Self-Supervised Masked Graph Autoencoder for Hyperspectral Anomaly Detection

Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder(AE)-based methods are widely used due to their excellent image reconstruction capability. However, traditional grid-based image representation methods struggle to capture long-range d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 34; s. 6714 - 6729
Hlavní autoři: Tu, Bing, He, Baoliang, He, Yan, Zhou, Tao, Liu, Bo, Li, Jun, Plaza, Antonio
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder(AE)-based methods are widely used due to their excellent image reconstruction capability. However, traditional grid-based image representation methods struggle to capture long-range dependencies and model non-Euclidean structures. To address these issues, this paper proposes a self-supervised Masked Graph AutoEncoder (MGAE) for hyperspectral anomaly detection. MGAE utilizes a Graph Attention Network (GAT) autoencoder to reconstruct the background of hyperspectral images and identifies anomalies by comparing the reconstructed features with the original features. Specifically, we constructs a topological graph structure of the hyperspectral image, which is then input into the GAT autoencoder for reconstruction, leveraging the multi-head attention mechanism to learn spatial and spectral features. To prevent the decoder from learning trivial solutions, we introduce a re-masking strategy that randomly masks both the input features and hidden representations during training, forcing the model to learn and reconstruct features under limited information, thereby improving detection performance. Additionally, the proposed loss function with graph Laplacian regularization (Twice Loss) minimizes variations in feature representations, leading to more consistent background reconstruction. Experimental results on several real-world hyperspectral datasets demonstrate that MGAE outperforms existing methods.
AbstractList Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder(AE)-based methods are widely used due to their excellent image reconstruction capability. However, traditional grid-based image representation methods struggle to capture long-range dependencies and model non-Euclidean structures. To address these issues, this paper proposes a self-supervised Masked Graph AutoEncoder (MGAE) for hyperspectral anomaly detection. MGAE utilizes a Graph Attention Network (GAT) autoencoder to reconstruct the background of hyperspectral images and identifies anomalies by comparing the reconstructed features with the original features. Specifically, we constructs a topological graph structure of the hyperspectral image, which is then input into the GAT autoencoder for reconstruction, leveraging the multi-head attention mechanism to learn spatial and spectral features. To prevent the decoder from learning trivial solutions, we introduce a re-masking strategy that randomly masks both the input features and hidden representations during training, forcing the model to learn and reconstruct features under limited information, thereby improving detection performance. Additionally, the proposed loss function with graph Laplacian regularization (Twice Loss) minimizes variations in feature representations, leading to more consistent background reconstruction. Experimental results on several real-world hyperspectral datasets demonstrate that MGAE outperforms existing methods.
Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder (AE)-based methods are widely used due to their excellent image reconstruction capability. However, traditional grid-based image representation methods struggle to capture long-range dependencies and model non-Euclidean structures. To address these issues, this paper proposes a self-supervised Masked Graph AutoEncoder (MGAE) for hyperspectral anomaly detection. MGAE utilizes a Graph Attention Network (GAT) autoencoder to reconstruct the background of hyperspectral images and identifies anomalies by comparing the reconstructed features with the original features. Specifically, we constructs a topological graph structure of the hyperspectral image, which is then input into the GAT autoencoder for reconstruction, leveraging the multi-head attention mechanism to learn spatial and spectral features. To prevent the decoder from learning trivial solutions, we introduce a re-masking strategy that randomly masks both the input features and hidden representations during training, forcing the model to learn and reconstruct features under limited information, thereby improving detection performance. Additionally, the proposed loss function with graph Laplacian regularization (Twice Loss) minimizes variations in feature representations, leading to more consistent background reconstruction. Experimental results on several real-world hyperspectral datasets demonstrate that MGAE outperforms existing methods.Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder (AE)-based methods are widely used due to their excellent image reconstruction capability. However, traditional grid-based image representation methods struggle to capture long-range dependencies and model non-Euclidean structures. To address these issues, this paper proposes a self-supervised Masked Graph AutoEncoder (MGAE) for hyperspectral anomaly detection. MGAE utilizes a Graph Attention Network (GAT) autoencoder to reconstruct the background of hyperspectral images and identifies anomalies by comparing the reconstructed features with the original features. Specifically, we constructs a topological graph structure of the hyperspectral image, which is then input into the GAT autoencoder for reconstruction, leveraging the multi-head attention mechanism to learn spatial and spectral features. To prevent the decoder from learning trivial solutions, we introduce a re-masking strategy that randomly masks both the input features and hidden representations during training, forcing the model to learn and reconstruct features under limited information, thereby improving detection performance. Additionally, the proposed loss function with graph Laplacian regularization (Twice Loss) minimizes variations in feature representations, leading to more consistent background reconstruction. Experimental results on several real-world hyperspectral datasets demonstrate that MGAE outperforms existing methods.
Author Li, Jun
Liu, Bo
He, Yan
Zhou, Tao
Tu, Bing
He, Baoliang
Plaza, Antonio
Author_xml – sequence: 1
  givenname: Bing
  orcidid: 0000-0001-5802-9496
  surname: Tu
  fullname: Tu, Bing
  email: tubing@nuist.edu.cn
  organization: Institute of Optics and Electronics, the State Key Laboratory Cultivation Base of Atmospheric Optoelectronic Detection and Information Fusion, Jiangsu International Joint Laboratory on Meteorological Photonics and Optoelectronic Detection, and Jiangsu Engineering Research Center for Intelligent Optoelectronic Sensing Technology of Atmosphere, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Baoliang
  surname: He
  fullname: He, Baoliang
  email: baoliang_he@163.com
  organization: Institute of Optics and Electronics, the State Key Laboratory Cultivation Base of Atmospheric Optoelectronic Detection and Information Fusion, Jiangsu International Joint Laboratory on Meteorological Photonics and Optoelectronic Detection, and Jiangsu Engineering Research Center for Intelligent Optoelectronic Sensing Technology of Atmosphere, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Yan
  surname: He
  fullname: He, Yan
  email: 975861884@qq.com
  organization: Institute of Optics and Electronics, the State Key Laboratory Cultivation Base of Atmospheric Optoelectronic Detection and Information Fusion, Jiangsu International Joint Laboratory on Meteorological Photonics and Optoelectronic Detection, and Jiangsu Engineering Research Center for Intelligent Optoelectronic Sensing Technology of Atmosphere, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Tao
  orcidid: 0009-0000-4967-3175
  surname: Zhou
  fullname: Zhou, Tao
  email: zhoutao@stu.ahjzu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Anhui Jianzhu University, Hefei, China
– sequence: 5
  givenname: Bo
  orcidid: 0000-0002-9603-9975
  surname: Liu
  fullname: Liu, Bo
  email: bo@nuist.edu.cn
  organization: Institute of Optics and Electronics, the State Key Laboratory Cultivation Base of Atmospheric Optoelectronic Detection and Information Fusion, Jiangsu International Joint Laboratory on Meteorological Photonics and Optoelectronic Detection, and Jiangsu Engineering Research Center for Intelligent Optoelectronic Sensing Technology of Atmosphere, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 6
  givenname: Jun
  orcidid: 0000-0003-1613-9448
  surname: Li
  fullname: Li, Jun
  email: lijuncug@cug.edu.cn
  organization: Faculty of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 7
  givenname: Antonio
  orcidid: 0000-0002-9613-1659
  surname: Plaza
  fullname: Plaza, Antonio
  email: aplaza@unex.es
  organization: Department of Technology of Computers and Communications, Escuela Politécnica, Hyperspectral Computing Laboratory, University of Extremadura, Cáceres, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41100244$$D View this record in MEDLINE/PubMed
BookMark eNpd0c1LwzAYBvAgitPp3YNIwYuXzjcfbdLjmJ8wUdg8l7R9g9WuqUkr7L83Y1PB0xvC7wnhfY7JfmtbJOSMwoRSyK6Xjy8TBiyZ8JQBZHSPHNFM0BhAsP1whkTGkopsRI69fwegIqHpIRmJkAYmxBGZL7Ax8WLo0H3VHqvoSfuPMO6d7t6i6dBbbEtboYuMddHDOjjfYdk73UTT1q50s45usA83tW1PyIHRjcfT3RyT17vb5ewhnj_fP86m87jkwPuYFxmqVDGlFDLkABVqikkitSlNkgrBTVZII5QqEi4KDqbSWkpAnqJUleBjcrV9t3P2c0Df56val9g0ukU7-JyzlDGmGNBAL__Rdzu4Nvxuo9JESqk26mKnhmKFVd65eqXdOv_ZUwCwBaWz3js0v4RCvqkiD1XkmyryXRUhcr6N1Ij4xymDFCjwb-Pigo4
CODEN IIPRE4
Cites_doi 10.1109/TGRS.2024.3351179
10.1109/TGRS.2023.3276175
10.1109/TGRS.2021.3069716
10.3390/rs17142438
10.2307/1403797
10.1109/TIT.1967.1053964
10.1109/TPAMI.2025.3557581
10.1126/science.290.5500.2323
10.1109/18.857796
10.1117/12.850741
10.1109/ICCV.2019.00533
10.11834/jrs.20210283
10.1109/TGRS.2023.3335484
10.1109/ACCESS.2025.3534981
10.1109/TIP.2021.3078329
10.1049/cit2.12154
10.1109/lgrs.2024.3449635
10.1109/TGRS.2024.3456548
10.1109/TGRS.2004.841487
10.1109/29.60107
10.1109/JSTARS.2025.3542457
10.1109/TCYB.2020.2968750
10.1117/12.745429
10.3390/rs14081784
10.1109/JSTARS.2019.2940278
10.1109/JSTARS.2022.3167830
10.1109/TGRS.2025.3593019
10.1109/JSTARS.2025.3580751
10.1109/TIP.2024.3385295
10.1109/TGRS.2023.3262928
10.1109/TIP.2023.3306916
10.1016/j.eswa.2025.127366
10.1109/ICCWAMTIP51612.2020.9317527
10.1109/ACCESS.2025.3530437
10.1109/TGRS.2006.873019
10.1109/TIP.2021.3071557
10.1109/TGRS.2025.3534185
10.1109/TGRS.2019.2936308
10.1109/JSTARS.2013.2238609
10.1109/IGARSS.2017.8127159
10.1109/TIP.2022.3144017
10.1016/j.inffus.2022.08.011
10.1109/MSP.2022.3217936
10.1109/MSP.2013.2278992
10.1109/TGRS.2025.3547145
10.1109/TCYB.2022.3175771
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2025.3620091
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 6729
ExternalDocumentID 41100244
10_1109_TIP_2025_3620091
11206010
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62535010; 62271200; 62375083
  funderid: 10.13039/501100001809
– fundername: Start-Up Foundation for Introducing Talent of Nanjing University of Information Science and Technology (NUIST)
  grantid: 2023r091
  funderid: 10.13039/501100013156
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c303t-3b9e8682888e2e300dea1e557afcf56443f9b7f488b534b30fdaa770e36e78d43
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001604932300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Oct 18 23:54:48 EDT 2025
Thu Oct 30 04:57:35 EDT 2025
Sat Nov 01 10:37:13 EDT 2025
Sat Nov 29 07:01:37 EST 2025
Wed Nov 05 07:07:56 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-3b9e8682888e2e300dea1e557afcf56443f9b7f488b534b30fdaa770e36e78d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1613-9448
0000-0001-5802-9496
0009-0000-4967-3175
0000-0002-9603-9975
0000-0002-9613-1659
PMID 41100244
PQID 3266577781
PQPubID 85429
PageCount 16
ParticipantIDs proquest_miscellaneous_3262228201
proquest_journals_3266577781
ieee_primary_11206010
pubmed_primary_41100244
crossref_primary_10_1109_TIP_2025_3620091
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Brody (ref36) 2021
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Baldi (ref25)
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref20
ref22
ref21
Roweis (ref42) 2000; 290
ref28
ref27
ref29
Fix (ref40) 1989; 57
Veličković (ref35) 2017
References_xml – ident: ref23
  doi: 10.1109/TGRS.2024.3351179
– ident: ref24
  doi: 10.1109/TGRS.2023.3276175
– year: 2021
  ident: ref36
  article-title: How attentive are graph attention networks?
  publication-title: arXiv:2105.14491
– ident: ref5
  doi: 10.1109/TGRS.2021.3069716
– ident: ref28
  doi: 10.3390/rs17142438
– volume: 57
  start-page: 238
  year: 1989
  ident: ref40
  article-title: Discriminatory analysis—Nonparametric discrimination: Consistency properties
  publication-title: Int. Stat. Rev.
  doi: 10.2307/1403797
– ident: ref41
  doi: 10.1109/TIT.1967.1053964
– ident: ref34
  doi: 10.1109/TPAMI.2025.3557581
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: ref42
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref13
  doi: 10.1109/18.857796
– ident: ref10
  doi: 10.1117/12.850741
– year: 2017
  ident: ref35
  article-title: Graph attention networks
  publication-title: arXiv:1710.10903
– ident: ref43
  doi: 10.1109/ICCV.2019.00533
– ident: ref1
  doi: 10.11834/jrs.20210283
– ident: ref48
  doi: 10.1109/TGRS.2023.3335484
– ident: ref26
  doi: 10.1109/ACCESS.2025.3534981
– ident: ref15
  doi: 10.1109/TIP.2021.3078329
– ident: ref27
  doi: 10.1049/cit2.12154
– ident: ref49
  doi: 10.1109/lgrs.2024.3449635
– ident: ref3
  doi: 10.1109/TGRS.2024.3456548
– ident: ref11
  doi: 10.1109/TGRS.2004.841487
– ident: ref8
  doi: 10.1109/29.60107
– ident: ref32
  doi: 10.1109/JSTARS.2025.3542457
– ident: ref46
  doi: 10.1109/TCYB.2020.2968750
– ident: ref19
  doi: 10.1117/12.745429
– ident: ref12
  doi: 10.3390/rs14081784
– ident: ref47
  doi: 10.1109/JSTARS.2019.2940278
– ident: ref20
  doi: 10.1109/JSTARS.2022.3167830
– ident: ref16
  doi: 10.1109/TGRS.2025.3593019
– ident: ref33
  doi: 10.1109/JSTARS.2025.3580751
– ident: ref39
  doi: 10.1109/TIP.2024.3385295
– ident: ref4
  doi: 10.1109/TGRS.2023.3262928
– ident: ref38
  doi: 10.1109/TIP.2023.3306916
– ident: ref29
  doi: 10.1016/j.eswa.2025.127366
– ident: ref45
  doi: 10.1109/ICCWAMTIP51612.2020.9317527
– ident: ref22
  doi: 10.1109/ACCESS.2025.3530437
– start-page: 37
  volume-title: Proc. Int. Conf. Unsupervised Transf. Learn. Workshop
  ident: ref25
  article-title: Autoencoders, unsupervised learning and deep architectures
– ident: ref18
  doi: 10.1109/TGRS.2006.873019
– ident: ref2
  doi: 10.1109/TIP.2021.3071557
– ident: ref30
  doi: 10.1109/TGRS.2025.3534185
– ident: ref21
  doi: 10.1109/TGRS.2019.2936308
– ident: ref9
  doi: 10.1109/JSTARS.2013.2238609
– ident: ref7
  doi: 10.1109/IGARSS.2017.8127159
– ident: ref37
  doi: 10.1109/TIP.2022.3144017
– ident: ref44
  doi: 10.1016/j.inffus.2022.08.011
– ident: ref14
  doi: 10.1109/MSP.2022.3217936
– ident: ref6
  doi: 10.1109/MSP.2013.2278992
– ident: ref31
  doi: 10.1109/TGRS.2025.3547145
– ident: ref17
  doi: 10.1109/TCYB.2022.3175771
SSID ssj0014516
Score 2.4676416
Snippet Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder(AE)-based methods are widely used due to...
Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder (AE)-based methods are widely used due to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 6714
SubjectTerms Anomalies
Anomaly detection
autoencoder
Autoencoders
Decoding
Detectors
Feature extraction
Gaussian distribution
graph attention network
Hyperspectral imaging
Image reconstruction
Kernel
Laplace equations
re-masking strategy
Regularization
Representations
twice loss
Title Self-Supervised Masked Graph Autoencoder for Hyperspectral Anomaly Detection
URI https://ieeexplore.ieee.org/document/11206010
https://www.ncbi.nlm.nih.gov/pubmed/41100244
https://www.proquest.com/docview/3266577781
https://www.proquest.com/docview/3262228201
Volume 34
WOSCitedRecordID wos001604932300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Bb9UwDLZg2gEOjI0BD8bUSbtwyNbXNnVynBhjSDBN2ia9W5UmjoQY7fTaIvHvcdK-N3bYgVMr1W2j2I4_x7ENcGgkY9qMUkHoSlH4IhOGdCFsljlLc0cK69hsAi8u1GKhL6dk9ZgLQ0Tx8BkdhdsYy3etHcJW2TFjg1A-hD30p4jlmKy1DhmEjrMxtClRIOP-VUwy1cfXXy_ZE8zkEa_WjClCd5gilEpj0_bAHMX-Ko9DzWhyzrb-c7Av4cWELZOTURi24Qk1O7A14cxk0uJuB57_U4TwFXy7olsvroa7sGp0TPjddD_58iWUsk5Ohr4NtS4dLRPGt8k5-61jeuYy_Kppf5nbP8kp9fFIV7MLN2efrz-di6nHgrBsvHqR15pUyW6XUpRRnqaOzJykROOtlwyWcq9r9KzmtcyLOk-9MwYxpbwkVK7IX8NG0zb0FhJHNiu8L-dWBXqpLRVI3mhX5kjazuDjaqqru7GURhVdkFRXzKEqcKiaODSD3TCj93TTZM5gb8WcalK2rmIEWkpEVPzawfoxq0mIfZiG2iHShL0uhjszeDMydf3xlSy8e-Sn7-FZGNu48bIHG_1yoA-waX_3P7rlPsviQu1HWfwLYAfYtg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcQQ9r2MBiD7RhsnbSXPQR6bdM0j2h8HNpxQuIm8ValiSMhWIuu7aT99zhp7jYeeNhTK9VpojiOf45jG-Cr4oRpE4wZCpOzzGYJUygzppPEaBwbLETli02I2ay4uZFXIVjdx8Igor98hofu1fvyTaN7d1R2RNjApQ8hC_2FK50VwrVWTgNXc9Y7N7lggpD_0isZy6P5xRXZggk_pP2aUIWrD5O5ZGmk3J4oJF9h5Xmw6ZXO2eZ_DncL3gR0GR0Py-EtrGG9DZsBaUZBjttteP1PGsJ3ML3Ge8uu-we3b7REeKnaO3qcu2TW0XHfNS7bpcFFRAg3mpDlOgRoLlxXdfNL3f-JTrDzl7rqHfh5djr_PmGhygLTpL46llYSi5wMr6LABNM4NqjGyLlQVltOcCm1shKWBL3iaValsTVKCRFjmqMoTJbuwnrd1PgBIoM6yazNx7pw9FxqzARaJU2eCpR6BN-WU10-DMk0Sm-ExLIkDpWOQ2Xg0Ah23Iz-pQuTOYL9JXPKIG5tSRg050KIgpp9WX0mQXHeD1Vj03sad9pFgGcE7wemrn6-XAt7z3T6GV5O5pfTcnox-_ERXrlxDscw-7DeLXo8gA39u7ttF5_8inwEuK_bFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Masked+Graph+Autoencoder+for+Hyperspectral+Anomaly+Detection&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Tu%2C+Bing&rft.au=He%2C+Baoliang&rft.au=He%2C+Yan&rft.au=Zhou%2C+Tao&rft.date=2025-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=34&rft.spage=6714&rft.epage=6729&rft_id=info:doi/10.1109%2FTIP.2025.3620091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2025_3620091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon