight updates of feasible solutions using random walks are carried out near the optimal value for each iteration. By conducting benchmarks and comparative analysis, we illustrate the effectiveness and rationale behind the four improvements. Subsequently, we explain our optimization ideas for constructing hybrid models, highlighting their distinctions from traditional deep learning approaches. Moreover, we provide detailed modeling steps for CWLM and elaborate on the relationships of each part within the model. CWLM is compared with five other models using milling force data and wear data from high-speed machine tests. Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, R-Squared, and computational time are used as error metrics. The results show that CWLM outperforms other models in terms of prediction performance and robustness. CWLM demonstrates improved prediction performance and robustness, making it applicable in a wide range of applications that use LSTM for data prediction. •Improve WOA population diversity with chaotic map and modified backward learning•Optimize iterations and search ability with a new nonlinear function and Lévy Flight•Utilize hybrid multi-strategy enhanced WOA to optimize LSTM hyperparameters•Develop a novel prediction model to efficiently predict milling force and tool wear•Novel proposed model outperforms the other five popular models in three tests
AbstractList LSTM networks are popular for predicting data with nonlinear and temporal properties. However, it is difficult to select optimal hyperparameters using empirical methods, which can significantly affect their performance and modeling time. To address this, we propose a novel hybrid model called CMAL-WOA-LSTM (CWLM), which utilizes the multi-strategy improved whale optimization algorithm (WOA) to optimize three key hyperparameters of LSTM. Four modifications are introduced to improve the performance of WOA. Circle chaotic map is used for population initialization, and a modified dynamic backward learning strategy improves population diversity. A nonlinear function optimizes iterations to allow global exploration and faster convergence. Lévy Flight updates of feasible solutions using random walks are carried out near the optimal value for each iteration. By conducting benchmarks and comparative analysis, we illustrate the effectiveness and rationale behind the four improvements. Subsequently, we explain our optimization ideas for constructing hybrid models, highlighting their distinctions from traditional deep learning approaches. Moreover, we provide detailed modeling steps for CWLM and elaborate on the relationships of each part within the model. CWLM is compared with five other models using milling force data and wear data from high-speed machine tests. Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, R-Squared, and computational time are used as error metrics. The results show that CWLM outperforms other models in terms of prediction performance and robustness. CWLM demonstrates improved prediction performance and robustness, making it applicable in a wide range of applications that use LSTM for data prediction. •Improve WOA population diversity with chaotic map and modified backward learning•Optimize iterations and search ability with a new nonlinear function and Lévy Flight•Utilize hybrid multi-strategy enhanced WOA to optimize LSTM hyperparameters•Develop a novel prediction model to efficiently predict milling force and tool wear•Novel proposed model outperforms the other five popular models in three tests
ArticleNumber 114394
Author Che, Zhongyuan
Peng, Chong
Yue, Chenxiao
Author_xml – sequence: 1
  givenname: Zhongyuan
  orcidid: 0000-0002-8188-8050
  surname: Che
  fullname: Che, Zhongyuan
  organization: School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Chong
  orcidid: 0000-0003-4219-3827
  surname: Peng
  fullname: Peng, Chong
  email: pch@buaa.edu.cn
  organization: School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Chenxiao
  orcidid: 0009-0005-5048-6736
  surname: Yue
  fullname: Yue, Chenxiao
  organization: School of Electronic Information Engineering, Beihang University, Beijing 100191, China
BookMark eNqFkL1OwzAURj0UiRZ4Aha_QMp1nDpkYKgq_qSiDhQxWo59k7hq4sh2i8rTk1ImBpjucs8nnTMho851SMg1gykDJm42U90oF6YppHzKWMaLbETGUAhIIM-LczIJYQMADEQ6JvWqj7a1n7ar6fJ1_UI_bGxou9tGm4ToVcT6QG3be7dHQ99Xc1o5T70rdyHS3qOxOlrXUVfRxtZNEnoc_lqlG9shjRhioEZFdUnOKrUNePVzL8jbw_168ZQsV4_Pi_ky0Rx4THipU4NVCgxZmSPXWaZ1URk2y4W-RRikUhAZapiVqhKm4iLjQpmZgoIpzfgF4add7V0IHivZe9sqf5AM5LGP3MjvPvLYR576DFTxi9I2qqPYkMBu_2HvTiwOWnuLXgZtsdNDGo86SuPsn_wX39GILg
CitedBy_id crossref_primary_10_1038_s41598_025_96941_4
crossref_primary_10_1016_j_eswa_2024_124556
crossref_primary_10_3390_s24227359
crossref_primary_10_3390_sym17081369
crossref_primary_10_1016_j_renene_2024_121992
crossref_primary_10_1016_j_aei_2025_103654
crossref_primary_10_1016_j_marpolbul_2025_118606
crossref_primary_10_1016_j_chaos_2025_116981
crossref_primary_10_1016_j_ijhydene_2024_09_229
crossref_primary_10_1016_j_rineng_2025_105984
crossref_primary_10_1016_j_ijepes_2025_110630
crossref_primary_10_1371_journal_pone_0316836
crossref_primary_10_1038_s41598_024_79059_x
crossref_primary_10_3390_toxics13050327
crossref_primary_10_1149_2162_8777_ad6637
Cites_doi 10.1016/j.ejor.2012.02.042
10.1109/ACCESS.2021.3111408
10.1016/j.camwa.2017.10.022
10.1162/neco_a_01199
10.1038/nature11098
10.1016/j.apenergy.2019.113541
10.1016/j.swevo.2016.12.005
10.1103/PhysRevLett.58.1100
10.1109/TNNLS.2016.2582924
10.1007/s11269-022-03133-0
10.1109/TEVC.2012.2227145
10.1016/j.asoc.2019.105550
10.1109/TSG.2017.2753802
10.3390/app11052387
10.1155/2022/7498025
10.1016/j.eswa.2018.07.019
10.1007/s00170-021-07560-y
10.1155/2019/1934796
10.1002/for.2839
10.3390/en11113227
10.1890/06-1916.1
10.1016/j.apenergy.2019.04.047
10.1007/s00357-018-9261-2
10.3390/s22207900
10.1016/j.chaos.2020.110336
10.1109/ACCESS.2021.3083593
10.1073/pnas.1121201109
10.1109/ACCESS.2020.3006499
10.1016/j.advengsoft.2016.01.008
10.1016/j.energy.2021.120069
10.1016/j.chemosphere.2019.01.121
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2023.114394
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2023_114394
S0960077923012961
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABJNI
ABMAC
ABNEU
ABTAH
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-3bc2def201e1b7e3c44cc9fd1576c8e02022064ec05baf6df36436ad5a091ac13
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146684700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Tue Nov 18 22:25:32 EST 2025
Sat Nov 29 08:16:14 EST 2025
Sat Mar 08 15:49:02 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory
Hyperparameter optimization
Multi-strategy improved whale optimization algorithm
Milling force prediction
Tool wear prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-3bc2def201e1b7e3c44cc9fd1576c8e02022064ec05baf6df36436ad5a091ac13
ORCID 0009-0005-5048-6736
0000-0003-4219-3827
0000-0002-8188-8050
ParticipantIDs crossref_primary_10_1016_j_chaos_2023_114394
crossref_citationtrail_10_1016_j_chaos_2023_114394
elsevier_sciencedirect_doi_10_1016_j_chaos_2023_114394
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Humphries, Weimerskirch, Queiroz, Southall, Sims (bb0170) 2012; 109
Li, Chai, Zhang, Wang, Ma (bb0125) 2022; 2022
Ibrahim, Mirjalili, El-Said, Ghoneim, Al-Harthi, Ibrahim (bb0130) 2021; 9
Leccardi (bb0190) 2005; vol. ID
Tizhoosh (bb0155) 2005; vol. 1
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (bb0020) 2017; 28
Mockus, Tiesis, Zilinskas (bb0115) 2014
Mirjalili, Lewis (bb0140) 2016; 95
Bai, Zeng, Li, Zhang (bb0045) 2019; 222
Elsaraiti, Merabet (bb0010) 2021; 11
Goldberger, Hinton, Roweis, Salakhutdinov (bb0205) 2004
Reynolds, Smith, Menzel, Greggers, Reynolds, Riley (bb0165) 2007; 88
Li, Sun, Liu, Wang, Huang (bb0085) 2022; 36
Bergstra, Bengio (bb0110) 2012; 13
Baek, Kim (bb0040) 2018; 113
Harris, Banigan, Christian, Konradt, Tait Wojno, Norose (bb0185) 2012; 486
Sun, Qin, Przystupa, Majka, Kochan (bb0055) 2022; 22
Shahid, Zameer, Muneeb (bb0120) 2021; 223
Zhang, Ye, Qin, Liu, Wang, Yu (bb0035) 2019; 247
Schmidhuber, Cummins (bb0070) 1999
Shi, Lei, Huang, Huang, Ren, Hu (bb0015) 2018; 11
Pan, Zheng, Liu, Liu, Lin, Chen (bb0175) 2018; 75
Yu, Si, Hu, Zhang (bb0050) 2019; 31
Gao, Guo, Hanson, Liu, Wang, Zan (bb0075) 2021; 116
Sayed, Darwish, Hassanien (bb0150) 2018; 35
Ghimire, Deo, Raj, Mi (bb0030) 2019; 253
Yang, Li, Liu, Zheng (bb0105) 2013; 17
.
2010 PHM Society Conference Data Challenge Dataset. The Prognostics and Health Management Society (PHM Society).
Ghoneim, Farrag, Rashed, El-Kenawy, Ibrahim (bb0135) 2021; 9
Pan, Jing, Jiao, Wang (bb0100) 2020; 8
Haupt, Haupt (bb0145) 2003
Cao, Ewing, Thompson (bb0005) 2012; 221
Mavrovouniotis, Li, Yang (bb0060) 2017; 33
Yuan, Chen, Jiang, Yuan (bb0195) 2019; 82
Shao, Li, Zhao, Bian (bb0080) 2019; 2019
Kong, Dong, Jia, Hill, Xu, Zhang (bb0025) 2019; 10
Hochreiter, Schmidhuber (bb0065) 1997; 9
Shlesinger, West, Klafter (bb0180) 1987; 58
Yang (bb0160) 2010
Jiao, Song, Kong, Tang (bb0095) 2022; 41
Prasanth, Singh, Kumar, Tikkiwal, Chong (bb0090) 2021; 142
Haupt (10.1016/j.chaos.2023.114394_bb0145) 2003
Li (10.1016/j.chaos.2023.114394_bb0085) 2022; 36
Jiao (10.1016/j.chaos.2023.114394_bb0095) 2022; 41
Yu (10.1016/j.chaos.2023.114394_bb0050) 2019; 31
Leccardi (10.1016/j.chaos.2023.114394_bb0190) 2005; vol. ID
Ghoneim (10.1016/j.chaos.2023.114394_bb0135) 2021; 9
Yang (10.1016/j.chaos.2023.114394_bb0160) 2010
Sun (10.1016/j.chaos.2023.114394_bb0055) 2022; 22
Shi (10.1016/j.chaos.2023.114394_bb0015) 2018; 11
Gao (10.1016/j.chaos.2023.114394_bb0075) 2021; 116
Pan (10.1016/j.chaos.2023.114394_bb0100) 2020; 8
Hochreiter (10.1016/j.chaos.2023.114394_bb0065) 1997; 9
Pan (10.1016/j.chaos.2023.114394_bb0175) 2018; 75
Li (10.1016/j.chaos.2023.114394_bb0125) 2022; 2022
Harris (10.1016/j.chaos.2023.114394_bb0185) 2012; 486
10.1016/j.chaos.2023.114394_bb0200
Yang (10.1016/j.chaos.2023.114394_bb0105) 2013; 17
Ghimire (10.1016/j.chaos.2023.114394_bb0030) 2019; 253
Kong (10.1016/j.chaos.2023.114394_bb0025) 2019; 10
Reynolds (10.1016/j.chaos.2023.114394_bb0165) 2007; 88
Humphries (10.1016/j.chaos.2023.114394_bb0170) 2012; 109
Shahid (10.1016/j.chaos.2023.114394_bb0120) 2021; 223
Mockus (10.1016/j.chaos.2023.114394_bb0115) 2014
Prasanth (10.1016/j.chaos.2023.114394_bb0090) 2021; 142
Elsaraiti (10.1016/j.chaos.2023.114394_bb0010) 2021; 11
Mirjalili (10.1016/j.chaos.2023.114394_bb0140) 2016; 95
Shao (10.1016/j.chaos.2023.114394_bb0080) 2019; 2019
Zhang (10.1016/j.chaos.2023.114394_bb0035) 2019; 247
Greff (10.1016/j.chaos.2023.114394_bb0020) 2017; 28
Baek (10.1016/j.chaos.2023.114394_bb0040) 2018; 113
Bergstra (10.1016/j.chaos.2023.114394_bb0110) 2012; 13
Yuan (10.1016/j.chaos.2023.114394_bb0195) 2019; 82
Mavrovouniotis (10.1016/j.chaos.2023.114394_bb0060) 2017; 33
Shlesinger (10.1016/j.chaos.2023.114394_bb0180) 1987; 58
Goldberger (10.1016/j.chaos.2023.114394_bb0205) 2004
Bai (10.1016/j.chaos.2023.114394_bb0045) 2019; 222
Ibrahim (10.1016/j.chaos.2023.114394_bb0130) 2021; 9
Cao (10.1016/j.chaos.2023.114394_bb0005) 2012; 221
Tizhoosh (10.1016/j.chaos.2023.114394_bb0155) 2005; vol. 1
Schmidhuber (10.1016/j.chaos.2023.114394_bb0070) 1999
Sayed (10.1016/j.chaos.2023.114394_bb0150) 2018; 35
References_xml – volume: 223
  year: 2021
  ident: bb0120
  article-title: A novel genetic LSTM model for wind power forecast
  publication-title: Energy
– volume: 35
  start-page: 300
  year: 2018
  end-page: 344
  ident: bb0150
  article-title: A new chaotic whale optimization algorithm for features selection
  publication-title: J Classif
– start-page: 850
  year: 1999
  end-page: 855
  ident: bb0070
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: International conference on artificial neural networks (ICANN)
– volume: 109
  start-page: 7169
  year: 2012
  end-page: 7174
  ident: bb0170
  article-title: Foraging success of biological Lévy flights recorded in situ
  publication-title: Proc Natl Acad Sci U S A
– volume: 58
  start-page: 1100
  year: 1987
  end-page: 1103
  ident: bb0180
  article-title: Lévy dynamics of enhanced diffusion: application to turbulence
  publication-title: Phys Rev Lett
– volume: 221
  start-page: 148
  year: 2012
  end-page: 154
  ident: bb0005
  article-title: Forecasting wind speed with recurrent neural networks
  publication-title: Eur J Oper Res
– volume: 247
  start-page: 270
  year: 2019
  end-page: 284
  ident: bb0035
  article-title: Wind speed prediction method using shared weight long short-term memory network and gaussian process regression
  publication-title: Appl Energy
– volume: vol. ID
  start-page: 11
  year: 2005
  end-page: 091
  ident: bb0190
  article-title: Comparison of three algorithms for Lévy noise generation
  publication-title: 5th EUROMECH nonlinear oscillations conference (ENOC5)
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bb0065
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 11
  start-page: 3227
  year: 2018
  ident: bb0015
  article-title: Hourly day-ahead wind power prediction using the hybrid model of variational model decomposition and long short-term memory
  publication-title: Energies
– volume: 222
  start-page: 286
  year: 2019
  end-page: 294
  ident: bb0045
  article-title: An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting
  publication-title: Chemosphere
– volume: 82
  year: 2019
  ident: bb0195
  article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model
  publication-title: Appl Soft Comput
– volume: 11
  start-page: 2387
  year: 2021
  ident: bb0010
  article-title: Application of long-short-term-memory recurrent neural networks to forecast wind speed
  publication-title: Appl Sci
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: bb0050
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput
– volume: 9
  start-page: 125787
  year: 2021
  end-page: 125804
  ident: bb0130
  article-title: Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm
  publication-title: IEEE Access
– volume: 28
  start-page: 2222
  year: 2017
  end-page: 2232
  ident: bb0020
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Trans Neural Netw Learning Syst
– year: 2010
  ident: bb0160
  article-title: Nature-inspired metaheuristic algorithms
– volume: 253
  year: 2019
  ident: bb0030
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl Energy
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: bb0105
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans Evol Computat
– volume: 88
  start-page: 1955
  year: 2007
  end-page: 1961
  ident: bb0165
  article-title: Displaced honey bees perform optimal scale-free search flights
  publication-title: Ecology
– volume: 33
  start-page: 1
  year: 2017
  end-page: 17
  ident: bb0060
  article-title: A survey of swarm intelligence for dynamic optimization: algorithms and applications
  publication-title: Swarm Evol
– volume: 9
  start-page: 78324
  year: 2021
  end-page: 78340
  ident: bb0135
  article-title: Adaptive dynamic meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults
  publication-title: IEEE Access
– volume: 10
  start-page: 841
  year: 2019
  end-page: 851
  ident: bb0025
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Trans Smart Grid
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 10
  ident: bb0125
  article-title: Prediction model of ischemic stroke recurrence using PSO-LSTM in mobile medical monitoring system
  publication-title: Comput Intell Neurosci
– volume: vol. 1
  start-page: 695
  year: 2005
  end-page: 701
  ident: bb0155
  article-title: Opposition-based learning: a new scheme for machine intelligence
  publication-title: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06)
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bb0140
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
– volume: 116
  start-page: 1721
  year: 2021
  end-page: 1735
  ident: bb0075
  article-title: Thermal error prediction of ball screws based on PSO-LSTM
  publication-title: Int J Adv Manuf Technol
– reference: .
– volume: 8
  start-page: 121460
  year: 2020
  end-page: 121468
  ident: bb0100
  article-title: Analysis and application of grey wolf optimizer-long short-term memory
  publication-title: IEEE Access
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 15
  ident: bb0080
  article-title: Nickel price forecast based on the LSTM neural network optimized by the improved PSO algorithm
  publication-title: Math Probl Eng
– year: 2003
  ident: bb0145
  article-title: Practical genetic algorithms
– volume: 75
  start-page: 1226
  year: 2018
  end-page: 1236
  ident: bb0175
  article-title: A stochastic model for thermal transport of nanofluid in porous media: derivation and applications
  publication-title: Comput Math Appl
– start-page: 513
  year: 2004
  end-page: 520
  ident: bb0205
  article-title: Neighbourhood components analysis
  publication-title: 17th international conference on neural information processing systems (ICNIPS)
– volume: 142
  year: 2021
  ident: bb0090
  article-title: Forecasting spread of COVID-19 using google trends: a hybrid GWO-deep learning approach
  publication-title: Chaos Solitons Fractals
– volume: 41
  start-page: 933
  year: 2022
  end-page: 944
  ident: bb0095
  article-title: Volatility forecasting for crude oil based on text information and deep learning PSO-LSTM model
  publication-title: J Forecast
– volume: 486
  start-page: 545
  year: 2012
  end-page: 548
  ident: bb0185
  article-title: Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells
  publication-title: Nature
– volume: 22
  start-page: 7900
  year: 2022
  ident: bb0055
  article-title: Individualized short-term electric load forecasting using data-driven meta-heuristic method based on LSTM network
  publication-title: Sensors
– volume: 113
  start-page: 457
  year: 2018
  end-page: 480
  ident: bb0040
  article-title: ModAugNet: a new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
  publication-title: Expert Syst Appl
– start-page: 117
  year: 2014
  end-page: 129
  ident: bb0115
  article-title: The application of Bayesian methods for seeking the extremum
  publication-title: In book: towards global optimisation 2, North-Holand
– reference: 2010 PHM Society Conference Data Challenge Dataset. The Prognostics and Health Management Society (PHM Society).
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bb0110
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– volume: 36
  start-page: 2095
  year: 2022
  end-page: 2115
  ident: bb0085
  article-title: Monthly runoff forecasting using variational mode decomposition coupled with gray wolf optimizer-based long short-term memory neural networks
  publication-title: Water Resour Manage
– volume: 221
  start-page: 148
  year: 2012
  ident: 10.1016/j.chaos.2023.114394_bb0005
  article-title: Forecasting wind speed with recurrent neural networks
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2012.02.042
– volume: 9
  start-page: 125787
  year: 2021
  ident: 10.1016/j.chaos.2023.114394_bb0130
  article-title: Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111408
– volume: 75
  start-page: 1226
  year: 2018
  ident: 10.1016/j.chaos.2023.114394_bb0175
  article-title: A stochastic model for thermal transport of nanofluid in porous media: derivation and applications
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2017.10.022
– ident: 10.1016/j.chaos.2023.114394_bb0200
– volume: 31
  start-page: 1235
  year: 2019
  ident: 10.1016/j.chaos.2023.114394_bb0050
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01199
– volume: vol. ID
  start-page: 11
  year: 2005
  ident: 10.1016/j.chaos.2023.114394_bb0190
  article-title: Comparison of three algorithms for Lévy noise generation
– volume: 486
  start-page: 545
  year: 2012
  ident: 10.1016/j.chaos.2023.114394_bb0185
  article-title: Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells
  publication-title: Nature
  doi: 10.1038/nature11098
– volume: 253
  year: 2019
  ident: 10.1016/j.chaos.2023.114394_bb0030
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113541
– volume: 33
  start-page: 1
  year: 2017
  ident: 10.1016/j.chaos.2023.114394_bb0060
  article-title: A survey of swarm intelligence for dynamic optimization: algorithms and applications
  publication-title: Swarm Evol
  doi: 10.1016/j.swevo.2016.12.005
– volume: 58
  start-page: 1100
  year: 1987
  ident: 10.1016/j.chaos.2023.114394_bb0180
  article-title: Lévy dynamics of enhanced diffusion: application to turbulence
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.58.1100
– volume: 28
  start-page: 2222
  year: 2017
  ident: 10.1016/j.chaos.2023.114394_bb0020
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Trans Neural Netw Learning Syst
  doi: 10.1109/TNNLS.2016.2582924
– year: 2003
  ident: 10.1016/j.chaos.2023.114394_bb0145
– volume: 36
  start-page: 2095
  year: 2022
  ident: 10.1016/j.chaos.2023.114394_bb0085
  article-title: Monthly runoff forecasting using variational mode decomposition coupled with gray wolf optimizer-based long short-term memory neural networks
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-022-03133-0
– volume: 17
  start-page: 721
  year: 2013
  ident: 10.1016/j.chaos.2023.114394_bb0105
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans Evol Computat
  doi: 10.1109/TEVC.2012.2227145
– volume: 82
  year: 2019
  ident: 10.1016/j.chaos.2023.114394_bb0195
  article-title: Prediction interval of wind power using parameter optimized Beta distribution based LSTM model
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105550
– volume: 10
  start-page: 841
  year: 2019
  ident: 10.1016/j.chaos.2023.114394_bb0025
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2753802
– volume: 11
  start-page: 2387
  year: 2021
  ident: 10.1016/j.chaos.2023.114394_bb0010
  article-title: Application of long-short-term-memory recurrent neural networks to forecast wind speed
  publication-title: Appl Sci
  doi: 10.3390/app11052387
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.chaos.2023.114394_bb0125
  article-title: Prediction model of ischemic stroke recurrence using PSO-LSTM in mobile medical monitoring system
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/7498025
– start-page: 850
  year: 1999
  ident: 10.1016/j.chaos.2023.114394_bb0070
  article-title: Learning to forget: continual prediction with LSTM
– volume: 113
  start-page: 457
  year: 2018
  ident: 10.1016/j.chaos.2023.114394_bb0040
  article-title: ModAugNet: a new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.019
– volume: 116
  start-page: 1721
  year: 2021
  ident: 10.1016/j.chaos.2023.114394_bb0075
  article-title: Thermal error prediction of ball screws based on PSO-LSTM
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-021-07560-y
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.chaos.2023.114394_bb0080
  article-title: Nickel price forecast based on the LSTM neural network optimized by the improved PSO algorithm
  publication-title: Math Probl Eng
  doi: 10.1155/2019/1934796
– volume: 41
  start-page: 933
  year: 2022
  ident: 10.1016/j.chaos.2023.114394_bb0095
  article-title: Volatility forecasting for crude oil based on text information and deep learning PSO-LSTM model
  publication-title: J Forecast
  doi: 10.1002/for.2839
– volume: 11
  start-page: 3227
  year: 2018
  ident: 10.1016/j.chaos.2023.114394_bb0015
  article-title: Hourly day-ahead wind power prediction using the hybrid model of variational model decomposition and long short-term memory
  publication-title: Energies
  doi: 10.3390/en11113227
– volume: 88
  start-page: 1955
  year: 2007
  ident: 10.1016/j.chaos.2023.114394_bb0165
  article-title: Displaced honey bees perform optimal scale-free search flights
  publication-title: Ecology
  doi: 10.1890/06-1916.1
– volume: 247
  start-page: 270
  year: 2019
  ident: 10.1016/j.chaos.2023.114394_bb0035
  article-title: Wind speed prediction method using shared weight long short-term memory network and gaussian process regression
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.047
– volume: 35
  start-page: 300
  year: 2018
  ident: 10.1016/j.chaos.2023.114394_bb0150
  article-title: A new chaotic whale optimization algorithm for features selection
  publication-title: J Classif
  doi: 10.1007/s00357-018-9261-2
– volume: 22
  start-page: 7900
  year: 2022
  ident: 10.1016/j.chaos.2023.114394_bb0055
  article-title: Individualized short-term electric load forecasting using data-driven meta-heuristic method based on LSTM network
  publication-title: Sensors
  doi: 10.3390/s22207900
– volume: 142
  year: 2021
  ident: 10.1016/j.chaos.2023.114394_bb0090
  article-title: Forecasting spread of COVID-19 using google trends: a hybrid GWO-deep learning approach
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110336
– volume: vol. 1
  start-page: 695
  year: 2005
  ident: 10.1016/j.chaos.2023.114394_bb0155
  article-title: Opposition-based learning: a new scheme for machine intelligence
– volume: 9
  start-page: 78324
  year: 2021
  ident: 10.1016/j.chaos.2023.114394_bb0135
  article-title: Adaptive dynamic meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083593
– volume: 109
  start-page: 7169
  year: 2012
  ident: 10.1016/j.chaos.2023.114394_bb0170
  article-title: Foraging success of biological Lévy flights recorded in situ
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1121201109
– start-page: 513
  year: 2004
  ident: 10.1016/j.chaos.2023.114394_bb0205
  article-title: Neighbourhood components analysis
– volume: 8
  start-page: 121460
  year: 2020
  ident: 10.1016/j.chaos.2023.114394_bb0100
  article-title: Analysis and application of grey wolf optimizer-long short-term memory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006499
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.chaos.2023.114394_bb0140
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– start-page: 117
  year: 2014
  ident: 10.1016/j.chaos.2023.114394_bb0115
  article-title: The application of Bayesian methods for seeking the extremum
– year: 2010
  ident: 10.1016/j.chaos.2023.114394_bb0160
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.chaos.2023.114394_bb0110
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– volume: 223
  year: 2021
  ident: 10.1016/j.chaos.2023.114394_bb0120
  article-title: A novel genetic LSTM model for wind power forecast
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120069
– volume: 222
  start-page: 286
  year: 2019
  ident: 10.1016/j.chaos.2023.114394_bb0045
  article-title: An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.121
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.chaos.2023.114394_bb0065
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0001062
Score 2.5175385
Snippet LSTM networks are popular for predicting data with nonlinear and temporal properties. However, it is difficult to select optimal hyperparameters using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114394
SubjectTerms Hyperparameter optimization
Long short-term memory
Milling force prediction
Multi-strategy improved whale optimization algorithm
Tool wear prediction
Title Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data
URI https://dx.doi.org/10.1016/j.chaos.2023.114394
Volume 178
WOSCitedRecordID wos001146684700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001062
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfQxgM8IDZAbMDkBx5AxVObOF-PVTW0TexDWoG-RYntrJ22pGrSqeOv5852nLGhCZB4iaq0dlvfT3e_u9wHIe_B5oPh4YpFWZAznnk-i6WKGM99FQcyLqTOJvz2JTo-jieT5NRWXNd6nEBUlvFqlcz_q6jhHggbS2f_QtxuU7gBr0HocAWxw_WPBH8CSuBq9kNXL52Nj0ykVecNstq0or3B2shFdQ1c8_vJUCcaLqp8WTfYMUDOhCOR4Lizeg72rXelcy5VD4hpU_dsQVvX4mCamWy9GrPpMPkGw_EFFmBll460j6bmUci0Ks9vlh0qT5XRNyN8w2mhpUlRnKpyNcuq28EJj98JTriqmS5FSYcewz7rR2aIjNPCZpLPPY1uggsXuwL_yS4Oe8f2xr6ZjHynVfYZ7owbg18FPAa94nUvChLQduvDg73JobPR4Ajr50vtL2n7UenMv3tf9XvOcouHjJ-TZ9aBoEMj-A3ySJWb5OmR675bb5INq7Br-sF2Ff_4gpx3uKCIC4q4oL_igra4oIALCrigBhe0wwWtCtrhglpcUI0Lirh4Sb5-3huP9pmdssEE0JeG-bnwpCqACKpBHilfcC5EUsgBeKIiVuBOeB7wViX6QZ4VoSx8ILFhJoMMqGYmBv4rslZWpXpNKBjOBNiPVAmPOfdUnIQ85AJ89iDnkS-3iNeeYypsC3qchHKZtrmGF6k-_BQPPzWHv0U-uUVz04Hl4Y-HrYBSSyINOUwBUQ8t3P7XhW_Ikw76b8las1iqd-SxuG5m9WLHIu8nr9uYdQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+LSTM+with+multi-strategy+improved+WOA+for+robust+prediction+of+high-speed+machine+tests+data&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Che%2C+Zhongyuan&rft.au=Peng%2C+Chong&rft.au=Yue%2C+Chenxiao&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=178&rft_id=info:doi/10.1016%2Fj.chaos.2023.114394&rft.externalDocID=S0960077923012961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon