Comparative Study of Advance Smart Strain Approximation Method Using Levenberg-Marquardt and Bayesian Regularization Backpropagation Algorithm

This study aimed to develop a smart model prediction of strain calculation using fiber optic sensors and neural network. Optical parameters are obtained experimentally on a cantilever beam structure, under static loading conditions. Five variations are used by creating external damage to study strai...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Materials today : proceedings Ročník 21; s. 1380 - 1395
Hlavní autori: Wali, Ashwarya Sheel, Tyagi, Amit
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 2020
Predmet:
ISSN:2214-7853, 2214-7853
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study aimed to develop a smart model prediction of strain calculation using fiber optic sensors and neural network. Optical parameters are obtained experimentally on a cantilever beam structure, under static loading conditions. Five variations are used by creating external damage to study strain variations on healthy, single damage and multiple damage beam structures. The strain values were correlated to the set of phase difference and change in intensities by using feed-forward back propagation neural network approach. The strain values using optical parameters were verified with conventional strain gauge measurement and finite element analysis. The neural network simulation provides advance and more accurate correlation results with strain gauge and FEA analysis.
AbstractList This study aimed to develop a smart model prediction of strain calculation using fiber optic sensors and neural network. Optical parameters are obtained experimentally on a cantilever beam structure, under static loading conditions. Five variations are used by creating external damage to study strain variations on healthy, single damage and multiple damage beam structures. The strain values were correlated to the set of phase difference and change in intensities by using feed-forward back propagation neural network approach. The strain values using optical parameters were verified with conventional strain gauge measurement and finite element analysis. The neural network simulation provides advance and more accurate correlation results with strain gauge and FEA analysis.
Author Tyagi, Amit
Wali, Ashwarya Sheel
Author_xml – sequence: 1
  givenname: Ashwarya Sheel
  surname: Wali
  fullname: Wali, Ashwarya Sheel
  email: ashwary.rs.mec14@itbhu.ac.in
– sequence: 2
  givenname: Amit
  surname: Tyagi
  fullname: Tyagi, Amit
BookMark eNqFkEtu2zAQhokiBZqmPkE2vIDUoRiJ0qILx8ijgIMCbbwmxtRIoWOTKkUbcQ7RM5eOsyiySFfzAL4Z_N9nduK8I8bOBeQCRPV1lW8wDiEvoIAcRC5U_YGdFoW4yFRdypN_-k9sMo4rABBlBbWoTtmfmd8MGDDaHfFfcdvuue_4tN2hM2mxwRDTOqB1fDoMwT_Z9Mx6x-8oPviWL0brej6nHbklhT67w_B7i6GNHF3LL3FPo0XHf1K_XWOwz0f4Es1jOjZgf5yn694HGx82X9jHDtcjTV7rGVtcX93PbrP5j5vvs-k8MxJkzORFY6iUSolmWchlhQUpBWgQiCpoyoqUaQuBqKhSglTd1UIBLCtpqOvKRp4xebxrgh_HQJ0eQkoW9lqAPljVK_1iVR-sahA6WU1U84YyNr4kOBha_4f9dmQpxdpZCno0lpLk1gYyUbfevsv_BcYummw
CitedBy_id crossref_primary_10_1016_j_gsf_2020_11_005
crossref_primary_10_1016_j_radphyschem_2022_110558
crossref_primary_10_1140_epjp_s13360_022_02815_3
crossref_primary_10_1016_j_chemosphere_2023_137788
crossref_primary_10_3390_electronics13142789
crossref_primary_10_3390_en16104162
crossref_primary_10_1080_10916466_2022_2098327
crossref_primary_10_1155_2021_2922728
crossref_primary_10_1016_j_jngse_2022_104468
crossref_primary_10_3390_w15193380
crossref_primary_10_3390_su13179537
Cites_doi 10.3390/s120303314
10.24237/djes.2015.08103
10.1007/BF02703781
10.1364/AO.17.002867
10.1016/j.engstruct.2005.09.018
10.1139/P09-062
10.1088/0964-1726/9/6/305
10.1016/j.measurement.2008.05.005
10.1016/S0143-8166(00)00033-6
10.1016/j.measurement.2017.08.047
10.1088/0957-0233/14/8/329
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2020.01.178
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 1395
ExternalDocumentID 10_1016_j_matpr_2020_01_178
S2214785320302418
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c303t-349ce537719b23b6a2e770aca0ee60956e7cd21aa7e671e78f81700b63ceff593
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514825600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-7853
IngestDate Tue Nov 18 22:41:06 EST 2025
Sat Nov 29 06:56:00 EST 2025
Fri Feb 23 02:49:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neural network
Optical parameters
Finite element analysis (FEA)
Strain
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-349ce537719b23b6a2e770aca0ee60956e7cd21aa7e671e78f81700b63ceff593
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_matpr_2020_01_178
crossref_citationtrail_10_1016_j_matpr_2020_01_178
elsevier_sciencedirect_doi_10_1016_j_matpr_2020_01_178
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References James, Tatam (b0035) 2003; 14
Karsoliya, S.(2012), “Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture”, International Journal of Engineering Trends and Technology, Volume3-Issue6,714-717.
Her, Yang (b0010) 2012; 12
Maity, D., and SAHA, A.(2004), “Damage assessment in structure from changes in static parameter using neural networks”, Sadhana Vol. 29, Part 3, pp. 315–327.
Kadhim (b0045) 2015; 8
Butter, Hocker (b0085) 1978; 17
Gupta, N., Kamath, G.M., Sundaram, R., Rao, M.S., and Kumar, P.S.(2004), “Structural Health Monitoring of Composite Structures Using Neural Networks”, Proceedings of INCCOM-3 Third ISAMPE National Conference on Composites.Research and Development Establishment (Engrs), Pune.
Lunia, Isaac, Chandrashekhara, Watkins (b0080) 2000; 9
Mulimani, R., Preetasharan., Srinivas, T.(2013), “A finite element analysis & simulation of an optical Mach-Zehnder interferometric mandrel for acoustic detection with increased sensitivity“, International Conference on Electronics and Communication Engineering (ECE), ISBN: 978-93-82208-84-6.
Panchal, Panchal (b0075) 2014; Vol. 3- Issue.11
Chan, Yu, Tam, Ni, Lin, Chung, Cheng., L. K (b0005) 2006; 28
Peters, Pattis, Botsis, Giaccari (b0020) 2000; 33
Maity, D., and Saha, A.(2004), “Damage assessment in structure from changes in static parameter using neural networks”, Publisher Springer India, Issue 3, Vol. 29.
Regez, Sayeh, Mahajan, Figueroa (b0015) 2009; 42
Haan (b0050) 2009; 87
Gholamzadeh, Nabovati (b0030) 2008; 8
Heredia, Aguilar, Ocampo (b0040) 2018; 113
Peters (10.1016/j.matpr.2020.01.178_b0020) 2000; 33
Regez (10.1016/j.matpr.2020.01.178_b0015) 2009; 42
10.1016/j.matpr.2020.01.178_b0025
Kadhim (10.1016/j.matpr.2020.01.178_b0045) 2015; 8
Lunia (10.1016/j.matpr.2020.01.178_b0080) 2000; 9
Heredia (10.1016/j.matpr.2020.01.178_b0040) 2018; 113
Butter (10.1016/j.matpr.2020.01.178_b0085) 1978; 17
Chan (10.1016/j.matpr.2020.01.178_b0005) 2006; 28
James (10.1016/j.matpr.2020.01.178_b0035) 2003; 14
Panchal (10.1016/j.matpr.2020.01.178_b0075) 2014; Vol. 3- Issue.11
10.1016/j.matpr.2020.01.178_b0070
Gholamzadeh (10.1016/j.matpr.2020.01.178_b0030) 2008; 8
Her (10.1016/j.matpr.2020.01.178_b0010) 2012; 12
10.1016/j.matpr.2020.01.178_b0060
10.1016/j.matpr.2020.01.178_b0055
Haan (10.1016/j.matpr.2020.01.178_b0050) 2009; 87
10.1016/j.matpr.2020.01.178_b0065
References_xml – volume: 8
  start-page: 6
  year: 2008
  ident: b0030
  article-title: Fiber-optic sensor
  publication-title: International Journal of Electronics and Communication Engineering
– volume: 14
  start-page: R149
  year: 2003
  end-page: R161
  ident: b0035
  article-title: Optical fiber long-period grating sensors: characteristics and application
  publication-title: Measurement science and technology
– reference: Karsoliya, S.(2012), “Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture”, International Journal of Engineering Trends and Technology, Volume3-Issue6,714-717.
– reference: Maity, D., and Saha, A.(2004), “Damage assessment in structure from changes in static parameter using neural networks”, Publisher Springer India, Issue 3, Vol. 29.
– volume: 42
  start-page: 183
  year: 2009
  end-page: 188
  ident: b0015
  article-title: A novel fiber optics-based method to measure very low strains in large scale infrastructures
  publication-title: Measurement: Elsevier Ltd.
– reference: Mulimani, R., Preetasharan., Srinivas, T.(2013), “A finite element analysis & simulation of an optical Mach-Zehnder interferometric mandrel for acoustic detection with increased sensitivity“, International Conference on Electronics and Communication Engineering (ECE), ISBN: 978-93-82208-84-6.
– volume: 9
  start-page: 767
  year: 2000
  end-page: 773
  ident: b0080
  article-title: Aerodynamic testing of a smart composite wing using fiber-optic strain sensing and neural networks
  publication-title: Smart Material and Structure
– volume: 8
  start-page: 27
  year: 2015
  end-page: 41
  ident: b0045
  article-title: Strain Measurement By Using Phase Modulated Fiber Optic Sensors Technology
  publication-title: Diyala Journal of Engineering Sciences
– reference: Maity, D., and SAHA, A.(2004), “Damage assessment in structure from changes in static parameter using neural networks”, Sadhana Vol. 29, Part 3, pp. 315–327.
– volume: 87
  start-page: 999
  year: 2009
  end-page: 1008
  ident: b0050
  article-title: Mach-Zehnder fiber interferometer est of anisotropy of speed of light
  publication-title: Can. J. Phys.
– volume: 17
  start-page: 2867
  year: 1978
  end-page: 2869
  ident: b0085
  article-title: Fiber optics strain gauge
  publication-title: Applied optics.
– reference: Gupta, N., Kamath, G.M., Sundaram, R., Rao, M.S., and Kumar, P.S.(2004), “Structural Health Monitoring of Composite Structures Using Neural Networks”, Proceedings of INCCOM-3 Third ISAMPE National Conference on Composites.Research and Development Establishment (Engrs), Pune.
– volume: 28
  start-page: 648
  year: 2006
  end-page: 659
  ident: b0005
  article-title: Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation
  publication-title: Engineering Structures: Elsevier Ltd.
– volume: 12
  start-page: 3314
  year: 2012
  end-page: 3326
  ident: b0010
  article-title: Dynamic Strain Measured by Mach-Zehnder Interferometric
  publication-title: Sensors
– volume: 113
  start-page: 92
  year: 2018
  end-page: 98
  ident: b0040
  article-title: Laser-beam reflection for steel stress-strain characterization
  publication-title: Measurement: Elsevier Ltd.
– volume: 33
  start-page: 107
  year: 2000
  end-page: 119
  ident: b0020
  article-title: Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields
  publication-title: Optics and Lasers in Engineering: Elsevier Science Ltd.
– volume: Vol. 3- Issue.11
  start-page: 455
  year: 2014
  end-page: 464
  ident: b0075
  article-title: “Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network”,
  publication-title: Computing
– volume: 12
  start-page: 3314
  year: 2012
  ident: 10.1016/j.matpr.2020.01.178_b0010
  article-title: Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors
  publication-title: Sensors
  doi: 10.3390/s120303314
– ident: 10.1016/j.matpr.2020.01.178_b0060
– volume: 8
  start-page: 27
  year: 2015
  ident: 10.1016/j.matpr.2020.01.178_b0045
  article-title: Strain Measurement By Using Phase Modulated Fiber Optic Sensors Technology
  publication-title: Diyala Journal of Engineering Sciences
  doi: 10.24237/djes.2015.08103
– volume: Vol. 3- Issue.11
  start-page: 455
  year: 2014
  ident: 10.1016/j.matpr.2020.01.178_b0075
  article-title: “Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network”, International Journal of Computer Science and Mobile
  publication-title: Computing
– ident: 10.1016/j.matpr.2020.01.178_b0065
  doi: 10.1007/BF02703781
– volume: 8
  start-page: 6
  year: 2008
  ident: 10.1016/j.matpr.2020.01.178_b0030
  article-title: Fiber-optic sensor
  publication-title: International Journal of Electronics and Communication Engineering
– ident: 10.1016/j.matpr.2020.01.178_b0055
  doi: 10.1007/BF02703781
– volume: 17
  start-page: 2867
  year: 1978
  ident: 10.1016/j.matpr.2020.01.178_b0085
  article-title: Fiber optics strain gauge
  publication-title: Applied optics.
  doi: 10.1364/AO.17.002867
– volume: 28
  start-page: 648
  year: 2006
  ident: 10.1016/j.matpr.2020.01.178_b0005
  article-title: Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation
  publication-title: Engineering Structures: Elsevier Ltd.
  doi: 10.1016/j.engstruct.2005.09.018
– volume: 87
  start-page: 999
  year: 2009
  ident: 10.1016/j.matpr.2020.01.178_b0050
  article-title: Mach-Zehnder fiber interferometer est of anisotropy of speed of light
  publication-title: Can. J. Phys.
  doi: 10.1139/P09-062
– volume: 9
  start-page: 767
  year: 2000
  ident: 10.1016/j.matpr.2020.01.178_b0080
  article-title: Aerodynamic testing of a smart composite wing using fiber-optic strain sensing and neural networks
  publication-title: Smart Material and Structure
  doi: 10.1088/0964-1726/9/6/305
– ident: 10.1016/j.matpr.2020.01.178_b0025
– volume: 42
  start-page: 183
  year: 2009
  ident: 10.1016/j.matpr.2020.01.178_b0015
  article-title: A novel fiber optics-based method to measure very low strains in large scale infrastructures
  publication-title: Measurement: Elsevier Ltd.
  doi: 10.1016/j.measurement.2008.05.005
– ident: 10.1016/j.matpr.2020.01.178_b0070
– volume: 33
  start-page: 107
  year: 2000
  ident: 10.1016/j.matpr.2020.01.178_b0020
  article-title: Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields
  publication-title: Optics and Lasers in Engineering: Elsevier Science Ltd.
  doi: 10.1016/S0143-8166(00)00033-6
– volume: 113
  start-page: 92
  year: 2018
  ident: 10.1016/j.matpr.2020.01.178_b0040
  article-title: Laser-beam reflection for steel stress-strain characterization
  publication-title: Measurement: Elsevier Ltd.
  doi: 10.1016/j.measurement.2017.08.047
– volume: 14
  start-page: R149
  year: 2003
  ident: 10.1016/j.matpr.2020.01.178_b0035
  article-title: Optical fiber long-period grating sensors: characteristics and application
  publication-title: Measurement science and technology
  doi: 10.1088/0957-0233/14/8/329
SSID ssj0001560816
Score 2.2178836
Snippet This study aimed to develop a smart model prediction of strain calculation using fiber optic sensors and neural network. Optical parameters are obtained...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1380
SubjectTerms Finite element analysis (FEA)
Neural network
Optical parameters
Strain
Title Comparative Study of Advance Smart Strain Approximation Method Using Levenberg-Marquardt and Bayesian Regularization Backpropagation Algorithm
URI https://dx.doi.org/10.1016/j.matpr.2020.01.178
Volume 21
WOSCitedRecordID wos000514825600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: AIEXJ
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlAMXBAJE-dIeuAVXttfrtY-mKgJEKkSKyM1ar9dN2sQJrinJn-BX8EOZ_bDjlCiiBy5WvMlOYs_T7st45g1Cr6mfBUQWgSODkDqBCAIngl3K4ZTnYS6JKGShm02w09NoPI4_93q_m1qY6xkry2i1ipf_1dUwBs5WpbO3cHdrFAbgNTgdjuB2OP6T4487et6jRjI6MY_6B6M5zFCPormKcyg98dXUFC8OhrqX9MDkEHxSwk4q9csZ8uq7gpHJRH_L11KXXX7RPewrW8UJ4-ISjMHqZM6T2fmimtaTeZf8DnltbgAQXlV-oqIRmw20JfffuCnZTq4mP3m15oPRRMpNIsian5u359O6G7Pw3c2i5vte4LDICAQfyR1jdlU2ddN2WfWIafdkt2hgrXTn8m8iERdHcOOWSuzVd5Umq2eaBG2Lbd_YBNvUxCbr7SLVRlJlJHW9FIzcQQc-o3HURwfJh5Pxx00sD2hjpLvstpfSCFzpVMK_fs5uEtQhNmcP0H37jwQnBkkPUU-Wj9CvDoqwRhFeFNiiCGsUYYMivIUibFCENYrwDhRhQBFuUIS3UYRvoAi3KHqMvr47OTt-79jWHY4ATlQ7JIiFpIQxL858koXcl4y5XHBXSiVxGEomct_jnMmQeZJFhRaKzEIiZFHQmDxB_XJRyqcIE0LyHIxFAphkLqIsD2JOaZ7DVE_Q-BD5zb1MhdW1V9c_S_e48hC9aSctjazL_o-HjZNSy0wN40wBefsmPrvd9zxH99SZCfG9QP26-iFforviup5eVa8s7P4ACsO4cw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Study+of+Advance+Smart+Strain+Approximation+Method+Using+Levenberg-Marquardt+and+Bayesian+Regularization+Backpropagation+Algorithm&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Wali%2C+Ashwarya+Sheel&rft.au=Tyagi%2C+Amit&rft.date=2020&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=21&rft.spage=1380&rft.epage=1395&rft_id=info:doi/10.1016%2Fj.matpr.2020.01.178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matpr_2020_01_178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon